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"’EA Stakeholder Need
as stated in research plan

Chemical exposure scenarios and pathways:

Chemical evaluations require information to estimate
exposure via a variety of high-priority pathways, including
scenario-specific data and models particular to consumer
products and materials in the indoor environment, as well
as occupational, ambient and ecological pathways.
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"’EPSA Properties of High-Throughput Exposure Models
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Current Opinion in Toxicology
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1) Capable of handling many chemicals with minimal
descriptive information New Approach Methodologies for Exposure

Science
2) Cover one or more relevant exposure routes

John F. Wambaugh ! & =, Jane C. Bare 2, Courtney C. Carignan >, Kathie L. Dionisio *, Robin E.
Dodson > ¢, Olivier Jolliet ”, Xiaoyu Liu 8, David E. Meyer %, Seth R. Newton *, Katherine A. Phillips *,

3) A"ow for integration With mOdE|S for Other‘ pathways Paul S. Price ¥, Caroline L. Ring °, Hyeong-Moo Shin 0, Jon R. Sobus *, Tamara Tal '}, Elin M. Ulrich

* Daniel A. Vallero *, Barbara A. Wetmore , Kristin K. Isaacs *

4) Scientifically plausible

5) Allow for the assessment of interindividual and intraindividual variation in exposure
6) Amenable to integration within statistical frameworks that quantify uncertainty

7) No more complicated than necessary
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SEPA _ Existing HT Models for Key Pathways

Agency
Consumer (Near-Field) Pathways Ambient (Far-Field) Pathways Dietary Pathways
SHEDS-HT (Isaacs et al., 2014)
UseTox (Rosenbaum et al., 2008) UseTox (Rosenbaum et al. (2008)
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* Different exposure models
incorporate knowledge,
assumptions, and data
(MaclLeod et al., 2010)

* We incorporate multiple models
(including SHEDS-HT, USEtox,
RAIDAR) into consensus
predictions for 1000s of
chemicals within the Systematic
Empirical Evaluation of Models
(SEEM) (Wambaugh et al., 2013, 2014, Ring
et al,, 2019)

* Evaluation is like a sensitivity
analysis: What models are
working? What data are most
needed?

IEEEL Office of Research and Development

Consensus Exposure Predictions with

the SEEM Framework
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SEPA Ensemble Predictions

Agency

= \We can use ensemble methods to make more stable models and characterize
uncertainty

= “Ensemble methods are learning algorithms that construct a set of classifiers and

then classify new data points by taking a (weighted) vote of their predictions.”
Dietterich (2000)

= Ensemble systems have proven themselves to be very
effective and extremely versatile in a broad spectrum

of problem domains and real-world applications
(Polikar, 2012)

= Ensemble learning techniques in the machine learning
paradigm can be used to integrate predictions from
multiple tools. Pradeep (2016)
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Hurricane Path Prediction is an

Example of Integrating Multiple Models
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SEEM3 Collaboration

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All

Reporting (CDR) (2015)

Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 Far-Field Industrial and
Pollutants (2017) Pesticide

EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 Far-Field Pesticide
(REDs) Exposure Assessments (Through 2015)

United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 Far-Field Industrial

Environmental Toxicology and Chemistry toxicity model
(USEtox) Industrial Scenario (2.0)

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide
Risk Assessment IDentification And Ranking (RAIDAR) Arnot et al. (2008) 8167 Far-Field Pesticide
Far-Field (2.02)
EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 Far-Field Industrial and
Throughput (SHEDS-HT) Near-Field Direct (2017) Pesticide
SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential
Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shinetal. (2012) 45 Residential
RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 615 Residential
(2016,2017)
USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)
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SEPA SEEM3 Considers Pathway of Exposure

Environmental Protection
Agency

Chemical-

Pathwa i Predictors
We organize models by the y Specific

exposure pathways they cover Pathway " Average Unexplained Residential
Relevancy SHEDS-HT Direct Residential

SHEDS-HT Indirect Residential

We calibrate predictors based [ Residential —— Yes/No —— USETox

on ability to explain median RAIDAR-ICE
Production Volume
NHANES exposure rates —

—— Average Unexplained Dietary
. SHEDS-HT Dietary

Dieta ry YES/NO — Production Volume
USETox

General POPUIation _—— Average Unexplained Pesticide
Median Pesticide REDs

— Far-Field — Yes/No —— USETox
i . . Stockholm Convention
Chemical Exposure Pesticides

. Production Volume
(mg/kg BW/day)

Average Unexplained Industrial

USEtox

Far-Field RAIDAR
YES/NO Stockholm Convention

Industrial Production Volume

E— Average Unexplained Overall
Ring et al. (2018) Unknown & P
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SEPA Consensus Modeling of Median Chemical Intake

United States
Environmental |

Agency Intake Rate Pathway(s)
— Distary

Distary, Industrial 10* b
Dietary, Pesticide

Dietary, Pesticide, Industrial
. Residential Intake Rate

Distary, Residential, Imdustrial
< 0.1 mg/kg BW/day

Distary, Residential, Pesticide
Distary, Residential, Pesticide, Industrial 685 383 Chemicals
’

Industrial
Pesticide
o Pesticide, Industrial
2 Residential
+ Residential, Industrial
* Residential, Pesticide
<» Residential, Pesticide, Industrial
7 Unkmown

ot a > 0.1 mg/kg BW/day
1976 chemicals

O¢poel<d[EO
:
<

< 1 pg/kg BW/day
681,574 chemicals

Population Median Intake Rate (mg/kg bw/day)

Population Median Intake Rate (mg/kg bw/day)

1074+
Of 687,359 chemicals
evaluated, 30% have
less than a 50%

107° probability for exposure

via any of the four
pathways and are
considered outside the

10 PR “domain of 10° 2%10° 4=10° 6=10°
Chemical Rank . g, Chemical Rank
_ applicability _
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<EPA ExpoCast SEEM Models: Required Building
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Blocks for the Output

Machine-learning models for filling gaps from
Supporting Models structure when no data are available

Exposure Factor Datasets
Composition and use/release data
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<EPA ExpoCast SEEM Models: Required Building
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Blocks for the Output

Individual HT Pathway Models for example, SHEDS-HT, HT ChemSteer,

external models
Modell Model2 Model3 Model4 Model 5

Machine-learning models for filling gaps from
Supporting Models structure when no data are available
Exposure Factor Datasets
Composition and use/release data
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<EPA ExpoCast SEEM Models: Required Building
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Blocks for the Output

Monitoring Data for Evaluating and Calibrating

the Predictors Including NHANES biomonitoring and

USGS water datasets

Individual HT Pathway Models for example, SHEDS-HT, HT ChemSteer,

external models
Modell Model2 Model3 Model4 Model 5

Machine-learning models for filling gaps from
Supporting Models structure when no data are available
Exposure Factor Datasets
Composition and use/release data
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ExpoCast SEEM Models: Required Building

Blocks for the Output

Consensus SEEM Predictions
for Receptor

Monitoring Data for Evaluating and Calibrating
the Predictors

Individual HT Pathway Models

Modell Model2 Model3 Model4 Model 5

Supporting Models
Exposure Factor Datasets

14 of 20 i
Office of Research and Development Slide from Kristin Isaacs

Including NHANES biomonitoring and
USGS water datasets

for example, SHEDS-HT, HT ChemSteer,
external models

Machine-learning models for filling gaps from
structure when no data are available

Composition and use/release data
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ExpoCast SEEM Models: Required Building

Blocks for the Output

Consensus SEEM Predictions*
for Receptor

Monitoring Data for Evaluating and Calibrating
the Predictors

Individual HT Pathway Models*

Modell Model2 Model3 Model4 Model 5

Supporting Models*
Exposure Factor Datasets

15 of 20 i
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*New Approach

Methodologies for Exposure:
Application to Real Decision Contexts

Including NHANES biomonitoring and
USGS water datasets

for example, SHEDS-HT, HT ChemSteer,
external models

Machine-learning models for filling gaps from
structure when no data are available

Composition and use/release data
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We have developed consensus models for consumer
and some ambient pathways, but ecological and
occupational consensus models are ongoing

Many predictors for these pathways exist, but they are
not typically oriented for high throughput capacity, for
example EPA’'s ChemSTEER (Chemical Screening Tool
for Exposures and Environmental Releases)

Command Line Occupational Exposure Tool (CLOET) a
command line tool that allows use of ChemSTEER v3.0
in a high throughput manner

Multiple scenarios for each model have been run and
tested against ChemSTEER GUI to test for model
fidelity.

Slide from Katherine Phillips

Formatting Occupational Exposure Models for HT Use

Dermal Models

EPA-OPPT 1-Hand Dermal | Exposure Sgenario
Contact with Liquid |—-—| mm high
I low
EPA-OPPT 2-Hand Dermal
EPA-OPPT 2-Hand Dermal | |—-_|

Immersion with Liquid

EPA-OPPT 2-Hand Dermal |
Contact with Solids

EPA-OPPT 2-Hand Dermal |
Contact with Container Surfaces

User-defined |

Dermal | +———— [

102 )
Average Daily Dose (mg/kg-BW/day)

r—
) r—
Contact with Liquid —
o
———
o
————

Inhalation Models

EPA-OPPT Small |
Volume Solids Handling
OSHA PEL-limiting Model |

for Substance-specific Particulates

OSHA Total |
PNOR PEL-limiting

OSHA Respirable |
PNOR PEL-limiting

EPA-OPPT Automobile
OEM Spray Coating

EPA-OPPT Automobile |
Refinish Spray Coating

EPA-OPPT UV |
Roll Coating

o T o e
Average Daily Dose (mg/kg-BW/day)

Concentrations were varied from 0.1 to 1
US EPA CSS-HERA BOSC Meeting — February 2-5, 2021
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wEPA Two-Stage Occupational Exposure Model

United States
Environmental Protection

Agency  (OSHA’s chemical exposure health data set for air samples was used to build a two-stage
model that predicts 1) if a chemical is likely to be detected in air and 2) what the likely

concentration would be

 OPERA physicochemical property distributions across NAICS sector and subsectors are
included as input distributions to the models in addition to the OSHA data

e Bayesian Hierarchical Regression allows o . i
. . . . 21 Services 1
OPERA Property us to organize our predictions (either Manufacturing | - .
o o H Construction 1 - +*
~_ Predictions detect/non-detect or concentration) by e Foresy i ot . .
NAICS Sector and/or Subsector Real Estate and Rental and Leasing — .
Retail Trade 1 - &
Educational Services 4 —_— &
Detect/ Health Care and Social Assistance e
Wholesale Trade 1 —_— *
Non'deteCt MOdeI Professional, Scientific, and Technical Services 1 — +
- Transportation and Warehousing 1 —— &
I é Arts, Entertainment, and Recreation 4 —_— ¥
> ¢ Air Concentration information | s :
- Admin., Support, Waste Manage. and Remediation Services - —r— *
MOdeI Mining, Quarrying, and Oil and Gas Extraction —_—l—
Non- Detects | Accomodation and Food Services 4 —_—— *
detects . Public Administration - - .
5 H Ukilities - - *
Minucci et al, © | Finance and Insurance { ———#———— -
in preparation 02 04 06 08 -05 00 05 10 15 20
Non-detects Iglo[Conc mg/m Probability of detection Air concentration (log mg/m3)
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SEPA EcoSEEM Metamodel for Surface
Water Chemical Concentrations
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Release (loading) and EcoSEEM USGS/EPA water
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Fate and transport models

Production
volume data

Sayre et al, n, o ony
in preparation In y.= m0+z Z mjk In (Ijipki)
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‘f"’EPA EcoSEEM Evaluating Predictive Ability of
HT Surface Water Models

Agency

e The strength of the correlation P o
between each combination of R .
release and fate model |
predictions and the observed S -
water concentrations allows § o USEedeemEeRY —
model calibration S Useofesvater SHEDS - -
; P ; .
 The most informative pair for g T .
bulk concentrations was USEtox — .
freshwater model using loadings R .
from NPV o .
Sayre et al, s p ; ] ; 3
in preparation 95% Credible Interval of metamodel weights
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mg/kg BW/da

 SEEM metamodels have been developed for consumer and some T
ambient pathways (Ring et al., 2018) and ecological and
occupational consensus models are in development Potential
Hazard from
* Estimates of exposure, with in vitro HTS
appropriately estimated and HTTK
uncertainty, allow quantitative
prioritization of potential
chemical risk (Wetmore et al., Exposure
2015; Ring et al., 2017) Forecasts
from SEEM
Chemical Risk Consensus
EPA’s Meta-Models
Lower Medium  Higher
ExpoCast Risk Risk Risk
Project Dose-Response Exposure \

(Toxicokinetics
/Toxicodynamics)
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