Six decades of Lake Ontario ecological history according to benthos

Presenter: Lyubov E. Burlakova (burlakle@buffalostaate.edu)

Great Lakes Center, SUNY Buffalo State

Co-authors:

- A. Karatayev, A. Hrycik, S. Daniel, K. Mehler, Great Lakes Center, SUNY Buffalo State
- L. Rudstam, J. Watkins, Cornell University
- R. Dermott, Fisheries and Oceans Canada
- J. Scharold, U.S. EPA Great Lakes Toxicology and Ecology Division
- A. Elgin, NOAA Great Lakes Environmental Research Laboratory
- T. Nalepa, University of Michigan

Introduction

Historic environmental changes in Lake Ontario:

- 1940s 1970s: **cultural eutrophication** led to water quality deterioration and nuisance algal blooms (*Schelske*, 1991)
- 1980s: the 1972 Great Lakes Water Quality Agreement resulted in controls on phosphorus loadings and **initiated ecosystem recovery** (Mills et al., 2003)
 - Lake trout population restoration in 1973

Species invasions:

- 1989: zebra mussels (Griffiths et al., 1991)
- 1990: quagga mussels (Mills et al., 1993)
- 1998: round goby (Owens and Dittman, 2003)

Historic data

- Benthos of Lake Ontario has been studied intensively, particularly in the last six decades (*Mozley*, 1990; *Nalepa*, 1991)
 - the first benthic samples were collected in **1872** (*Nicholson*, 1873)
 - the first large systematic survey was conducted in **1964** (Hiltunen, 1969)
- 13 lake-wide benthic surveys were conducted in Lake Ontario from 1964 to 2018
- For **11** of them we were able to acquire species-level data

Questions:

- Can we track the effect of the 1972' Great Lakes Water Quality Agreement actions on benthic community?
- Zebra mussels have positive effects on abundance of littoral benthic species in small lakes. Did we see these effects in Lake Ontario?
- What effects quagga mussels have on benthic invertebrates both nearshore and offshore?
- Zebra vs Quagga effects: similar or not?
- How Round goby predation effect dreissenids?

Methods: 2018' survey

- Samples were collected from **55** stations aboard U.S. EPA R/V *Lake Guardian*
- **Ponar** (0.0523 m²) & 500-µm net
- Survey included most of the stations previously sampled in 1990 2013
- Environmental parameters:
 - Parameters of water were measured using a CTD probe and Rosette sensors
 - Sediment nutrients (total phosphorus, organic carbon, and total nitrogen)
 - Surface chlorophyll concentration derived from MODIS satellite (B. Lesht, GDIT)

Methods: Historic data

Sampling time	# stations	Sampler	Mesh size, μm	Taxonomic resolution	Author
1964, Sep	24	Smith- McIntyre	600	Species	Hiltunen, 1969
1972, Nov	55	Ponar	600	Species	Nalepa and Thomas, 1976
1977, Sep	151	Shipek	150	Groups*	Golini, 1979
1990, Oct	25	Ponar	600	Species	Dermott and Geminiuc, 2003
1994, Aug	51	Ponar	500	Species (excluding <i>Dreissena</i>)	Lozano et al., 2001, Watkins et al., 2007
1995, Oct	41	Ponar	600	Species	Dermott and Geminiuc, 2003
1997, Sep	68	Ponar	500	Species	Lozano et al., 2001
1998, Sep	114	Ponar	500	Species	Watkins et al., 2007
1999, Aug	67	Ponar	500	Species	Watkins et al., 2007
2003, Aug - Oct	36	Ponar	500	Diporeia, Dreissena	Watkins et al., 2007
2008, Aug-Sep; 2009, Sep	51	Ponar	500	Species	Birkett et al., 2015
2013, Jul, Aug	45	Ponar	500	Species	Nalepa and Baldridge, 2016
2018, Aug, Sep	55	Ponar	500	Species	Our data

How to combine results from different surveys???

- Benthos grabs:
 - Ponar and Smith-McIntyre grabs are similar (Sly and Christie, 1992)
 - Converted Shipek densities (*Golini*, 1979) to Ponar equivalents using taxa-specific sampling efficiency conversions (*Sly and Christie*, 1992)
- Species with rare occurrences were pooled into higher taxonomic units
- Used both data by species (11 years) and groups (13 years)
- Calculated average benthos densities by lake zone
 (0 30 m, >30 50 m, >50 90 m, and > 90 m)
- Calculated depth-weighted lake-wide density for each year

Statistics

- Environmental parameters were analyzed using Principal Component Analysis (R version 3.6.1)
- Community structure using Non-metric Multi-Dimensional Scaling on species density (R)
- Differences in community composition with Analysis of Similarities (ANOSIM, Primer 7)
- used **BEST** analysis to select environmental variables that explain benthic community patterns (Primer 7)
- used "Similarity Percentage" (SIMPER) analysis to examine the contribution of each species to the average BC similarity among communities (Primer 7)
- examined changes in overall benthic community structure by major taxonomic groups with NMDS, perMANOVA, and permutational ANOVAs (R)

Results: 2018

- Diversity: **76** benthic invertebrate taxa
 - Oligochaeta (**33** species and higher taxa)
 - Chironomidae (28)
 - Malacostraca (6), Bivalvia (3)
- Density:
 - **67**% *Dreissena r. bugensis*
 - **28**% Oligochaeta
 - **5**% Chironomidae
- Wet biomass: **99.7**% *D. r. bugensis*
- Communities differed by depth zone (*P* < 0.001, one-way ANOSIM)
- Highest density and diversity was found at <30 m depth
- Depth, bottom turbidity, and surface chlorophyll best described benthic community structure (*Spearman* ρ = 0.756, *BEST*).

Long-term changes

Communities differed by:

- depth zone (R = 0.541, P = 0.001, o ANOSIM)
- years (R = 0.499, P = 0.001, ANOSIM)
- Dreissena periods (R = 0.606, P = 0.001, ANOSIM)

Three different periods!!

• Lumbriculidae (16%)

the most contributing species to community similarity (% contribution)

Zebra mussel effect:

- 1990-1999
- mainly in littoral zone (0-30 m)
- Positively affected:
 - ✓ Amphipoda
 - ✓ Chironomidae
 - ✓ Gastropoda
 - ✓ Oligochaeta: Naididae

Dynamics of major taxa

What have we learned?

Decade	Factor	Effect on benthos
1960s	Eutrophication	High abundance of Oligochaeta and Sphaeriidae
Late 1970s	Phosphorus control measures	decline in Oligochaeta and Sphaeriidae
1980s	Lake trout restoration	increase in <i>Diporeia</i> - predation release? (<i>Barton and Anholt, 1997</i>)
1990s	Zebra mussel introduction	increase in littoral benthos, no much effects on <i>Diporeia</i>
2000s	Quagga mussel dominance	decline in <i>Diporeia</i> , increase in Oligochaeta

Conclusions?

✓ Benthic community is a good indicator of long-term environmental changes

✓ Historic data are important, need to be preserved and analyzed!

- Funding: US EPA Award
 GL 00E02259-2 "Great
 Lakes Long-Term
 Biological Monitoring
 Program 2017-2022"
- Great Lakes National Program Office (GLNPO)
- US EPA Research
 Vessel "Lake
 Guardian" Captain, crew,
 and scientists
- Great Lakes Center staff and students

The views presented are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.