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Complex samples, NTA, and the modeling problem
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Curating a dataset for modeling

• 772 compounds in derivatized GCMS 
• 7,199 compounds in non-derivatized GCMS
• 4,145 compounds in ESI+ LCMS
• 2,981 compounds in ESI- LCMS
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Curating a dataset for modeling

• Only amenable compounds identified in MoNA
• No unamenable compound data

• ToxCast library LCMS curation
• Spectra checked individually for quality

• Provides unamenable compound data
• ESI+ LCMS

• 403 amenable; 469 unamenable
• ESI- LCMS

• 464 amenable; 415 unamenable
• Caveat: some of these unamenable compounds are amenable based on MoNA*
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Curating a dataset for modeling
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Describing molecular structures

• 1,444 1D & 2D Molecular descriptors from QSAR-ready SMILES. Examples include…
• Electrotopological states weighted by atomic properties
• molecular linear free energy relationships weighted by atomic properties
• Atom, bond, & ring counts
• logP predictions, etc..
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Cleaning and reduction of descriptor space

• Dimension reduction will do two things:
• improve interpretability of models 
• make model calculations faster

• Remove chemicals missing descriptors*
• Remove any constant descriptors (variance(x) = 0)
• Remove near-constant descriptors (sd(x) < 0.25)

• 0.25 gives a good balance between reduction and retention
• Calculate pair-wise correlations between remaining descriptors

• Eliminate based on a cutoff = 0.96 correlation
• descriptor showing largest pair correlation with other descriptors was excluded

1,444 descriptors   498 descriptors
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Datasets suitable for modeling

• Models randomly divided into training and test sets
• 75% of data for training, 25% for testing
• Data stratified to maintain proportions in outcome variable
• Different for each model
• InChIKey skeleton as identifier
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Machine learning approach

• Random forest models for two endpoints
• ESI+ LCMS, ESI- LCMS
• Balance training set with either upsampling or 

downsampling
• Optimize hyperparameters via grid search

• Number of decision trees
• Number of random descriptors selected at 

each node 
• 5-fold cross validation
• Y-randomization

• Randomly scramble endpoint,
descriptors left intact
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Machine learning approach

Random Forest Algorithm
Training set X = x1x2…xn with responses 
Y = y1y2…yn

For b = 1,…,B
1. Sample, with replacement, n training 

examples from X, Y; Xb, Yb.
2. Train a classification tree fb on Xb, Yb.
3. The majority of all fb classifies unseen 

endpoints.
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Model performance
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Model summary

Imbalanced training sets lead to bad models!
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Model performance
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Model performance
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Model performance
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Mechanistic interpretation
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Information Content
• Connectivity of molecule based on neighbors and 

bond order
• Captures structural differences such as isomers, 

tautomers, etc.
• Predictive of retention index
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Mechanistic interpretation
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Molecular linear free energy relation
• BH -> hydrogen bond basicity
• S -> polarizability
• E -> excessive molar refraction

(polarizability-related)
• L -> solute gas-hexadecane partition coefficient

(log(L), same idea as log(P))
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Mechanistic interpretation
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Spectral moment weighted ionization potential
• Accounts for presence of heteroatoms and multiple 

bonds and their influence on ionization
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Model summary

•Downsampled model provides excellent predictions for 
both amenable and unamenable compounds
•Caveat: reduces sample space of amenable compounds

•May not accurately predict every amenable compound
•Preferred model for ranking candidates in a suspect-
screening analysis
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Model performance
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Model performance
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Model performance
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Mechanistic interpretation

24

Information Content
• Connectivity of molecule based on neighbors and 

bond order
• Captures structural differences such as isomers, 

tautomers, etc.
• Predictive of retention index
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Mechanistic interpretation
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Molecular linear free energy relation
• BH -> hydrogen bond basicity
• E -> excessive molar refraction

(polarizability-related)
• S -> polarizability
• L -> solute gas-hexadecane partition coefficient

(log(L), same idea as log(P))
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Mechanistic interpretation
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Spectral moment weighted by ionization potential
• Accounts for presence of heteroatoms and 

multiple bonds and their influence on ionization
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Model summary

•Upsampled model provides excellent predictions for 
amenable compounds
•Much larger sample space than downsampled model
•Weak predictive power for unamenable compounds
•Too optimistic for suspect-screening

•Preferred model for establishing which chemicals may be 
amenable to method 
•establishing a list of chemical standards
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Model performance

28



Office of Research and Development
Center for Computational Toxicology and Exposure

Model summary

Imbalanced training sets lead to bad models!
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Model performance
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Model performance
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Model performance
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Mechanistic interpretation
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• Captures electronic and topological information 
using intrinsic state of molecule

• Predictive of retention index
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Mechanistic interpretation
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Autocorrelation of topological distance 
weighted by atomic properties
• c -> atomic charge
• s -> intrinsic state
• e -> Sanderson electronegativity
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Mechanistic interpretation
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Spectral moment weighted by polarizability
• Accounts for presence of heteroatoms and multiple 

bonds and their influence on polarizability
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Model summary

•Downsampled model provides excellent predictions for 
both amenable and unamenable compounds
•Caveat: reduces sample space of amenable compounds

•May not accurately predict every amenable compound
•Preferred model for ranking candidates in a suspect-
screening analysis
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Model performance
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Model performance
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Model performance
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Mechanistic interpretation
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• Captures electronic and topological information 
using intrinsic state of molecule

• Predictive of retention index
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Mechanistic interpretation
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Autocorrelation of topological distance 
weighted by atomic properties
• c -> atomic charge
• s -> intrinsic state
• e -> Sanderson electronegativity
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Mechanistic interpretation
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Spectral moment weighted by polarizability
• Accounts for presence of heteroatoms and multiple 

bonds and their influence on polarizability
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Model summary

•Upsampled model provides excellent predictions for 
amenable compounds
•Much larger sample space than downsampled model
•Weak predictive power for unamenable compounds
•Too optimistic for suspect-screening

•Preferred model for establishing which chemicals may be 
amenable to method 
•establishing a list of chemical standards
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Current & future work

• Currently wrapping up manuscript
• Comparison of model results to Analytical QC data for ToxCast library

• Good examples – no signal in LCMS ESI+, ESI- or in GCMS BUT present and high 
purity by NMR

• Compare model results to ENTACT results 
• Model predictions vs. independent labs, consensus of labs

• Future plans
• Ensemble of upsampled and downsampled models?
• Predictions for entirety DSSTox
• Application for on-the-fly predictions based on a drawn structure
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CompTox Chemicals Dashboard mockup - Predictions
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Suspect-screening application

• List of ENTACT compounds identified in 
ESI+ & ESI- LCMS
–214 in ESI+ 
–105 in ESI-

• Retrieved candidates for each 
molecular formula via Dashboard
–13,325 candidates for ESI+
–7,079 candidates for ESI-

• Generated amenability predictions for 
candidate structures

• Rank ordered candidates by amenability 
probability
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