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Chemical exposure scenarios and pathways: 

Chemical evaluations require information to estimate 
exposure via a variety of high-priority pathways, including 
scenario-specific data and models particular to consumer 
products and materials in the indoor environment, as well 
as occupational, ambient and ecological pathways.  

Stakeholder Need 
as stated in research plan
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Properties of High-Throughput Exposure Models

1) Capable of handling many chemicals with minimal 

descriptive information

2) Cover one or more relevant exposure routes 

3) Allow for integration with models for other pathways

4) Scientifically plausible

5) Allow for the assessment of interindividual and intraindividual variation in exposure

6) Amenable to integration within statistical frameworks that quantify uncertainty

7) No more complicated than necessary
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Existing HT Models for Key Pathways
Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Figure from Kristin Isaacs
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Consensus Exposure Predictions with 
the SEEM Framework

• Different exposure models 
incorporate knowledge, 
assumptions, and data
(MacLeod et al., 2010)

• We incorporate multiple models 
(including SHEDS-HT, USEtox, 
RAIDAR) into consensus 
predictions for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 2013, 2014, Ring 

et al., 2019)

• Evaluation is like a sensitivity 
analysis: What models are 
working? What data are most 
needed? 
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Ensemble Predictions
 We can use ensemble methods to make more stable models and characterize 

uncertainty
 “Ensemble methods are learning algorithms that construct a set of classifiers and 

then classify new data points by taking a (weighted) vote of their predictions.” 
Dietterich (2000)

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

 Ensemble systems have proven themselves to be very 
effective and extremely versatile in a broad spectrum 
of problem domains and real-world applications 
(Polikar, 2012)

 Ensemble learning techniques in the machine learning 
paradigm can be used to integrate predictions from 
multiple tools. Pradeep (2016)
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SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and 
Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 DietaryRing et al. (2018)



Office of Research and Development US EPA CSS-HERA BOSC Meeting – February 2-5, 2021 9 of 20

SEEM3 Considers Pathway of Exposure

We organize models by the 
exposure pathways they cover

We calibrate predictors based 
on ability to explain median 
NHANES exposure rates

Ring et al. (2018)
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Consensus Modeling of Median Chemical Intake 

Of 687,359 chemicals 
evaluated, 30% have 
less than a 50% 
probability for exposure 
via any of the four 
pathways and are 
considered outside the 
“domain of 
applicability”

Ring et al. (2018)

Intake Rate
> 0.1 mg/kg BW/day

1976 chemicals Intake Rate
< 0.1 mg/kg BW/day

685,383 chemicals

< 1 µg/kg BW/day
681,574 chemicals
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ExpoCast SEEM Models: Required Building 
Blocks for the Output

Supporting Models 
Exposure Factor Datasets

Machine-learning models for filling gaps from 
structure when no data are available

Composition and use/release data

Slide from Kristin Isaacs
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Supporting Models* 

Individual HT Pathway Models*

Monitoring Data for Evaluating and Calibrating 
the Predictors

Model1 Model 2 Model 3 Model 4 Model 5

*New Approach 
Methodologies for Exposure:

Application to Real Decision Contexts

Consensus SEEM Predictions* 

Machine-learning models for filling gaps from 
structure when no data are available

Composition and use/release data

for example, SHEDS-HT, HT ChemSteer, 
external models

Including NHANES biomonitoring and 
USGS water datasets

ExpoCast SEEM Models: Required Building 
Blocks for the Output

Slide from Kristin Isaacs

for Receptor

Exposure Factor Datasets
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Formatting Occupational Exposure Models for HT Use

Dermal Models

Inhalation Models

Concentrations were varied from 0.1 to 1

Slide from Katherine Phillips

• We have developed consensus models for consumer 
and some ambient pathways, but ecological and 
occupational consensus models are ongoing

• Many predictors for these pathways exist, but they are 
not typically oriented for high throughput capacity, for 
example EPA’s ChemSTEER (Chemical Screening Tool 
for Exposures and Environmental Releases)

• Command Line Occupational Exposure Tool (CLOET) a 
command line tool that allows use of ChemSTEER v3.0 
in a high throughput manner

• Multiple scenarios for each model have been run and 
tested against ChemSTEER GUI to test for model 
fidelity.



Office of Research and Development US EPA CSS-HERA BOSC Meeting – February 2-5, 2021 17 of 20

OPERA Property
Predictions

Air Concentration 
Model

Non-detects

Minucci et al, 
in preparation

Detects

Detect / 
Non-detect Model

• OSHA’s chemical exposure health data set for air samples was used to build a two-stage 
model that predicts 1) if a chemical is likely to be detected in air and 2) what the likely 
concentration would be

• OPERA physicochemical property distributions across NAICS sector and subsectors are 
included as input distributions to the models in addition to the OSHA data

Two-Stage Occupational Exposure Model

Slide from Katherine Phillips

• Bayesian Hierarchical Regression allows 
us to organize our predictions (either 
detect/non-detect or concentration) by 
NAICS Sector and/or Subsector
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EcoSEEM Metamodel for Surface 
Water Chemical Concentrations

Sayre et al, 
in preparation

Slide from Risa Sayre
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EcoSEEM Evaluating Predictive Ability of 
HT Surface Water Models

• The strength of the correlation 
between each combination of 
release and fate model 
predictions and the observed 
water concentrations allows 
model calibration

• The most informative pair for 
bulk concentrations was USEtox 
freshwater model using loadings 
from NPV

Sayre et al, 
in preparation
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Outlook
• SEEM metamodels have been developed for consumer and some 

ambient pathways (Ring et al., 2018) and ecological and 
occupational consensus models are in development

Exposure 
Forecasts 

from SEEM 
Consensus 

Meta-Models

mg/kg BW/day

Potential 
Hazard from 
in vitro HTS 

and HTTK

Lower
Risk

Medium 
Risk

Higher
Risk

EPA’s
ExpoCast

Project

• Estimates of exposure, with 
appropriately estimated 
uncertainty, allow quantitative 
prioritization of potential 
chemical risk (Wetmore et al., 
2015; Ring et al., 2017)

Exposure

Hazard

Chemical Risk 

Dose-Response
(Toxicokinetics 

/Toxicodynamics)
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