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Outline
• Read-across definition
• Generalized Read-across (GenRA): Addressing shortcomings of 

current read-across approaches
• Contexts of similarity for read-across: Metabolic similarity
• Comparing and contrasting different data streams that provide 

metabolism information
• In silico metabolism: Assessing performance and coverage of tools
• Summary & Next steps
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What is Read-Across?
• Read-across describes the method of filling a data gap whereby a 

chemical with existing data values (source analogue) is used to make 
a prediction for a ‘similar’ chemical (target).
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Source Target

Ethanol Butanol Propanol

Property 1

Property 2

Property 3



Decision Context Analogue 
identification

Data gap analysis 
for target and 

source analogues

Analogue evaluation
Similarity contexts:

Structural
Mechanistic
Metabolic

Toxicological

Data gap filling:
Read-across

Uncertainty 
assessment

Generic Read-across workflow
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• Although there is much guidance for developing read-across assessment, 
acceptance remains an issue, not helped since read-across still remains a subjective, 
expert driven assessment.

• One issue thwarting acceptance relates to the “uncertainty of the read-across 
prediction”. 

• As such there have been many efforts to identify the sources of uncertainty in read-
across, characterize them in a consistent manner and identify practical strategies to 
address and reduce those uncertainties.

• Notable in these efforts have been the development of frameworks for the 
assessment of read-across, evaluating the utility of New Approach Methods 
(NAMs).

• Quantifying uncertainty and performance of read-across is still a need 

Ongoing issues with read-across



Generalized Read-Across (GenRA)
• GenRA is a data-driven approach to read-across that uses a similarity 

weighted activity of source analogues to generate predictions. This 
objective approach enables uncertainty of read-across predictions to be 
quantified and performance to be assessed.

• Current focus is to extend the scope of GenRA to factor other contexts of 
similarity such as metabolic similarity and quantifying  its contribution to 
toxicity predictions in conjunction with mechanistic and structural 
similarity.6

First implemented in the 
CompTox Chemicals DashBoard
(Beta, 2018)



Metabolism is an important similarity context
• Through metabolic activation, compounds can see a significant increase in toxicity 

which is not captured by the parent structure.
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Benza[a]pyrene Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide

CYP1A1/CYP1B1 CYP1A1/CYP1B1

Example: Phase 1 metabolism of benzo[a]pyrene yields an epoxide ring that allows it to bond to DNA



Comparing and contrast different sources of 
metabolism information

• Aim to investigate the concordance between in vivo, in vitro and in silico 
metabolism information and how it can be utilized to assess metabolic similarity 
for read-across

• Data streams
• In vitro:

• Perform in vitro rate and human hepatocyte study to determine intrinsic clearance
• Apply analytical spectroscopy (MS) for the detection of molecular species and non-

targeted analysis for metabolite identification
• In silico

• Use third party expert systems for the prediction of potential metabolites and their 
pathways to facilitate MS analysis

• In vivo
• Extract data in the peer reviewed literature



Comparing and contrast different sources of 
metabolism information

• Analysis:
• Evaluate concordance of in vitro metabolism data relative to existing 

experimental data
• Evaluate concordance of in silico metabolism to both in vitro metabolism and in 

vivo metabolism data for proof-of-concept substances
• Use the predicted and experimental metabolism data to determine which 

source analogue(s) are valid for case study read-across candidates



Selection of 
proof of 

concept and 
read-across 
case study 
substances

MS/Non targeted 
analysis to detect 
molecular species

Clearance values

Conduct human in 
vitro hepatocyte 

Overall Project Workflow

Generate monoisotopic mass 
information for predicted 

metabolites

Generate in silico 
metabolite 
predictions

Plausible in vitro 
metabolites and 
pathway, kinetics
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Workflow for the in-silico vs experimental 
metabolism comparison 
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Gather Store Analyze

• Mine the literature for in 
vivo and in vitro data

• Use in silico tools to 
generate predictions

• Update or add metabolites 
to EPA’s chemical 
registration database 
(DSSTox) with relevant 
information (e.g., study 
reference, species, 
biotransformation pathway, 
parent compound, rate 
information)

• Map biotransformation 
relationships between 
entities

• Compare performance and 
coverage of the in silico tools 
relative to experimental data 
collected



In silico tools for metabolite predictions

• In silico tools can provide a rapid and efficient method of predicting 
metabolites for compounds that lack published research.

• There are a number of metabolism prediction tools. Examples 
include: MetaPrint 2D, Meteor Nexus, TIMES, the simulators 
contained within the OECD Toolbox, Symga and Biotransformer. 

• Some are freely available, others such as TIMES and Meteor are 
commercial.

• Few studies have been performed to directly compare the 
performance of these tools.
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Evaluating in silico tools
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In silico predictions

Literature review of
reported metabolites

37 ExpoCast
substances

Parent Grouping

Performance Comparison
Compile into 
DataFrame

(Python)

Coverage
Sensitivity 

and 
precision

37 proof of concept substances were selected from the ToxCast library—these compounds represented 
a broad spectrum of pharmaceutical, agrochemical, and industrial chemistries.



Selected in silico tools
TIMES* QSAR ToolBox Meteor BioTransformer SyGMa CTS

Developer LMC OECD and ECHA Nexus Wishart Group Riddler & 
Wagener

EPA

Availability Commercial Public Commercial Public Public Public

Knowledge base Expert + Statistical Score Expert + Statistical 
Score

Expert + 
Statistical Score

Expert + ML Expert -

Customizable Met. Yes No Yes Yes Yes Limited

Interface GUI GUI/API GUIǂ API/CMD 
Prompt/Terminal

API/Phyton WebApp

Available 
Modules

Rat liver (in vivo),
Rat liver (S9, in vitro), 
Lung (mammal), Gut 

(mammal), Autoxidation

Autoxidation, 
Hydrolysis, Rat (S9, in 

vitro), Rat (in vivo)

Mammals (Dog, 
Human, Mouse, 

Rat)

Human (Liver, 
Gut), Microbial

Human (Liver) Human

#Predictions 211 (vitro), 459 (vivo) 312 459 827 5215 472

*Two modules were used separately for this work: rat in vivo, rat in vitro
ǂ Batch mode requires command prompt or terminal 
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Literature review
Identification of known metabolites for all 37 ToxCast compounds:
-Extracted metabolites from 49 papers (prioritized primary articles)
-Identified 438 metabolites across all compounds
-Species were recorded, but not considered in performance comparison

Metabolites were registered into EPA’s DSSTox chemical registration 
system to generate specific identifiers (DTXSID/DTXCIDs) to facilitate 
subsequent data analysis
-Metabolism pathways captured using Proceeding/Preceding structures
-SMILES and InChI Keys were queried and retrieved for downstream analysis
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Accounting for structural isomers
20 Isomers reported in literature
• Prediction software generates discrete structures, which need to be reconciled 

against literature for evaluation

• Requires enumeration of each potential metabolite to generate InChI Key

• Generated 585 Markush children
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CP-122,721 metabolite



Analysis Workflow 
1) Read and clean data from reported data and readout for each prediction software
2) Standardize SMILES for each prediction by removing stereochemistry and generate InChI keys 
4) Assign Boolean value to indicate which in silico tool was associated with the prediction
5) Merge data to allow other information to be added, such as SMILES, molecular formula, molecular weight, etc.).
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Example output:

Accounting for isomeric structures



Metric of model similarity

Metrics of model performance

Quantifying performance: metrics used
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Sensitivity:
Does the model cover all reported metabolites?

Precision:
Are the predicted metabolites true?

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑇𝑇𝑅𝑅𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

General equation: General equation: 

Coverage:
How well does model A match the predictions of model B?

𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∩ 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵



Comparing the in silico tools: relative coverage

Model
%Coverage of other software

ToolBox Meteor BioTransformer TIMES
In Vivo

TIMES
In Vitro SyGMa CTS Avg. 

ToolBox - 15.13 7.62 40.74 74.41 2.86 27.33 28.02

Meteor 34.39 - 9.07 25.93 33.65 4.60 19.92 21.26

BioTransformer 20.06 10.50 - 10.24 23.70 4.31 17.16 14.33

TIMES In Vivo 59.55 16.67 5.68 - 61.61 3.99 14.41 26.99

TIMES In Vitro 50.00 9.94 6.05 28.32 - 2.13 16.74 18.86

SyGMa 47.45 33.61 27.21 45.32 52.61 - 32.42 39.77

CTS 41.08 13.17 9.79 14.81 37.44 2.93 - 19.87
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Comparing in silico performance: Precision

Model Total Unique Precision Sensitivity

ToolBox 314 12 21.3 27.5

Meteor 714 436 8.7 22.5

BioTransformer 827 570 4.7 15.0

TIMES_InVivo 459 122 12.4 23.7

TIMES_InVitro 211 10 23.7 20.4

SyGMa 5215 4667 1.3 27.9

CTS 472 252 9.3 17.9

Combined 6799 - 1.7 42.9
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Assessing ‘local’ performance

Group 1
Nitrobenzenes

Group 2
Methoxybenzene

Group 3
Ketone/Benzoyl

Group 4
Misc

Group 5
Poly-chlorinated
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To compare performance differences relative to the parent compound, five 
groupings were generating using ClassyFire classifications (a structural/functional 
group hierarchy) combined with clustering approaches



‘Local’ chemical space performance
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Summary

• Metabolic similarity is an important component in evaluating analogue 
suitability within a read-across.

• Approaches to characterize and quantify metabolic similarity is needed
• A proof of concept study is ongoing to compare and contrast different 

metabolism information sources and evaluate their utility for read-across 
amongst other purposes.

• Specific in vitro data has been generated and is currently being evaluated. 
• Predictions have been generated using a selection of in silico tools.
• Experimental data has been extracted from the literature.
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Summary
• The performance of in silico metabolite prediction tools has been evaluated.

• Coverage was calculated to provide relative comparisons between each tool 
and provided a metric for prediction similarity

• Sensitivity and precision were determined by comparing predictions against 
metabolites reported in literature

• Using ClassyFire classifications, model performance could be evaluated 
relative to the ‘local’ chemical space of the starting compounds

• A manuscript to summarize the in silico evaluation is in preparation.

• Next steps include:
• Evaluating the concordance of in vitro data generated relative to the literature data 

collected and the in silico tools
• Generate in silico predictions for a larger number of substances 
• Investigate how to codify and quantify the metabolism information from 1 or more of 

the in silico tools for the purposes of read-across using the GenRA approach
24
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