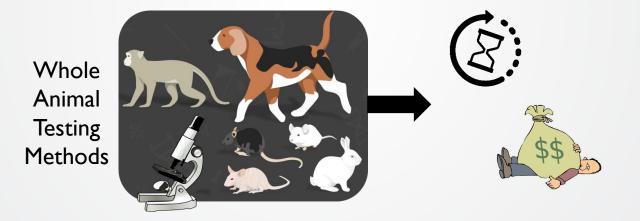

SEPA

Exploring the Taxonomic Domain of Applicability of an Adverse Outcome Pathway Network Using Predictive Bioinformatic Approaches

Marissa Jensen

Integrated Biosciences Masters Student

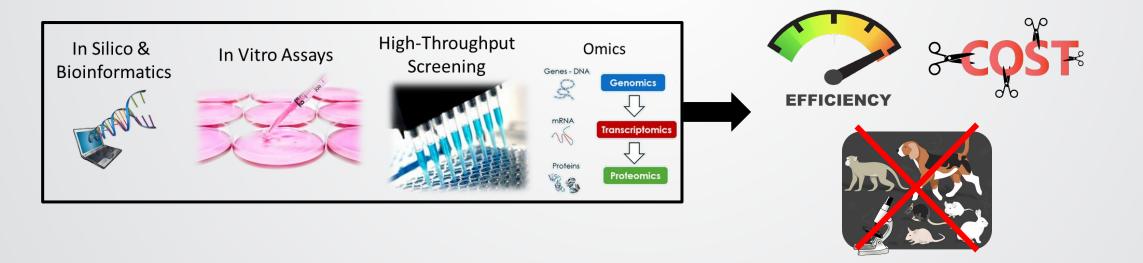
University of Minnesota Duluth



The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the US EPA.

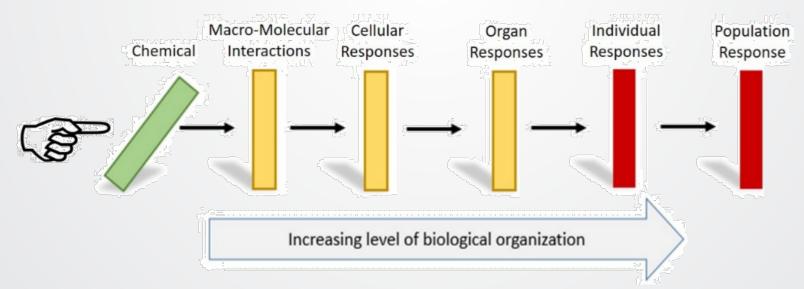
Chemical Safety Evaluations

- Collectively, we are concerned about chemical safety
- Challenge is that there are so many chemicals introduced
 - difficult to perform every test on every organism



- Researchers are working to evaluate chemical safety more efficiently
- Recognition that approaches have to change to meet needs

Movement from Whole Animal Testing to Pathway-Based Approaches


- Whole animal testing \rightarrow New Approach Methods (NAMs)
 - Informatics, -omics, in vitro, in silico methods
- New tools developed because of the increase of new technology and availability of sequence data

Adverse Outcome Pathway (AOP)

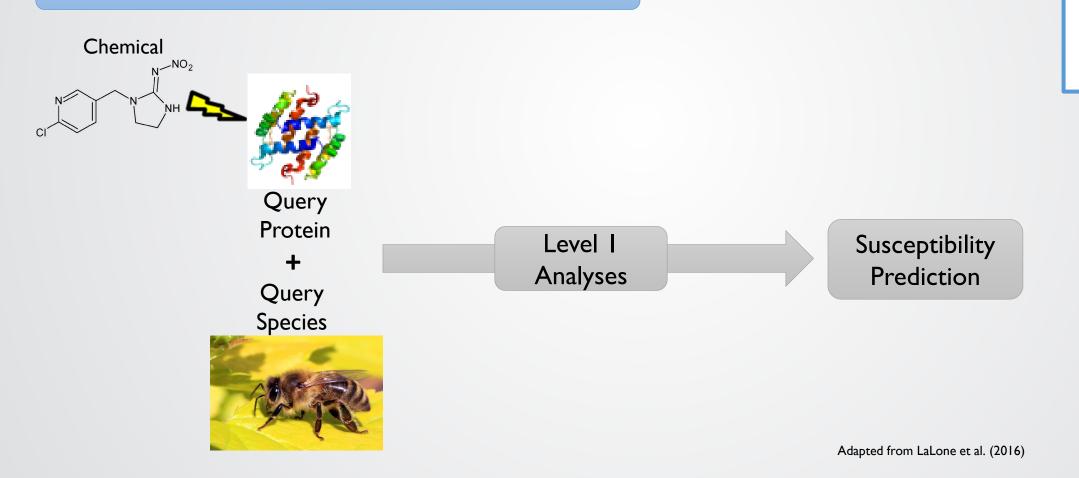
- AOP framework organizes existing knowledge regarding the linkage between a molecular initiating event (MIE) and an adverse outcome (AO) at a biological level of organization relevant to risk assessment
- KE events (KEs) and key event relationships (KERs) connect the MIE and AO
- Lays out the biology that is known and unknown to direct research efforts

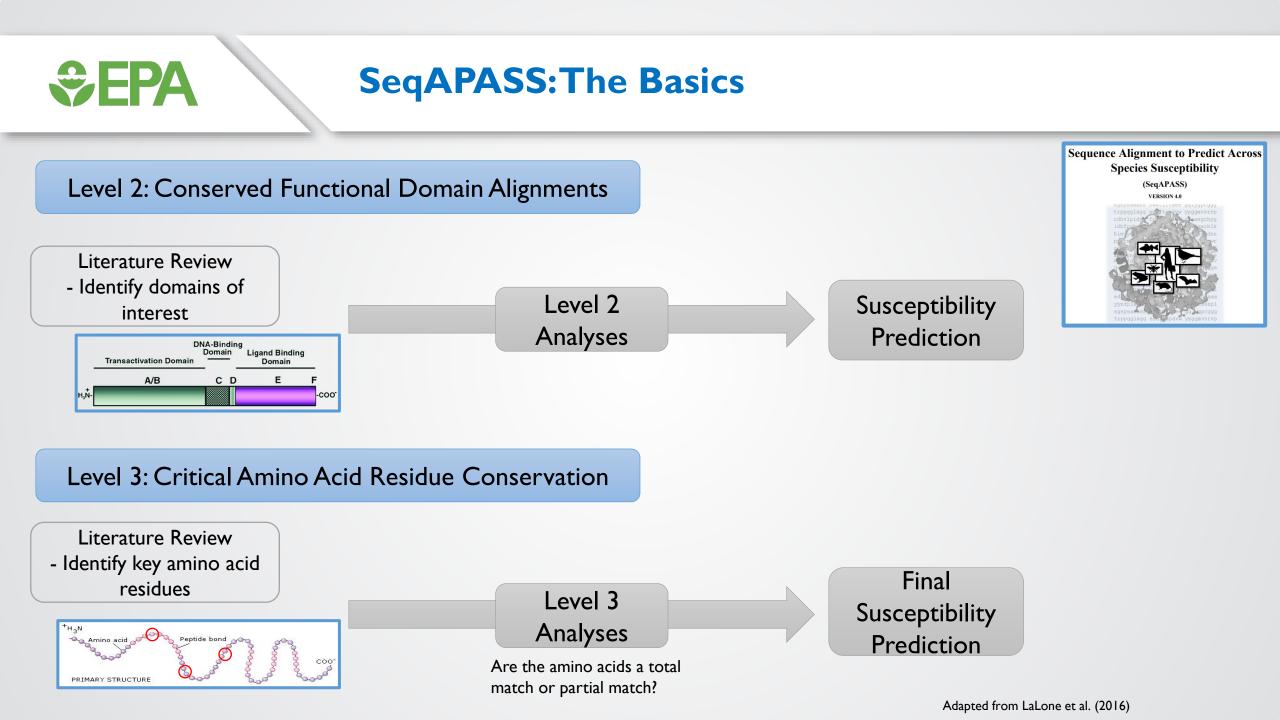
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,* David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,* and Gerald T. Ankley*

https://seqapass.epa.gov/seqapass/

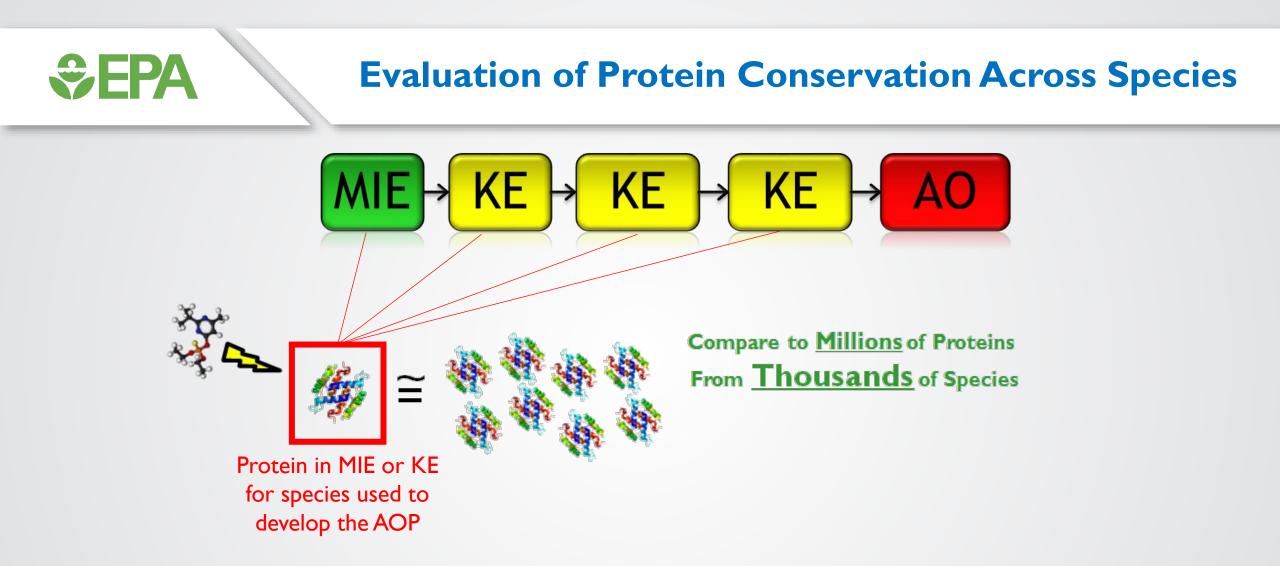

- Developed to understand target conservation across taxonomic groups to be able to predict chemical susceptibility
- Assesses protein sequence and structure similarity
- Need knowledge of a chemical-protein interaction in a species



SeqAPASS: The Basics

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) VERSION 4.0

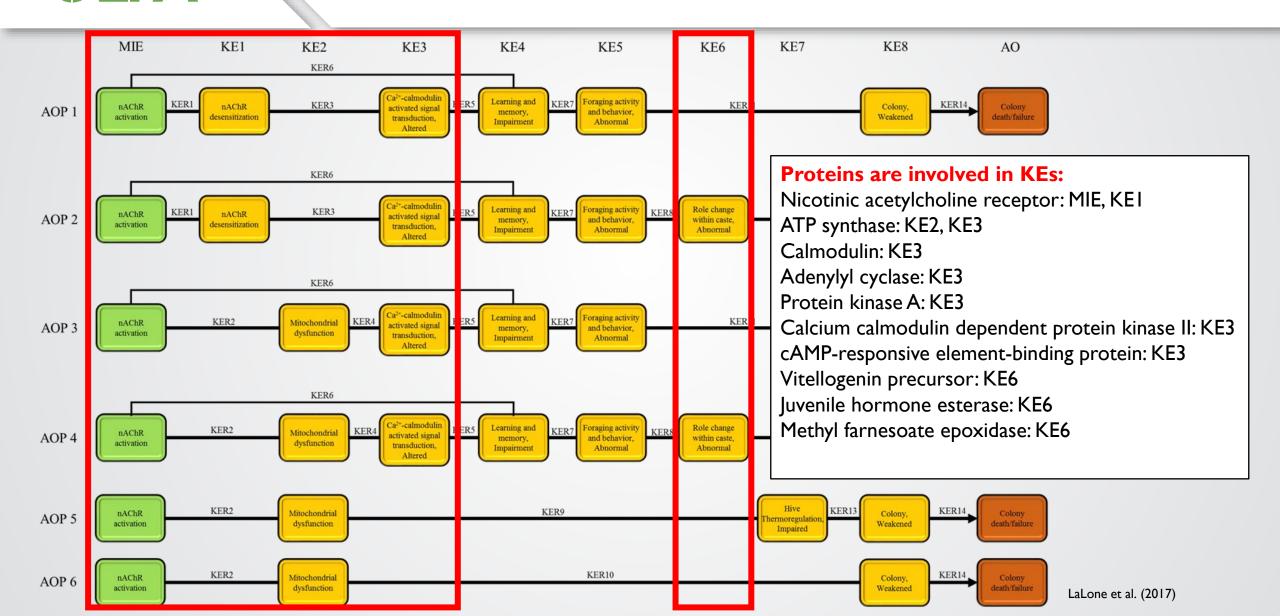
Level I: Primary Amino Acid Sequence Alignments

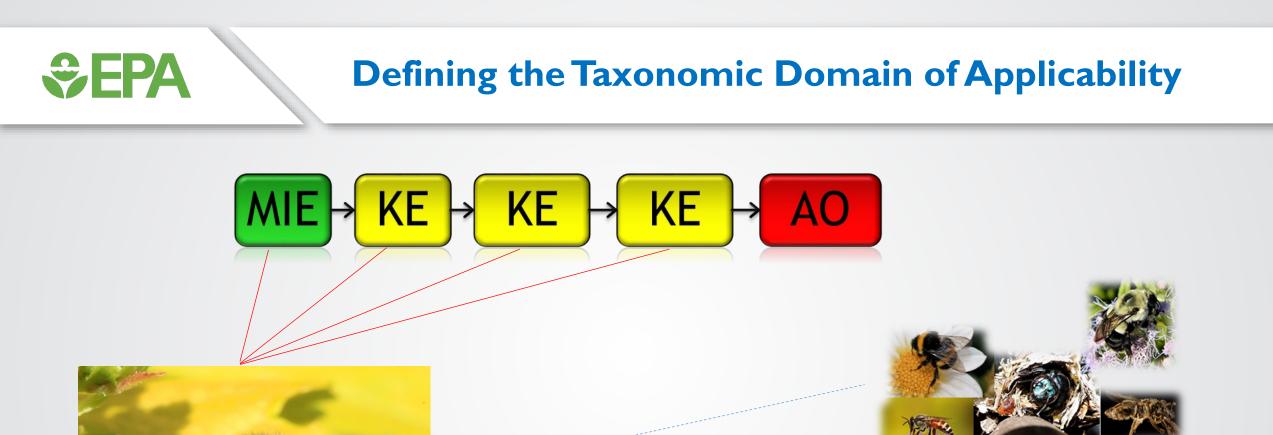

Hypothesis and Objectives

Hypothesis

I hypothesize that SeqAPASS is a sufficient screening approach to understand pesticide susceptibility across species and can be used as an initial line of evidence for extrapolation of toxicity knowledge from one species to others

Objectives

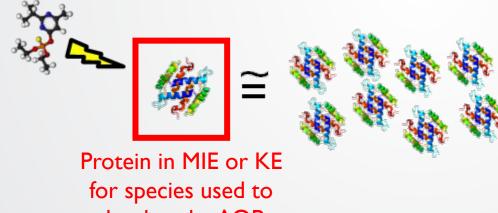

- \rightarrow Identify protein targets of AOP network involving honey bees (Apis mellifera) and neonicotinoids
- \rightarrow Find domain of applicability across pollinators, specifically Apis and non-Apis bees
- \rightarrow Evaluate cross-species effects of neonicotinoid pesticides for chemical safety evaluation


Conservation of MIE or KE across species = Extrapolate MIE or KE across species/taxa

Extrapolating biological pathway knowledge across species

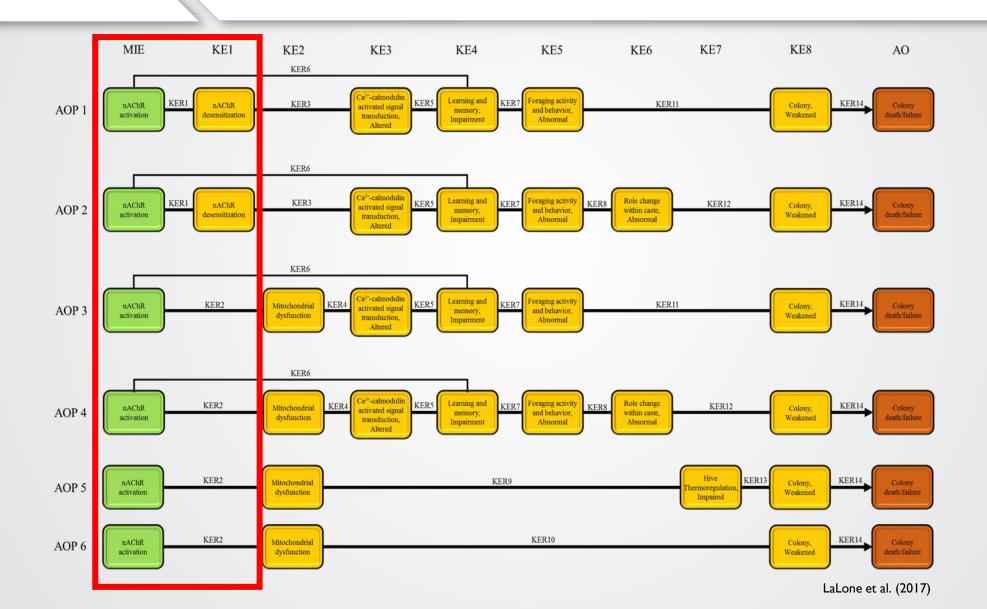
AOP Descriptions: Proteins Are Involved in KEs

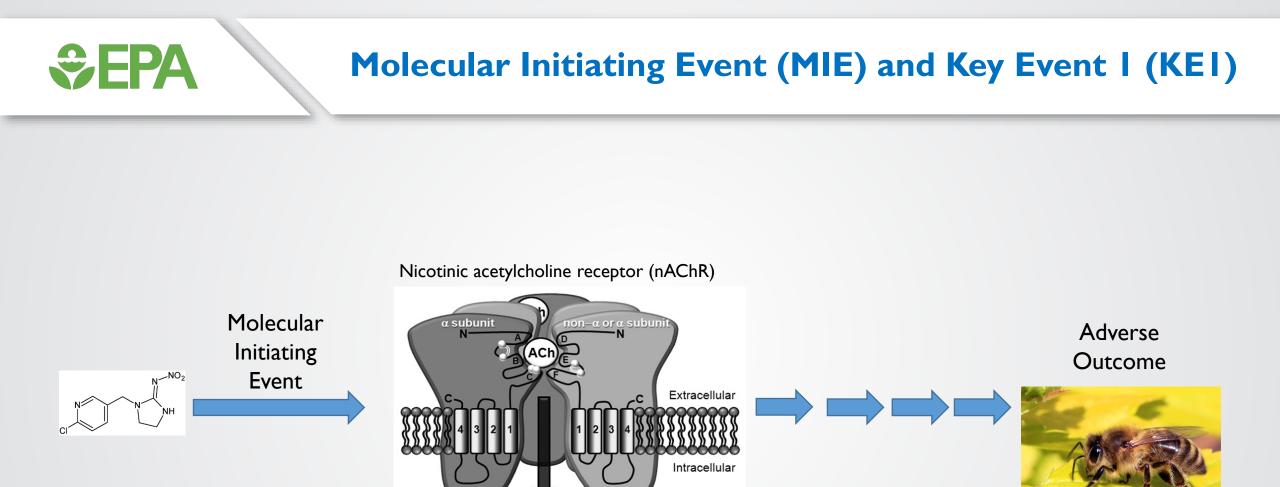
EPA



How broadly can we extrapolate this AOP across species?

Integrating Principles

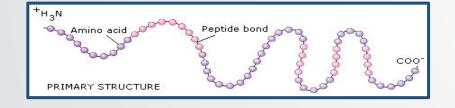

- Evolution
- Structure and Function

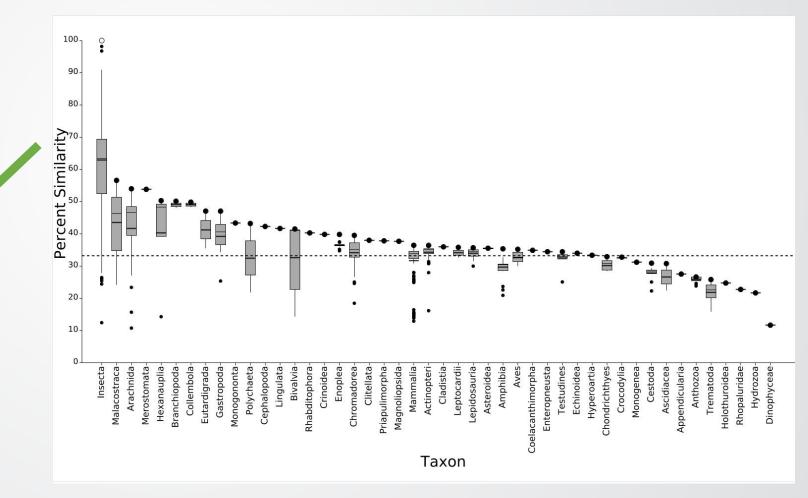

Compare to Millions of Proteins From Thousands of Species

develop the AOP

Molecular Initiating Event (MIE) and Key Event I (KEI)

€PA

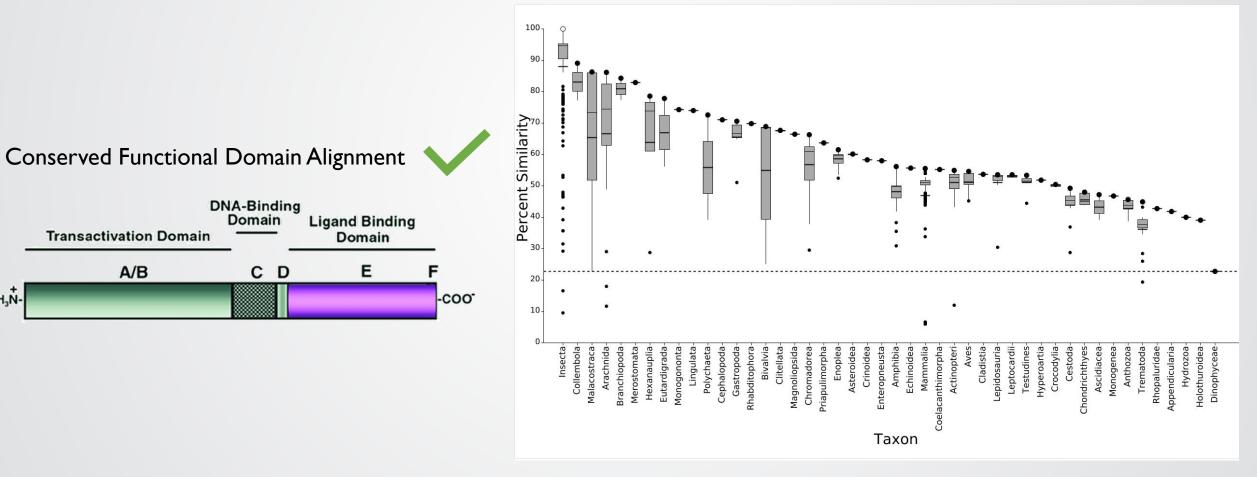

Na⁺, Ca²⁺, K⁺


Taken from: Jones and Sattelle, 2010

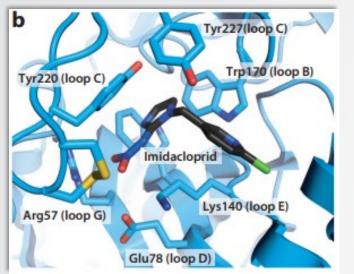
Level I SeqAPASS Results: MIE and KEI

Nicotinic Acetylcholine Receptor αI Subunit

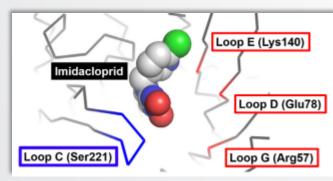
Primary Amino Acid Sequence Alignment



Level 2 SeqAPASS Results: MIE and KEI


Nicotinic Acetylcholine Receptor αI Subunit

Neurotransmitter-gated ion-channel ligand binding domain


H₃Ň-

Level 3 SeqAPASS Results: MIE and KEI

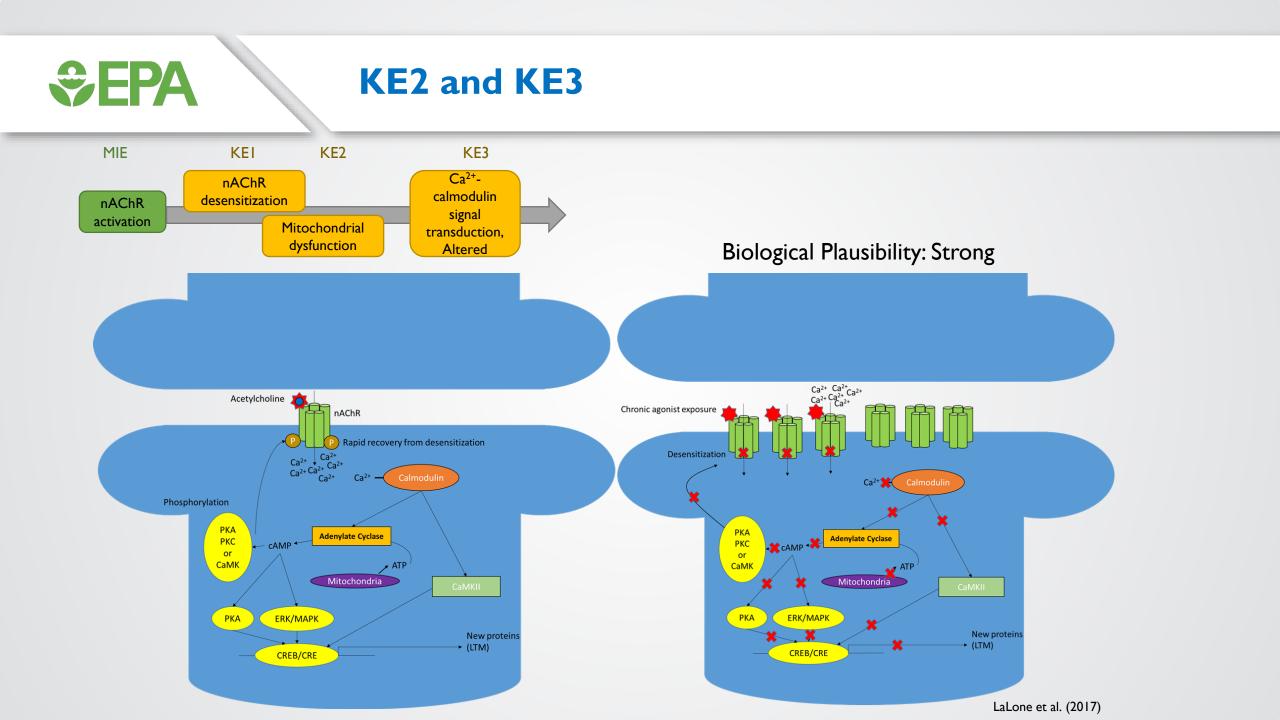
SEPA

Matsuda, Kazuhiko, et al. "Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity." *Annual Review of Pharmacology and Toxicology*, vol. 60, no. 1, 2020, pp. 241–255., doi:10.1146/annurev-pharmtox-010818-021747.

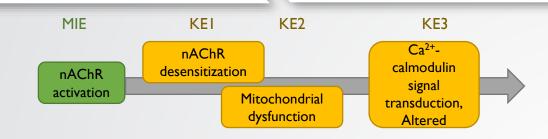
Matsuda, Kazuhiko. "Robust Functional Expression of Insect Nicotinic Acetylcholine Receptors Provides New Insights into Neonicotinoid Actions and New Opportunities for Pest and Vector Control." Pest Management Science, 2020, doi:10.1002/ps.6182.

Total Match Partial Match Susceptible Yes Not a Match Susceptible No	Nicotinic Acetylcholine Receptor αI Subunit										
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amino Acid 5	Amino Acid 6	Amino Acid			
Drosophila melanogaster	Y	57R	78E	140K	170W	220Y	2215	227Y			
Apis mellifera	Y	53R	74E	136K	166W	216Y	217I	223Y			
Apis cerana	Y	79R	100E	162K	192W	242Y	2431	249Y			
Apis florea	Y	79R	100E	162K	192W	242Y	243I	249Y			
Habropoda laboriosa	Y	53R	74E	136K	166W	216Y	217I	223Y			
Osmia bicornis bicornis	Y	79R	100E	162K	192W	242Y	2431	249Y			
Osmia lignaria	Y	79R	100E	162K	192W	242Y	243I	249Y			
Bombus vancouverensis nearcticus	Y	79R	100E	162K	192W	242Y	243I	249Y			
Bombus bifarius	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus vosnesenskii	Y	79R	100E	162K	192W	242Y	243I	249Y			
Bombus terrestris	Y	79R	100E	162K	192W	242Y	2431	249Y			
Megachile rotundata	Y	79R	100E	162K	192W	242Y	2431	249Y			
Dufourea novaeangliae	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus impatiens	Y	79R	100E	162K	192W	242Y	2431	249Y			
Nomia melanderi	Y	79R	100E	162K	192W	242Y	2431	249F			
Eufriesea mexicana	Y	79R	100E	162K	192W	242Y	2431	249Y			
Polistes dominula	Y	79R	100E	162K	192W	242Y	2431	249Y			
Megalopta genalis	N		8E	70K	100W	150Y	151I	157F			
Orussus abietinus	Y	80R	101E	163K	193W	243Y	244I	250Y			
Nasonia vitripennis	Y	53R	74E	136K	166W	216Y	217I	223Y			
Fopius arisanus	Y	53R	74E	136K	166W	216Y	217I	223Y			
Diachasma alloeum	Y	79R	100E	162K	192W	242Y	2431	249Y			
Microplitis demolitor	Y	53R	74E	136K		216Y	2178	223Y			
Trichogramma pretiosum	Y	179R	200E	262K	292W	342Y	3431	349Y			
Belonocnema treatae	N		8E	70K	100W	150Y	151V	157Y			
Copidosoma floridanum	Y	109R	130E	192K	222W	272Y	273I	279Y			
Polistes canadensis	Y	79R	100E	162K	192W	242Y	243I	249Y			
Apis dorsata	Y	57K	78E	140K	170W	220Y	221T	227Y			
Ceratina calcarata	Y	61K	82E	144K	174W	224Y	225T	231Y			

Level 3 SeqAPASS Results: MIE and KEI


MIE and KEI Conserved Among:

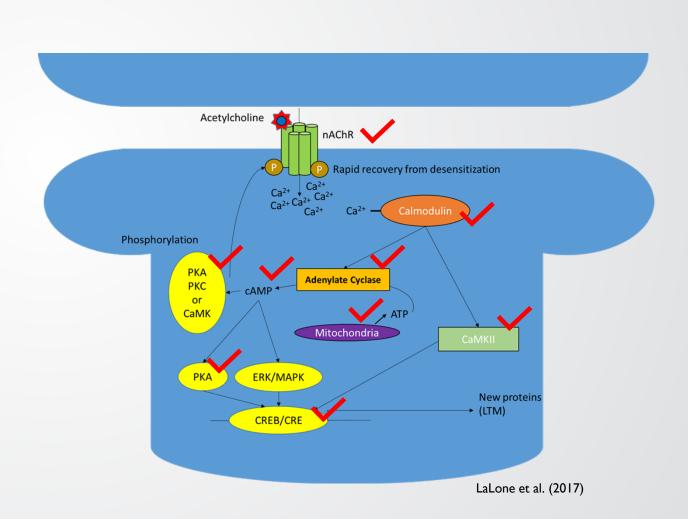
Apis Bombus Habropoda Osmia Megachile Dufourea Nomia Eufriesea Polistes


SEPA

Orussus Nasonia Fopius Diachasma Microplitis Trichogramma Copidosoma Ceratina

Total Match Partial Match Susceptible Yes Not a Match Susceptible No	Nicotinic Acetylcholine Receptor αI Subunit										
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amino Acid 5	Amino Acid 6	Amino Acid			
Drosophila melanogaster	Y	57R	78E	140K	170W	220Y	2218	227Y			
Apis mellifera	Y	53R	74E	136K	166W	216Y	217I	223Y			
Apis cerana	Y	79R	100E	162K	192W	242Y	2431	249Y			
Apis florea	Y	79R	100E	162K	192W	242Y	2431	249Y			
Habropoda laboriosa	Y	53R	74E	136K	166W	216Y	217I	223Y			
Osmia bicornis bicornis	Y	79R	100E	162K	192W	242Y	2431	249Y			
Osmia lignaria	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus vancouverensis nearcticus	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus bifarius	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus vosnesenskii	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus terrestris	Y	79R	100E	162K	192W	242Y	2431	249Y			
Megachile rotundata	Y	79R	100E	162K	192W	242Y	243I	249Y			
Dufourea novaeangliae	Y	79R	100E	162K	192W	242Y	2431	249Y			
Bombus impatiens	Y	79R	100E	162K	192W	242Y	2431	249Y			
Nomia melanderi	Y	79R	100E	162K	192W	242Y	2431	249F			
Eufriesea mexicana	Y	79R	100E	162K	192W	242Y	2431	249Y			
Polistes dominula	Y	79R	100E	162K	192W	242Y	2431	249Y			
Megalopta genalis	N		8E	70K	100W	150Y	151I	157F			
Orussus abietinus	Y	80R	101E	163K	193W	243Y	244I	250Y			
Nasonia vitripennis	Y	53R	74E	136K	166W	216Y	217I	223Y			
Fopius arisanus	Y	53R	74E	136K	166W	216Y	217I	223Y			
Diachasma alloeum	Y	79R	100E	162K	192W	242Y	2431	249Y			
Microplitis demolitor	Y	53R	74E	136K	166W	216Y	217\$	223Y			
Trichogramma pretiosum	Y	179R	200E	262K	292W	342Y	343I	349Y			
Belonocnema treatae	N		8E	70K	100W	150Y	151V	157Y			
Copidosoma floridanum	Y	109R	130E	192K	222W	272Y	2731	279Y			
Polistes canadensis	Y	79R	100E	162K	192W	242Y	2431	249Y			
Apis dorsata	Y	57K	78E	140K	170W	220Y	221T	227Y			
Ceratina calcarata	Y	61K	82E	144K	174W	224Y	225T	231Y			

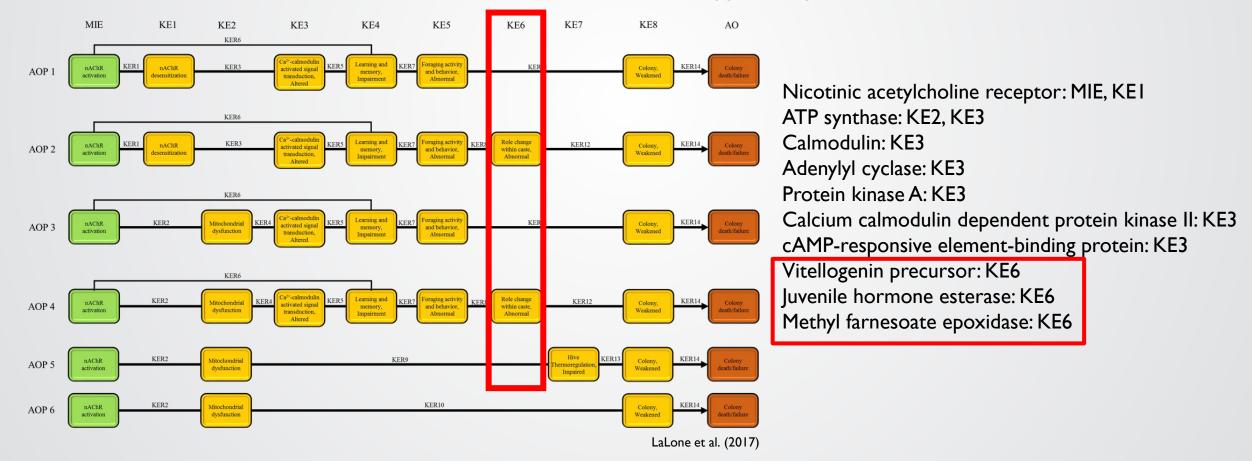
SeqAPASS Results: KE2 and KE3



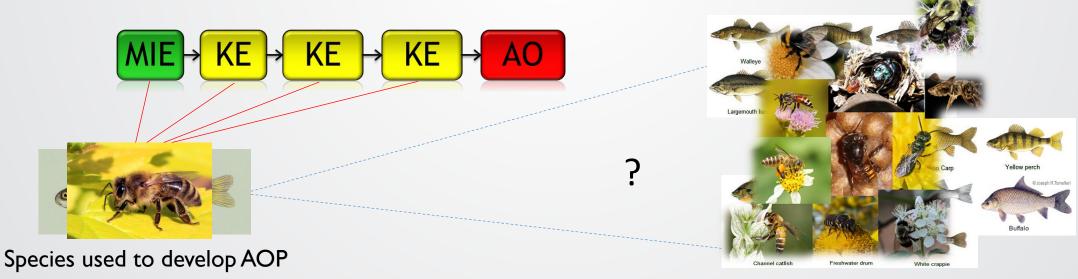
KE2 and KE3 Conserved Among:

Apis Eufriesea Megachile Nomia Bombus Osmia Osmia Megalopta Ceratina Polistes Dufourea

EPA


Habropoda Diachasma Fopius Orussus Belonocnema Nasonia Microplitis Trichogramma Ceratosolen Copidosoma

Next Steps/Future Work


- Identifying conservation of proteins in late key events of AOP
 - Other considerations to further define taxonomic domain of applicability

Next Steps/Future Work

- Identifying conservation of proteins in late key events of AOP
 - Other considerations to further define taxonomic domain of applicability
- Can we add evidence to the SeqAPASS predictions?
 - Toolbox: site-directed mutagenesis, in vitro, whole organism studies, molecular modeling/docking
- Use other AOPs!

http://stcroixriverfishing.net/images/fish.species.St.CroixRiver.600pix.jpg

Thanks! Questions?

Acknowledgements:

Advisor: Carlie LaLone, PhD Co-mentor: Joseph Johnson, PhD Donovan Blatz Sara Vliet, PhD Sally Mayasich, PhD

