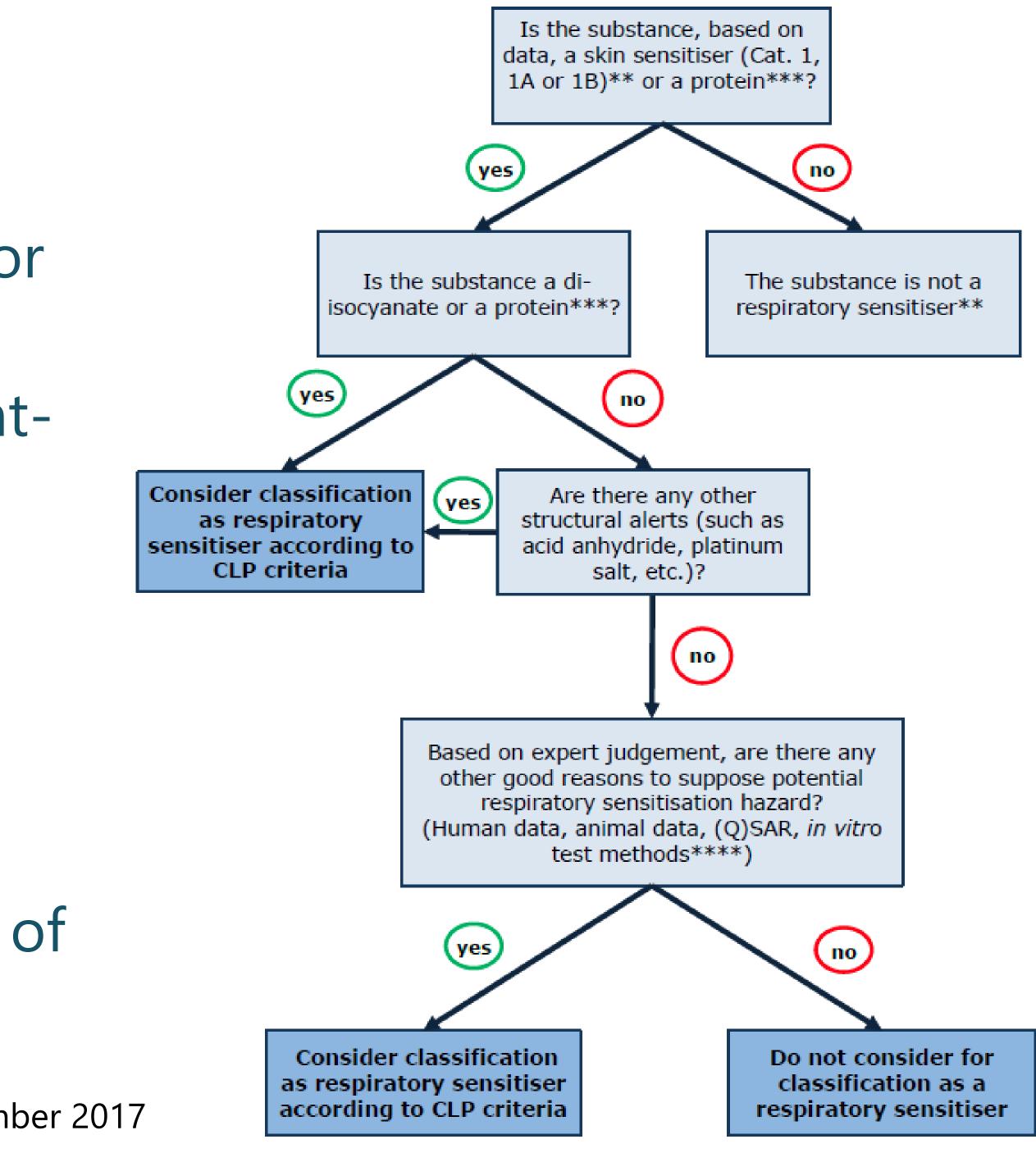
Development of a Reference List of **Chemical Respiratory Sensitizers to** Facilitate Evaluation of Integrated Approaches to Testing and Assessment

Kristie Sullivan, MPH March 22, 2021 Society of Toxicology Virtual Annual Meeting Physicians nmittee for Responsible Medicine

Outline


- set of potential respiratory sensitizers
- 3. Pursuing additional strategies to include more chemicals
- 4. Aiming for some testing in 2021 5. Your feedback is sought and welcomed

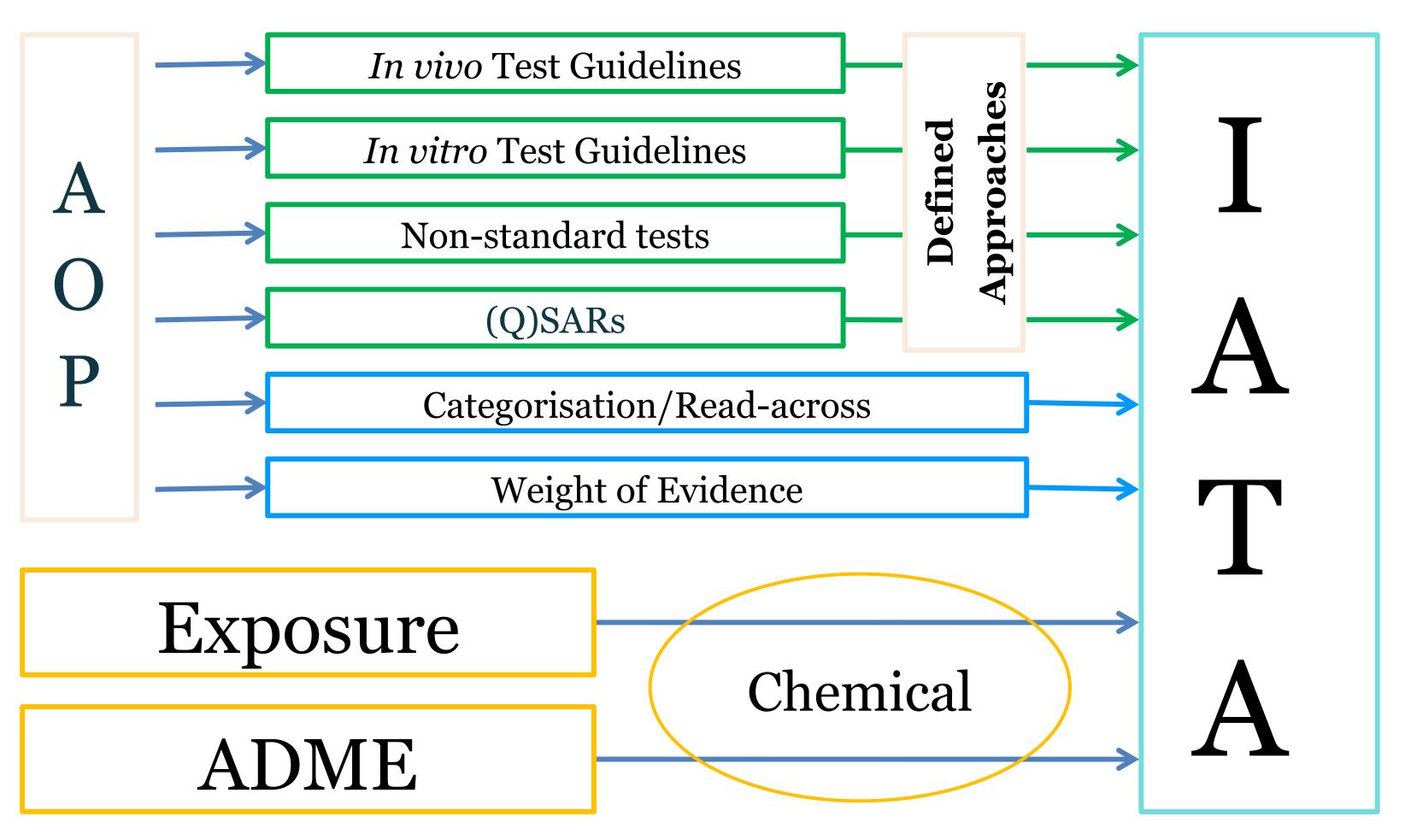

1. Adverse Outcome Pathway has been developed 2. Human and other data collected on a preliminary

Regulatory Context

- No assays currently accepted for regulatory use
- ECHA and US EPA take a weightof-evidence approach
- Approaches needed to discriminate sensitizers and irritants and dermal from respiratory sensitizers
- More testing needed to understand predictive capacity of potential approaches

Fabrice Broeckaert & Laura Rossi, ECHA; 13 September 2017

Project: Sensitization of the respiratory tract AOP and IATA development **Project Elements** <u>Contributors</u>

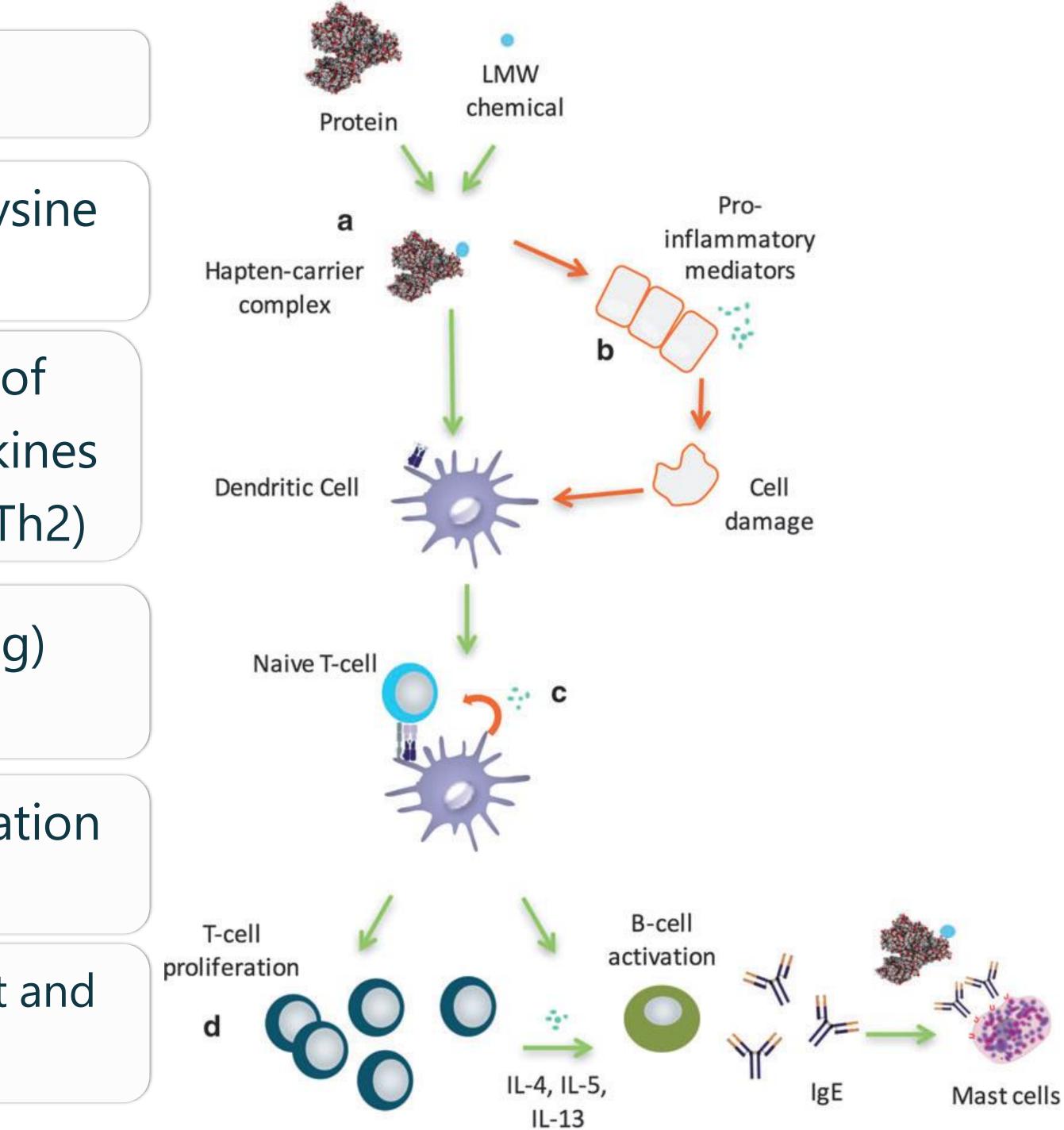

Nancy Baker, US EPA Stella Cochrane, Unilever Steven J. Enoch, Liverpool John Moores Univ. Janine Ezendam, RIVM Grace Patlewicz, US EPA Jessica Ponder, PCRM Ramya Rajagopal, Unilever Erwin L. Roggen, 3Rs Mgmt & Consulting Raja Settivari, Corteva Katherina Sewald, Fraunhofer ITEM Madhuri Singal, AeroTox Consulting

- Publish AOP
- Seek endorsement of AOP at OECD
- Develop list of reference chemicals
- Collaborate to optimize and test in vitro and in silico methods
- **Develop IATA for** regulatory use

An AOP to IATA Approach

http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm

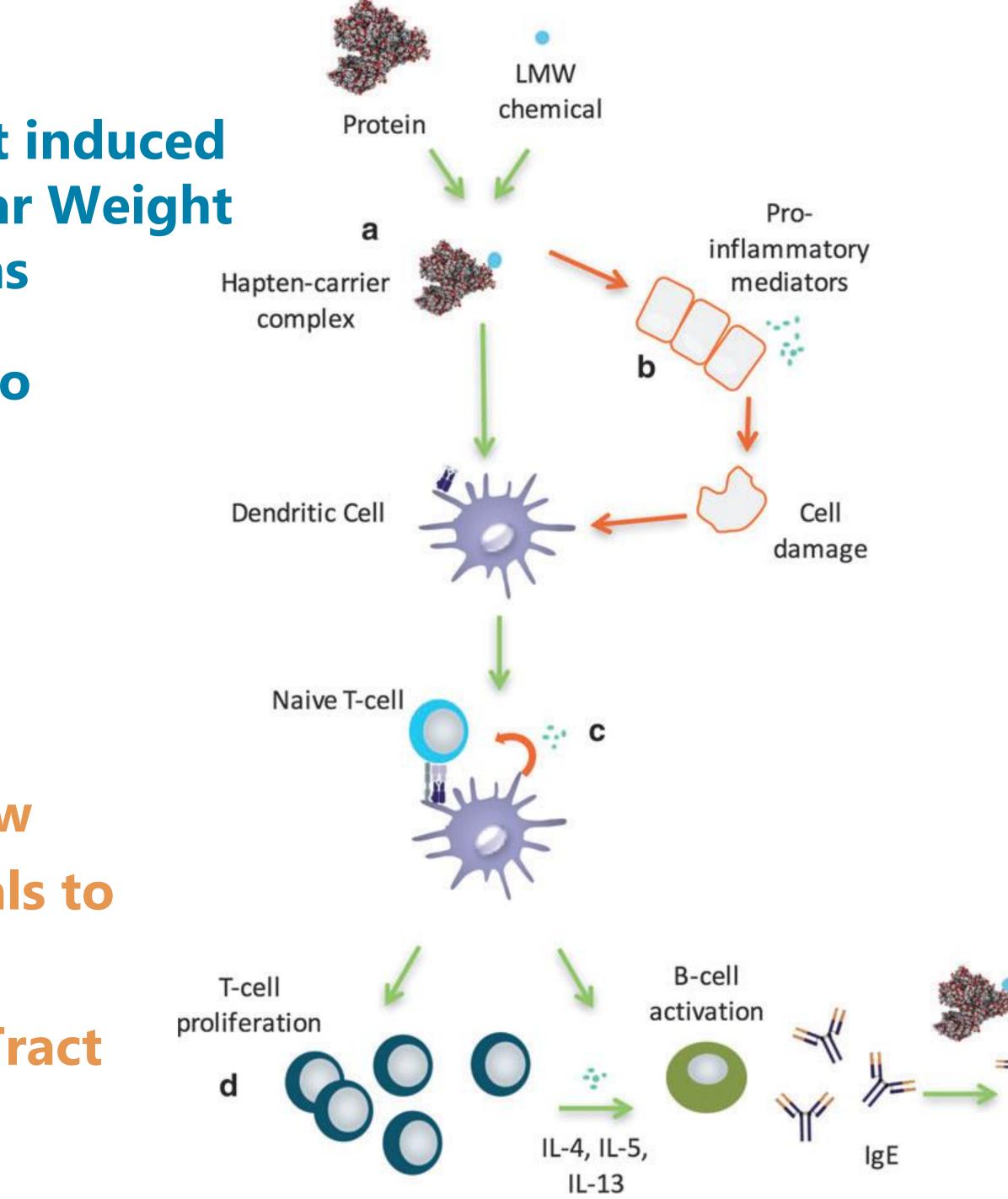
Domain: LMW Organic Chemicals

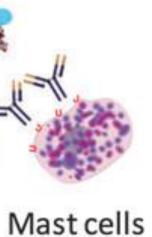

MIE: Covalent Binding Preference to Lysine Residues on Proteins

Cellular Danger Signals: Activation of Inflammatory Cytokines and Chemokines and Cytoprotective Gene Pathways (Th2)

Dendritic Cell Activation (Th2 skewing) and Migration

T-cell Activation-Proliferation-Polarization (Th2)


AO: Sensitization of the Respiratory Tract and Allergic Asthma upon Challenge



Sensitisation of the Respiratory Tract induced by Covalent Binding of Low Molecular Weight Organic Chemicals to Proteins

Sullivan et al. 2017. Applied in vitro Toxicology 3(3): 1-14. DOI: 10.1089/aivt.2017.0010

OECD AOP WIKI AOP 39: Covalent Binding of Low Molecular Weight Organic Chemicals to Proteins leads to Sensitisation (Sensitization) of the Respiratory Tract https://aopwiki.org/aops/39

Reference List Characteristics

Positive set:

- Human Data available
- Major mechanistic domains represented • Pro- and pre-haptens, volatile, soluble, & insoluble chemicals

Negative set:

- Human Data available
- Dermal sensitizers
- Respiratory Irritants
- Non-sensitizers

Reference List Development

- 120 chemicals identified with human clinical indication of respiratory sensitization, primarily from Enoch et al. Chem Res Toxicol 2012, 25:2490-2498.
- Have collected phys/chem, metabolism, structural alert, in silico, in vitro, and in vivo animal and human data
- Animal data was obtained via manual PubMed searches with the chemical name + respiratory + animal (or guinea pig or LLNA) OR chemical name + asthma
- In vitro data obtained via manual PubMed searches with the chemical name + in vitro. Includes DPRA Lys/Cys ratio, Keratinosens, H-Clat, GardAir, Resp. co-culture
- Human data obtained using EPA-developed Abstract Sifter tool, that automates broad literature searching via PubMed

Baker N et al. F1000Research 2017, 6(Chem Inf Sci):2164 ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/Abstract_Sifter/

Criteria for classification of human data:

There is no information to ev
Either absent from the literatu
Or the available literature is irr
The clinical literature demor sensitizer in humans
Significant occupational expose out immune-mediated occupation compound
There is clinical evidence of evidence does not conclusive
Either there is no evidence of i sensitization from respiratory
Or there is conflicting evidence confounding exposure
Or there is conflic

evaluate the compound

Jre

relevant to human respiratory symptoms

onstrates that the compound is not a respiratory

sure and investigation of asthmatic symptoms rules ational asthma/respiratory allergy caused by the

respiratory symptoms after exposure, but available else demonstrate sensitization

immune-mediated response to distinguish respiratory irritation

ce of immune-mediated response or significant

Criteria for classification of human data:

Yes

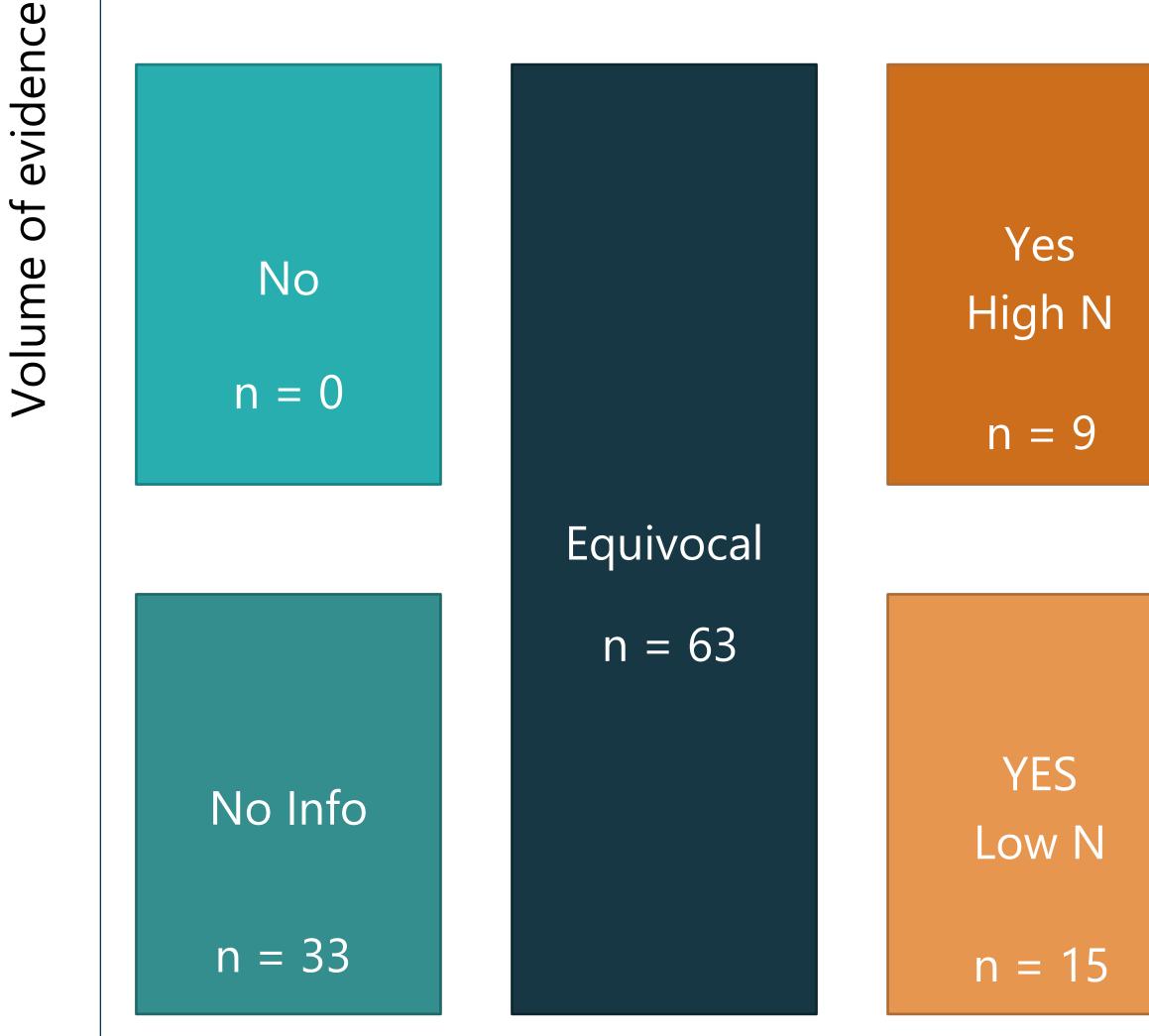
There is significant clinical evidence that the compound has caused respiratory sensitization in at least one patient, as defined by one of the following scenarios:

Patient history of exposure with positive sp bronchial challenge, combined with eviden specific IgE and/or IgG immune-mediated response as determined by exposure to the compound:

Patient history of exposure with positive nonspecific bronchial challenge, combined evidence of IgE and/or IgG immune-media response paired with negative controls to eliminate confounding exposures

Additionally, the quantity of cases identified the available literature is indicated for all compounds in this category:

pecific nce of	Skin-prick test (SPT)
nce of I Ne	Radioallergosorbent test (RAST)
	Enzyme-linked immunosorbent assay (ELISA
d with iated	
ied in	1 ≤ N ≤ 10: Low N
	N > 10: High N

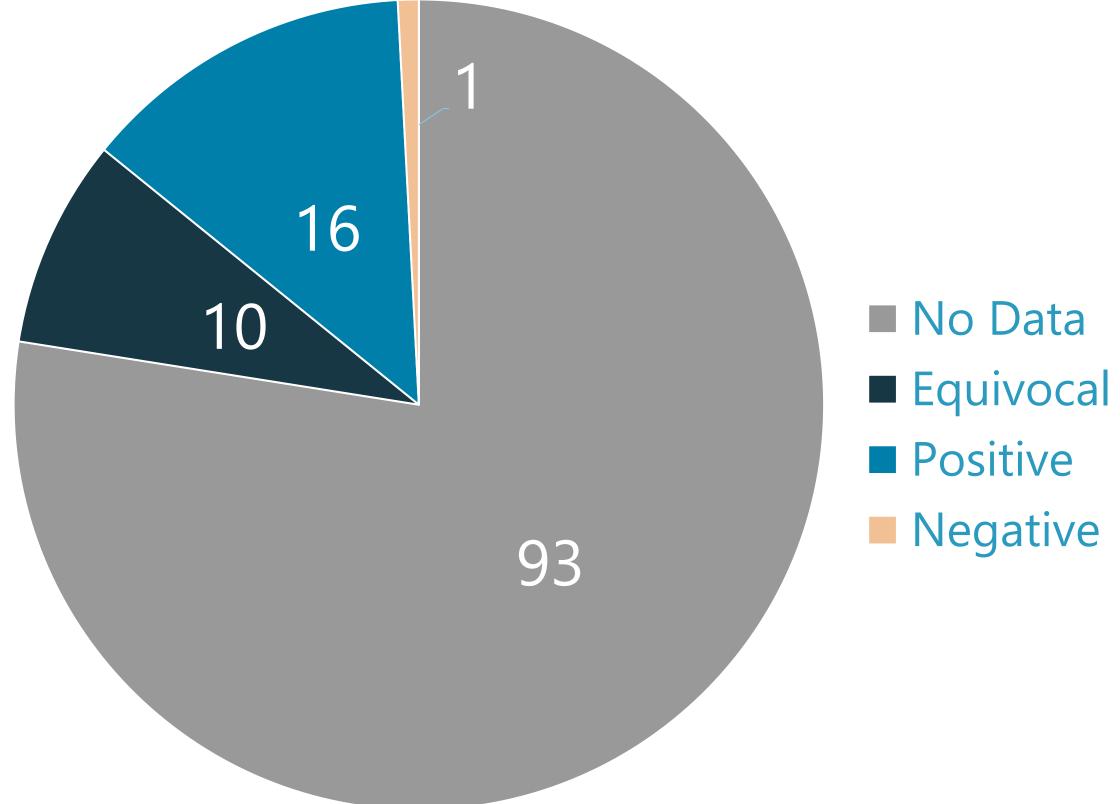


Human Data Results

Has this compound been shown to cause respiratory sensitization from human exposures in the literature?

Strength of evidence

Animal weight of evidence


Scoring	Experimental Model	Positive Pa
++	Model that uses induction (dermal/inhalation) and challenge (inhalation) with the chemical under investigation	Th2 param Immunog Lung func Lung infla
++	Mouse IgE test	IgE in seru
++	LLNA with cytokine fingerprinting	Positive Ll cytokine p
+	Traditional LLNA	Positive LL
+	Guinea Pig assays (Buehler, GPMT)	Positive o
Exclusion	Inhalation tox studies (28/90 days)	Do not pro may be ca

Parameters	Ca
meters (cytokines) globulins (IgG, IgE) as a measure of sensitization ction measurements ammation (pathology, BAL fluid)	Ye
um	Ye
LNA with evidence for Th2 skewing based on profiles	Ye
LNA in the absence of cytokine profiles	Eq
outcome	Eq
rovide evidence for sensitization. Lung effects aused by irritation.	Lao da

Animal and In Vitro Results

ANIMAL CALLS: RESPIRATORY SENSITIZATION

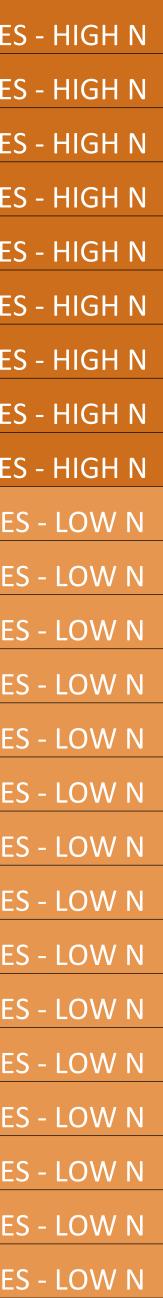
IN VITRO RESULTS: SENSITIZATION GENERALLY

25 20 15 10 0 KS/LS DPRA H-Clat/M Other Positive Negative

30

Full List Decision Basis

Human Data YES (some ++ other data)


24

Is this chemical a probable respiratory sensitizer based on human and other evidence?

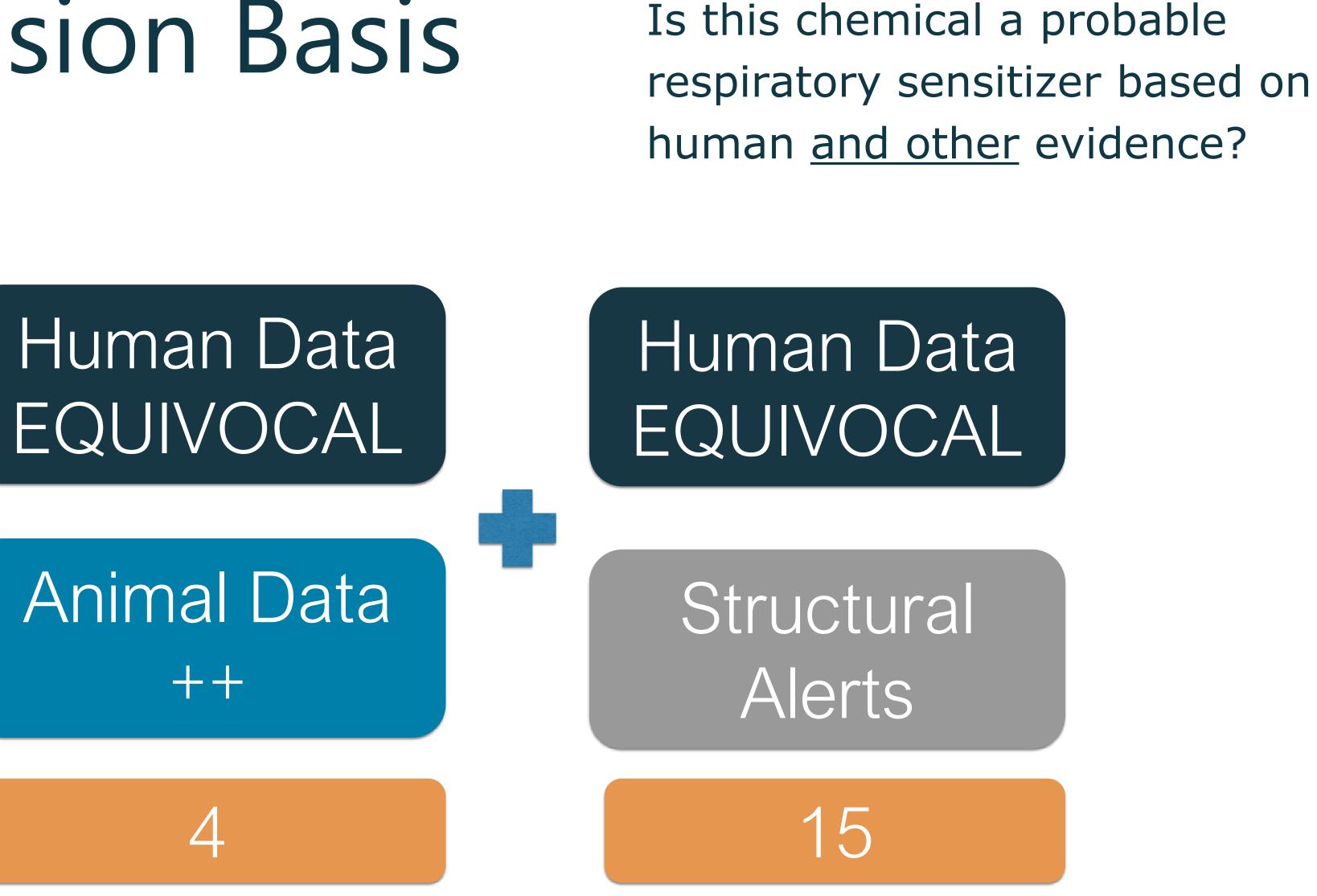
Chemical	DPRA indicates RS			h-CLAT/ MUSST	Other in vitro	Animal	н
POSITIVE (DATA + SA EVIDENCE)							
Ammonium hexachloroplatinate			_	-	+	++	YES
Glutaraldehyde	+	2.8	+	+		++	YES
Hexahydrophthalic anhydride (HHPA)	+	10.7	_	+		++	YES
Methyltetrahydrophthalic anhydride (MTHPA)						++	YES
Phtalic anhydride (PA)	+	39.5	-	-	+	++	YES
Piperazine	-	not reactive			-	++	YES
Plicatic acid							YES
Toluene diisocyanate	-	0.4	+			++	YES
Trimellitic anhydride (TMA)	+	39.7	-	+	+/-	++	YES
2,4-Dichloro-5-chlorsulfonyl-benzoic acid							YES
7-Aminocephalosporanic acid							YES
Ammonium persulfate					+	++	YES
Ampicillin							YES
Cefadroxil							YES
Cefteram pivoxil							YES
Chloramine T			+	+	+	++	YES
Formaldehyde	-	0.2		+			YES
Hexamethylene diisocyanate	-	0.4	+	+	+	++	YES
Pauli's reagent (4-diazobenzenesulphonic acid)							YES
Phenylglycine acid chloride							YES
Piperacillin							YES
Potassium dichromate			+	+			YES
Thiamphenicol							YES
1,1,3-Tributylthiourea (TBTU)							YES

Human

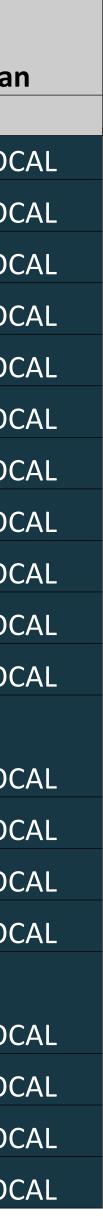
Full List Decision Basis

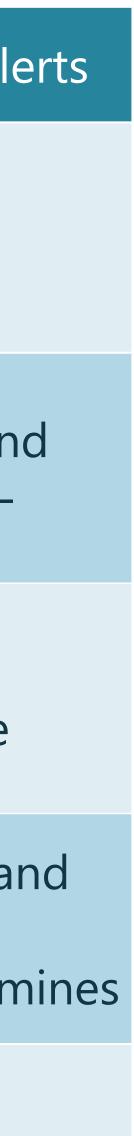
Human Data YES (some ++ other data)

Animal Data ++


Is this chemical a probable respiratory sensitizer based on human and other evidence?

Full List Decision Basis


Human Data YES (some ++ other data)


Equivocal + WOE

		DPRA indicates		•	
Chemical POSITIVE (DATA + SA EVIDENCE)	OECD QSAR TB Respiratory sensitization	RS	Other in vitro	Animal	Human
3-Amino-5-mercapto-1,2,4-triazole	No alert found			++	EQUIVOC
Diphenylmethane-4-4' diisocyanate	Acylation >> Isocyanates and related >> Di-isocyanates			++	EQUIVOC
Isophorone diisocyanate	Acylation >> Isocyanates and related >> Di-isocyanates		+	++	EQUIVOC
Maleic anhydride	Acylation >> Ring opening acylation at a carbonyl >> Anhydrides	+	-/+	++	EQUIVOC
1,5-Naphthalene diisocyanate	Acylation >> Isocyanates and related >> Di-isocyanates				EQUIVOC
5-Aminosalicylic acid	Pro-Michael Addition >> Pro-quinone and related >> Aminophenols				EQUIVOC
6-Aminopenicillanic acid	Acylation >> Ring opening acylation at a carbonyl >> Lactams	Total c	currently p	nsitive	EQUIVOC
Biuret of hexamethylene diisocyanate	No alert found;:Acylation >> Isocyanates and related >> Di-isocyanates				EQUIVOC
Ceftazidime	Acylation >> Ring opening acylation at a carbonyl >> Lactams	Cr	nemicals: 4	3	EQUIVOC
Cephalexin	Acylation >> Ring opening acylation at a carbonyl >> Lactams				EQUIVOC
Chlorendic anhydride	Acylation >> Ring opening acylation at a carbonyl >> Anhydrides				EQUIVOC
Ethylenediamine	Pro-Schiff base formation >> Pro-cross linking Schiff base >> Ethylenediamines	_	+		EQUIVOCA
Eugenol	Pro-Michael Addition >> Pro-quinone-methide >> 4-Allylphenols		+	EQUIVOCAL	EQUIVOC
Himic anhydride	Acylation >> Ring opening acylation at a carbonyl >> Anhydrides			EQUIVOCAL	EQUIVOC
Hydroquinone	Pro-Michael Addition >> Pro-quinone and related >> Hydroquinones		+	EQUIVOCAL	EQUIVOC
P-phenylenediamine	Pro-Michael Addition >> Pro-quinone and related >> Phenylenediamines		+	EQUIVOCAL	EQUIVOC
Benzylpenicillin (Penicillin G)	Acylation >> Ring opening acylation at a carbonyl >> Lactams		+	EQUIVOCAL	EQUIVOC
Tetrachlorophthalic anhydride (TCPA)	Acylation >> Ring opening acylation at a carbonyl >> Anhydrides	+			EQUIVOC
Triphenylmethane triisocyanate	Acylation >> Isocyanates and related >> Di-isocyanates				EQUIVOC

Equivocal + WOE

Compound	Occupational Asthma	Specific IgE/IgG	Confounders	Human Data	Animal Data	Structural Ale
Maleic anhydride	(+) history for asthma(+) specific bronchialchallenge	untested	phthalic acid, controlled (negative bronchial challenge)		++	Ring opening acylation at a carbonyl > > Anhydrides
1,5-Naphthalene diisocyanate	(+) history for asthmaand allergic alveolitis(+) specific inhalativechallenge	(-) slgE, slgG	none	Equivocal	none	Acylation >> Isocyanates and related >> Di- isocyanates
Eugenol	(+) history for asthma and rhinitis(+) specific inhalation challenge	nonspecific IgE elevated	perfume	Equivocal	+	Pro-quinone, hydroquinone
P- phenylenediamine	 (+) history for asthma and rhinitis (+) specific inhalation challenge 	unclear	hair dyes	Equivocal	+	Pro-quinone ar related >> Phenylenediam
Benzylpenicillin (Penicillin G)	(+) history for asthma(+) specific bronchialchallenge	untested	none	Equivocal	+	Ring opening acylation at a carbonyl

Reference List Characteristics

Positive set:

- Major mechanistic domains represented • Pro- and pre-haptens, volatile, soluble, & insoluble chemicals
- Human Data available
- Chemicals representative of sector- or agency-specific needs, and representing use scenarios of concern

Negative set:

- Dermal sensitizers
- **Respiratory Irritants**
- Non-sensitizers

Next steps

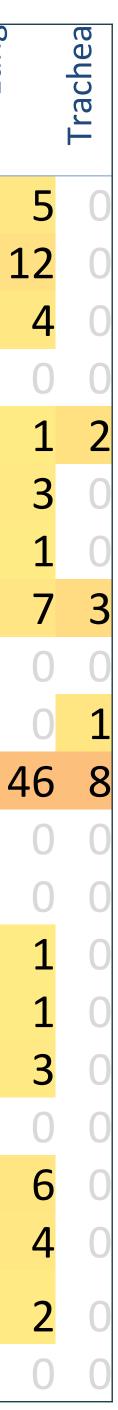
- Create criteria for tiered WOE
- Refine additional equivocal chemicals
- Widen the net
- Determine Negative chemicals
- Publish List
- Update OECD Toolbox Profiler
- Test candidate NAMs

Next steps: Refine Equivocals

- considered positive?
- which might align with the Key Events from the AOP?

• WOE: Could chemicals with A) respiratory effects but not clear sensitization effects (perhaps because of no IgE detection or testing) AND 2) clear sensitization potential from other assays be

• Pattern recognition: Are any positive and equivocal chemicals tested in ToxCast and can we learn anything from those assays,


 Structure-based patterns: Can read across and other structural similarity techniques be employed to refine equivocal chemicals?

Next steps: Find additional chemicals

- Using Abstract Sifter selected the top ten chemicals with High N positive data and identified associated key words within PubMed: asthma, respiratory hypersensitivity, and bronchial hyperreactivity
- Retrieved any chemical tagged with one of these three terms: 583 chemicals
- Sorted by additional relevant key words for top 10 chemicals Chemicals will then need to be evaluated for available data

Baker, N. AND T. Knudsen. Abstract Sifter: A literature informatics tool for research in developmental toxicology. Presented at FutureTox IV, Arlington, VA, November 14 - 16, 2018. <u>https://doi.org/10.23645/epacomptox.7488311</u>

	Asthma	Respirato ry	षे ब	ormatio	ntibod y pecificit	Antigeny esentin	2 <u>2</u>	yunrocy tes	nmunog obulin E	mmunog obulin G	ymphoc yte	ympholo	Provees Binding Kinatics		Time Factors	ulmonar y Alveoli Bronchi	Lung)
MeSH Chemical Name (hyperlinked)			E A	۲ Ľ	A N				<u> </u>		<u>></u> د		1	0	Л	μ Γ		
Latex	40	20	2	0	4	0	1	0	23	2	0	0	1	0	4	0	0	
<u>Chlorine</u>	30	6	10	0	0	0	0	0	2	0	0	1	0	0	10	0	4]
<u>Ethanol</u>	17	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
rosin	17	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	
<u>Tartrazine</u>	16	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
Polyvinyl Chloride	15	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
Ammonium Sulfate	14	1	6	0	0	0	0	0	2	0	1	1	0	0	1	0	0	
Nicotine	13	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	2	
sodium metabisulfite	12	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
phthalic acid	12	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Methacholine Chloride	11	4	7	0	1	0	2	0	15	0	0	0	0	0	37	0	63	Z
isocyanic acid	11	3	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	
Psyllium	11	2	0	0	1	0	0	0	5	0	0	0	0	0	0	0	0	
Chromium	10	4	1	0	1	0	0	0	1	0	0	2	0	0	1	0	0	
metabisulfite	10	4	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1	
Tea	10	0	0	0	0	0	0	0	5	2	0	0	0	0	0	0	1	
Carmine	9	1	0	0	1	0	0	0	7	1	0	0	0	0	0	0	0	
bisphenol A	8	2	4	0	0	0	0	0	, 2	0	0	0	0	0	1	0	0	
Folic Acid	8			0	0	0	0	0	2 Л	0		1	0	0	-	0	0	
	0	U	U	U	U	U	U	U	4	U	U	T	U	U	U	U	U	
2,6-diisocyanatotoluene	7	2	1	0	1	0	0	0	3	3	0	0	0	0	2	0	0	
potassium persulfate	7	1	1	0	0	0	0	0	2	0	0	1	0	0	2	0	0	

Next steps: Determine Negatives

Negative set:

- Non-sensitizers: From OECD reference lists or literature Dermal sensitizers: From OECD reference lists or literature • Respiratory Irritants: Our Analysis + Literature

Summary

- We have defined 43 probable respiratory sensitizers based primarily on human clinical data
- Additional animal and structural information contributed to these determinations
- Large set of chemicals for which the human data remains equivocal; we are pursuing strategies to further refine
- Testing will proceed based on most certain positive chemicals, considering chemical properties, practical issues, and coverage
- We were not able to confirm chemicals from this list were not respiratory sensitizers based on human data

Feedback Welcome! (acknowledgements)

Human Data Search & Eval.

- Jessica Ponder, PCRM
- Ramya Rajagopal, Unilever
- Madhuri Singal, AeroTox Consulting
- Stella Cochrane, Unilever

In vitro data Search & Eval.

- Raja Settivari, Dow Chemical Company
- Erwin L. Roggen, 3Rs Management & Consulting

ksullivan@pcrm.org

Animal data Search & Eval.

- Janine Ezendam, RIVM
- Katherina Sewald, Fraunhofer ITEM

In silico data, structural alerts, Abstract Sifter, phys/chem, ToxCast, read across

- Steven J. Enoch, Liverpool John Moores U.
- Grace Patlewicz, US EPA
- Nancy Baker, US EPA

jponder@pcrm.org

