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Outline

• Traditional human health risk assessment practice and transition to New 
Approach Methodologies (NAMs)

• Examples of NAM data application
• Expert-driven read-across (including bioactivity data)
• Transcriptomic-based PODs

• Practical quantitative applications of transcriptomic data to risk assessment
• Bioactivity-exposure ratio
• Transcriptomic reference dose
• Mixtures assessment

If application of NAMs were a kinetic process

According to Michaelis-Menten kinetics, if the rate of acceptance of 
NAMs is represented graphically as a function of the decision contexts 
applied (DC), the curve obtained in most cases is a hyperbola. The 
shape of the curve is a logical consequence of the fit-for-purpose 
concept; i.e., as NAMs are applied with greater confidence over time, 
the curve flattens at the maximum applicability (AM), which occurs 
when all decision-contexts integrate NAMs. (NAMM is the Michaelis 
constant.)
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Where we are currently as 
a regulatory scientific 
community2
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• The vast majority of chemicals found in commerce and the environment are data-poor
• Commonly unaccounted for in formal quantitative evaluations of health risks to human populations
• Lack of available points-of-departure (POD) for use in derivation of non-cancer or cancer values
• POD = Dose-response point that marks the beginning of a low-dose extrapolation (e.g., BMDL; NOAEL)

• Application ranging from data-gap 
filling to primary basis for qualitative 
and quantitative organ or tissue-based 
toxicity

Human health risk assessment practice 
and a transition to new data types
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New Approach Methodologies
• NAM is a broadly descriptive term for any non-animal technology, methodology or approach or 

combination thereof that can be used to provide information on chemical hazard and risk 
assessment 
https://ntp.niehs.nih.gov/iccvam/docs/roadmap/iccvam_strategicroadmap_january2018_docum
ent_508.pdf

• NAM include, for example:
• Cheminformatics – structure-activity/read-across; QSAR; predicted physchem properties 
• Biological NAMs – in vitro cell bioactivity; high-throughput toxicogenomics (e.g., 

transcriptomics, cell painting/phenotypic profiling)
• Toxicity Pathway annotation (e.g., Adverse Outcome Pathway development and application)
• High-throughput toxicokinetics; in vitro to in vivo extrapolation (IVIVE)/reverse dosimetry
• Exposure modeling; environmental fate and transport modeling 
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Data-poor chemicals
• Inferred/interpolated hazard
• Surrogate based POD and subsequent derivation of 

non-cancer reference values (e.g., oral RfD)

Data-rich chemicals
• Data-gap filling
• Augment WOE
• Potential for reducing uncertainties

Identification of structural analogues

Putative toxicity targets for p,p’-DDD and 
analogues include the liver and reproductive 
system in animals

Expert-driven read-across of p,p’-DDD

Lizarraga et al. (2019). Regul Toxicol Pharmacol 103:301-313
https://pubmed.ncbi.nlm.nih.gov/30794837/

Expert-driven read-across
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p,p’-DDD and analogues exhibit similarities in cell-
specific responses and target gene pathways in in 
vitro ToxCast assays conducted in human liver cells 

p,p’-DDD and analogues exhibit similar upregulation of 
steroid/xenobiotic-sensing nuclear receptors in in vitro 
ToxCast assays conducted in HepG2 Cells

•ToxCast assays and model predictions suggest that p,p’-DDD and analogues may act as ER agonists and AR 
antagonists coinciding with the estrogenic and anti-androgenic reproductive effects observed in vivo

•Coherence across in vivo toxicity and in vitro bioactivity similarity comparisons help reduce uncertainties 
associated with toxicity data gaps for the data-poor target chemical

•These findings demonstrate the utility of integrating evidence from HTS data platforms to support mechanistic 
conclusions and increase confidence in the application of read-across in quantitate risk assessment

Expert-driven read-across
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Transcriptomic Pathway-Based PODs

• Concordance between genotype/phenotype across two different routes of exposure, rodent 
species, sexes, and, multiple target tissues

Data-poor chemicals 
• Evidence base for hazard
• Dose-response based on pathway perturbations 
• Reduce need for longer-term animal studies

Data-rich chemicals
• Augment WOE (e.g., MOA/AOP)
• Opportunity to alert off-target effects
• Potential for reducing uncertainties
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Concordance between Apical and Transcriptional 
PODs for Non-cancer and Cancer

• 13-week exposures in rats or mice
• Transcriptome obtained from ‘critical effect’ tissues
• Lowest transcriptional pathway-based BMD from the 13-

wks study vs. chronic non-cancer (left panel) or cancer 
(right panel) effect BMDs 

Thomas et al. (2011 and 2013). Toxicol Sci
https://pubmed.ncbi.nlm.nih.gov/21097997/
https://pubmed.ncbi.nlm.nih.gov/23596260/
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• Chemicals evaluated at 5d, 2, 4, or 13 wks in rats or mice 
• Lowest transcriptional pathway-based BMD from the 5d, 

2, 4, or 13-wks timepoints vs. chronic cancer effect BMDs 

https://pubmed.ncbi.nlm.nih.gov/21097997/
https://pubmed.ncbi.nlm.nih.gov/23596260/


Gwinn et al. (2020). Toxicol Sci 176(2):343-354
https://pubmed.ncbi.nlm.nih.gov/32492150/

• 18 chemicals evaluated in a 5-day in vivo 
oral exposure study in rats

• Lowest GO Biol Process BMD from the 5-
day study vs. subchronic or chronic 
apical effect BMDs 

Johnson et al. (2020). Toxicol Sci 176(1):86-102
https://pubmed.ncbi.nlm.nih.gov/32384157/

• 79 chemicals from Open Toxicogenomics Project-
Genomics Assisted Tox Evaluation (TG-GATES)

• Lowest liver biological effect POD (i.e., BMD from 
GO Biol Process) vs. 29-day apical effect BMDs 
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Concordance between Apical and Transcriptional 
PODs for Non-cancer and Cancer
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Practical application of transcriptomic PODs: 
Bioactivity-exposure-ratio (BER)

• BERs are based on a margin-of-exposure (MOE) approach
• A MOE is calculated as the ratio of POD / Exposure for a given route (e.g., oral)

• PODs for MOE calculations are typically based on traditional human or experimental animal 
toxicity dose-response data

• BERs differ from MOE only in that PODs are derived from NAM data such as in vitro cell 
bioactivity (e.g., ToxCast; Tox21) or transcriptomics

• A calculated BER is compared against a benchmark BER which is the product of the 
uncertainties associated with the chemical; for example:

• The closer a calculated BER is to the benchmark BER, the greater the concern for risk of potential 
health outcomes in an exposed population 

Benchmark BER = UFA × UFH = 10 × 10 = 100

Where
UFA = uncertainty associated with animal-to-human extrapolation and,
UFH = uncertainty associated with human interindividual variability
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• Non-cancer reference values in the U.S. EPA include an oral reference dose (RfD) and an 
inhalation reference concentration (RfC)

• An RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral 
exposure to the human population (including sensitive subgroups) that is likely to be without an 
appreciable risk of deleterious effects during a lifetime.

• RfDs can be derived from a NOAEL, LOAEL, or benchmark dose (BMD), with uncertainty factors 
generally applied to reflect limitations of the data used. 

• In the context of transcriptomics, a pathway (i.e., GO class)-based POD might facilitate derivation 
of a transcriptomic reference value (t-RfV)  

UFA
UFH
UFL
UFS
UFD

t-RfV
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Practical application of transcriptomic PODs: 
Transcriptomic reference value (t-RfV)



• Chemicals co-occur in exposure media and/or internally
• Understanding and interpreting health risks associated with mixtures typically follows the 

priority of: 
• Whole mixture of concern
• Sufficiently similar mixture
• Component-based (integration of data across individual mixture chemicals)

• Due to significant lack of whole mixtures exposure and toxicity data, mixtures assessment 
typically falls under the component-based domain

• Component-based mixtures approaches such as the hazard index (HI) may be amenable to use 
of transcriptomic reference values

• Specifically, a screening-level HI does not require that mixture chemicals share a common target 
endpoint or health outcome; as such, individual hazard quotients (HQ) may be calculated across 
mixture chemicals using a measured or predicted exposure and a t-RfV    

𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑖𝑖=1

𝑛𝑛
𝐸𝐸𝑖𝑖

𝑡𝑡−𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖

• The Ei and t-RfVi are the human exposure metric and interim 
chronic noncancer t-RfV for the ith mixture component, 
respectively, and n is the total number of mixture components 

• If the HIScreening approaches or exceeds 1, there is indication of 
potential concern for human health outcomes associated with 
exposure to the mixture 
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Practical application of transcriptomic PODs: 
Mixtures assessment



Challenges

• Focus on Problem Formulation first
– Application of NAM data is dependent on “fit-for-purpose”
– Big difference between “driving,” “filling,” and “nice-to-know”

• Law of Parsimony
– “Enough precision to make a decision” (Tim Pastoor et al., 2014)
– WOE link between adverse outcome and transcriptomic pathway events?? or, 
– Are biologically non-specific (but protective) transcriptomic PODs acceptable??   

• Understanding priors
─ Existent hazard/dose-response/exposure/occurrence data??
─ Lack of (useful) quantitative data (this goes for hazard and exposure)

In moving forward…
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Questions?
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