

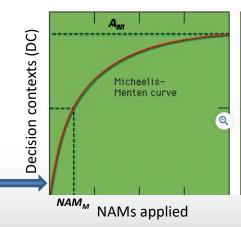
Quantitative Integration of NAMs into Regulatory Decision-Making: Current State of the Science

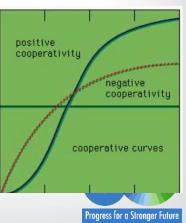
Jason C. Lambert, PhD, DABT
U.S. EPA, Office of Research and Development
Center for Computational Toxicology and Exposure
lambert.jason@epa.gov

March 23, 2021

Outline

- Traditional human health risk assessment practice and transition to New Approach Methodologies (NAMs)
- Examples of NAM data application
 - Expert-driven read-across (including bioactivity data)

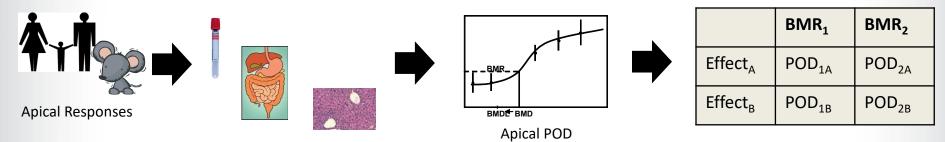

a regulatory scientific

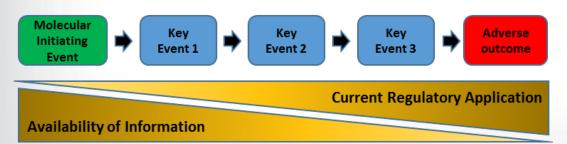

community

- Transcriptomic-based PODs
- Practical quantitative applications of transcriptomic data to risk assessment
 - Bioactivity-exposure ratio
 - Transcriptomic reference dose
 - Mixtures assessment

If application of NAMs were a kinetic process

According to Michaelis-Menten kinetics, if the rate of acceptance of NAMs is represented graphically as a function of the decision contexts applied (DC), the curve obtained in most cases is a hyperbola. The shape of the curve is a logical consequence of the fit-for-purpose concept; i.e., as NAMs are applied with greater confidence over time, the curve flattens at the maximum applicability (A_M) , which occurs when all decision-contexts integrate NAMs. (NAM_M) is the Michaelis constant.)




Human health risk assessment practice and a transition to new data types

Apical responses

- The vast majority of chemicals found in commerce and the environment are data-poor
- Commonly unaccounted for in formal quantitative evaluations of health risks to human populations
- Lack of available points-of-departure (POD) for use in derivation of non-cancer or cancer values
- POD = Dose-response point that marks the beginning of a low-dose extrapolation (e.g., BMDL; NOAEL)

Non-apical responses

 Application ranging from data-gap filling to primary basis for qualitative and quantitative organ or tissue-based toxicity

New Approach Methodologies

- NAM is a broadly descriptive term for any non-animal technology, methodology or approach or combination thereof that can be used to provide information on chemical hazard and risk assessment
 - https://ntp.niehs.nih.gov/iccvam/docs/roadmap/iccvam strategicroadmap january2018 docum ent 508.pdf
- NAM include, for example:
 - Cheminformatics structure-activity/read-across QSAR; predicted physchem properties
 - Biological NAMs in vitro cell bioactivity; high-throughput toxicogenomics (e.g., transcriptomics) cell painting/phenotypic profiling)
 - Toxicity Pathway annotation (e.g., Adverse Outcome Pathway development and application)
 - High-throughput toxicokinetics; in vitro to in vivo extrapolation (IVIVE)/reverse dosimetry
 - Exposure modeling; environmental fate and transport modeling

Expert-driven read-across

Data-poor chemicals

- Inferred/interpolated hazard
- Surrogate based POD and subsequent derivation of non-cancer reference values (e.g., oral RfD)

Data-rich chemicals

- Data-gap filling
- Augment WOE
- Potential for reducing uncertainties

Expert-driven read-across of p,p'-DDD

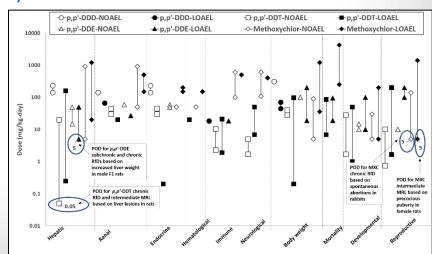
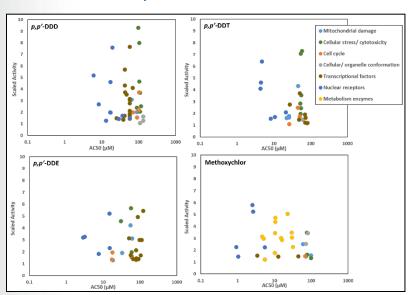
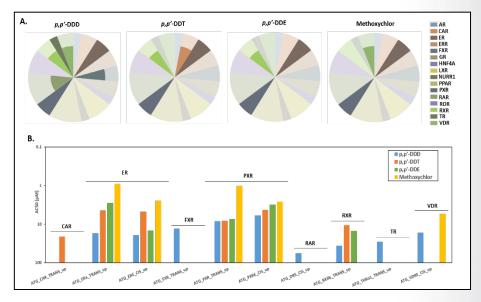

Identification of structural analogues

Table 1. Structural Analogues of p,p'-DDD				
	Target Chemical	Analogues ^a		
Name	p,p'-Dichlorodiphenyl dichloroethane (p,p'-DDD)	p,p'-Dichlorodiphenyl trichloroethane (p,p'-DDT)	p,p'-Dichlorodiphenyl dichloroethylene (p,p'-DDE)	p,p'-Dimethoxydiphenyl trichloroethane (Methoxychlor)
CASRN	72-54-8	50-29-3	72-55-9	72-43-5
Structure				***********
ChemIDplus similarity score (%)	100	77	67	65
DSSTox similarity score (%)	100	96	61	52
	a set of structurally similar chemics of availability of health reference			

nalogues represent a set of structurally similar chemicals identified using two publicly available similarity databases (ChemiDplus and DSSTOX) refiltered on the basis of availability of health reference values for non-cancer oral toxicity from regulatory agencies, including ATSDR (2002a, b) rd U.S. EPA (2017 b, c).

Lizarraga et al. (2019). Regul Toxicol Pharmacol 103:301-313 https://pubmed.ncbi.nlm.nih.gov/30794837/

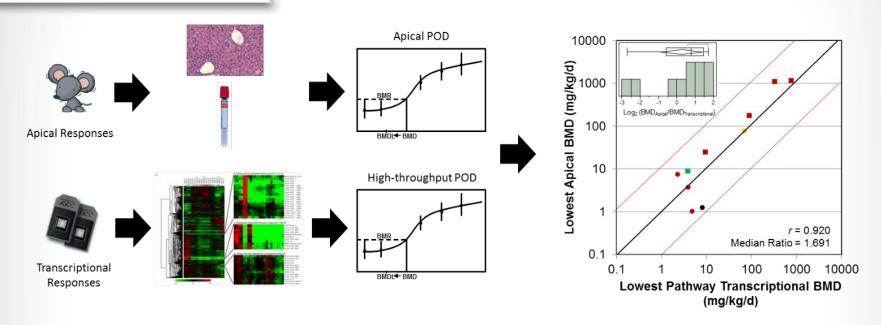

Putative toxicity targets for *p,p'*-DDD and analogues include the liver and reproductive system in animals



Expert-driven read-across

p,p'-DDD and analogues exhibit similarities in cell-specific responses and target gene pathways in *in vitro* ToxCast assays conducted in human liver cells

p,p'-DDD and analogues exhibit similar upregulation of steroid/xenobiotic-sensing nuclear receptors in *in vitro* ToxCast assays conducted in HepG2 Cells



Progress for a Stronger Future

- •ToxCast assays and model predictions suggest that p,p'-DDD and analogues may act as ER agonists and AR antagonists coinciding with the estrogenic and anti-androgenic reproductive effects observed *in vivo*
- •Coherence across *in vivo* toxicity and *in vitro* bioactivity similarity comparisons help reduce uncertainties associated with toxicity data gaps for the data-poor target chemical
- •These findings demonstrate the utility of integrating evidence from HTS data platforms to support mechanistic conclusions and increase confidence in the application of read-across in quantitate risk assessment

Transcriptomic Pathway-Based PODs

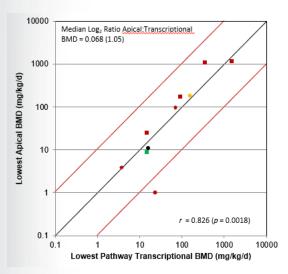
 Concordance between genotype/phenotype across two different routes of exposure, rodent species, sexes, and, multiple target tissues

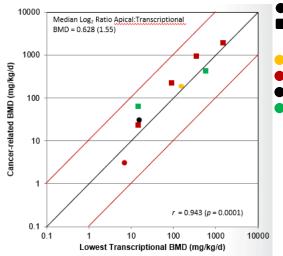
Data-poor chemicals

- Evidence base for hazard
- Dose-response based on pathway perturbations
- Reduce need for longer-term animal studies

Data-rich chemicals

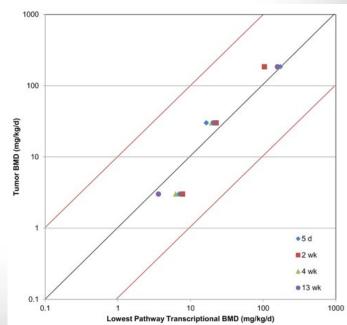
- Augment WOE (e.g., MOA/AOP)
- Opportunity to alert off-target effects
- Potential for reducing uncertainties

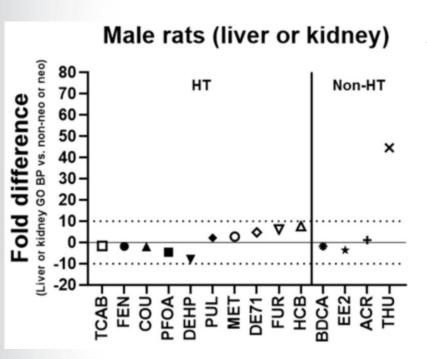

Concordance between Apical and Transcriptional PODs for Non-cancer and Cancer


Mouse

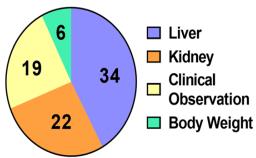
Bladder

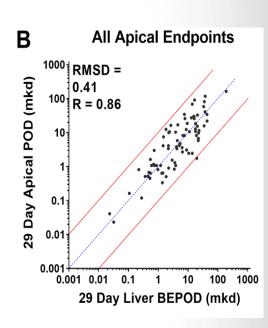
Liver Thyroid


Lung


Thomas et al. (2011 and 2013). Toxicol Sci https://pubmed.ncbi.nlm.nih.gov/21097997/

- 13-week exposures in rats or mice
- Transcriptome obtained from 'critical effect' tissues
- Lowest transcriptional pathway-based BMD from the 13wks study vs. chronic non-cancer (left panel) or cancer (right panel) effect BMDs
- Chemicals evaluated at 5d, 2, 4, or 13 wks in rats or mice
- Lowest transcriptional pathway-based BMD from the 5d,
 2, 4, or 13-wks timepoints vs. chronic cancer effect BMDs





Concordance between Apical and Transcriptional PODs for Non-cancer and Cancer

- 18 chemicals evaluated in a 5-day in vivo oral exposure study in rats
- Lowest GO Biol Process BMD from the 5day study vs. subchronic or chronic apical effect BMDs

Gwinn et al. (2020). Toxicol Sci 176(2):343-354 https://pubmed.ncbi.nlm.nih.gov/32492150/

- 79 chemicals from Open Toxicogenomics Project-Genomics Assisted Tox Evaluation (TG-GATES)
- Lowest liver biological effect POD (i.e., BMD from GO Biol Process) vs. 29-day apical effect BMDs

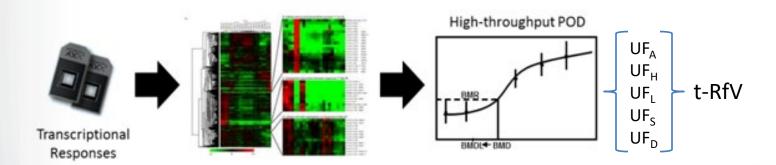
Johnson et al. (2020). Toxicol Sci 176(1):86-102 https://pubmed.ncbi.nlm.nih.gov/32384157/

Practical application of transcriptomic PODs: Bioactivity-exposure-ratio (BER)

- BERs are based on a margin-of-exposure (MOE) approach
- A MOE is calculated as the ratio of POD / Exposure for a given route (e.g., oral)
 - PODs for MOE calculations are typically based on traditional human or experimental animal toxicity dose-response data
 - BERs differ from MOE only in that PODs are derived from NAM data such as in vitro cell bioactivity (e.g., ToxCast; Tox21) or transcriptomics
 - A calculated BER is compared against a benchmark BER which is the product of the uncertainties associated with the chemical; for example:

Benchmark BER = $UF_A \times UF_H = 10 \times 10 = 100$

Where


 UF_A = uncertainty associated with animal-to-human extrapolation and, UF_H = uncertainty associated with human interindividual variability

 The closer a calculated BER is to the benchmark BER, the greater the concern for risk of potential health outcomes in an exposed population

Practical application of transcriptomic PODs: Transcriptomic reference value (t-RfV)

- Non-cancer reference values in the U.S. EPA include an oral reference dose (RfD) and an inhalation reference concentration (RfC)
- An RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral
 exposure to the human population (including sensitive subgroups) that is likely to be without an
 appreciable risk of deleterious effects during a lifetime.
- RfDs can be derived from a NOAEL, LOAEL, or benchmark dose (BMD), with uncertainty factors generally applied to reflect limitations of the data used.
- In the context of transcriptomics, a pathway (i.e., GO class)-based POD might facilitate derivation of a transcriptomic reference value (t-RfV)

Practical application of transcriptomic PODs: Mixtures assessment

- Chemicals co-occur in exposure media and/or internally
- Understanding and interpreting health risks associated with mixtures typically follows the priority of:
 - Whole mixture of concern
 - Sufficiently similar mixture
 - Component-based (integration of data across individual mixture chemicals)
- Due to significant lack of whole mixtures exposure and toxicity data, mixtures assessment typically falls under the component-based domain
- Component-based mixtures approaches such as the hazard index (HI) may be amenable to use
 of transcriptomic reference values
- Specifically, a screening-level HI does not require that mixture chemicals share a common target endpoint or health outcome; as such, individual hazard quotients (HQ) may be calculated across mixture chemicals using a measured or predicted exposure and a t-RfV

$$HI_{Screening} = \sum_{i=1}^{n} \frac{E_i}{t - RfV_i}$$

- The E_i and t-RfV_i are the human exposure metric and interim chronic noncancer t-RfV for the *i*th mixture component, respectively, and *n* is the total number of mixture components
- If the HI_{Screening} approaches or exceeds 1, there is indication of potential concern for human health outcomes associated with exposure to the mixture

Challenges

In moving forward...

Focus on Problem Formulation first

- Application of NAM data is dependent on "fit-for-purpose"
- Big difference between "driving," "filling," and "nice-to-know"

Law of Parsimony

- "Enough precision to make a decision" (Tim Pastoor et al., 2014)
- WOE link between adverse outcome and transcriptomic pathway events?? or,
- Are biologically non-specific (but protective) transcriptomic PODs acceptable??

Understanding priors

- Existent hazard/dose-response/exposure/occurrence data??
- Lack of (useful) quantitative data (this goes for hazard and exposure)

Acknowledgments

- Rusty Thomas (EPA/ORD/CCTE)
- Lucina Lizarraga (EPA/ORD/CPHEA)

Questions?

