

Androgen Receptor Inhibition by Brominated Flame Retardants

Mary Jean See

U.S. EPA Office of Research and Development Center for Computational Toxicology and Exposure

Outline

- Introduction
- Hypothesis
- Results
- Summary
- Next Steps

Disclaimer: Although this text was reviewed by EPA staff and approved for presentation, it does not necessarily reflect official EPA policy.

Flame Retardants

- Chemical mixtures added to consumer products after manufacturing.
- Delay ignition and reduce combustion.
- Commonly found in
 - Polyurethane foam and fabrics used in furniture
 - Plastics, insulation and electronics.

"Fire set in a modern room with many synthetic fibers spread much faster than in a comparable room using natural materials popular decades ago."

https://www.today.com/home/newer-homes-furniture-burn-faster-giving-you-less-time-escape-t65826

Flammability Safety Standards

California Technical Bulletin117

1975 California required all furniture filling materials to withstand a small open flame for at least 12 sec. without igniting.

2013 Test changed to require upholstery to resist igniting or smoldering from a lit cigarette.

California Technical Bulletin 117-2013

Flame Retardants

PBDEs

Penta-BDE, octo-BDE, deca-BDE

Cyclic Aliphatic Bromides

HBCD

Tetrabromobisphenol A

TBBPA

Brominated Phthalates

EH-TBB, BEH-TEBP

Chlorinated Phosphate Esters

TDCPP, TCEP

Organophosphates

ITP, TPP, TDCIPP

Firemaster 550[®] and BZ

BEH-TEBP

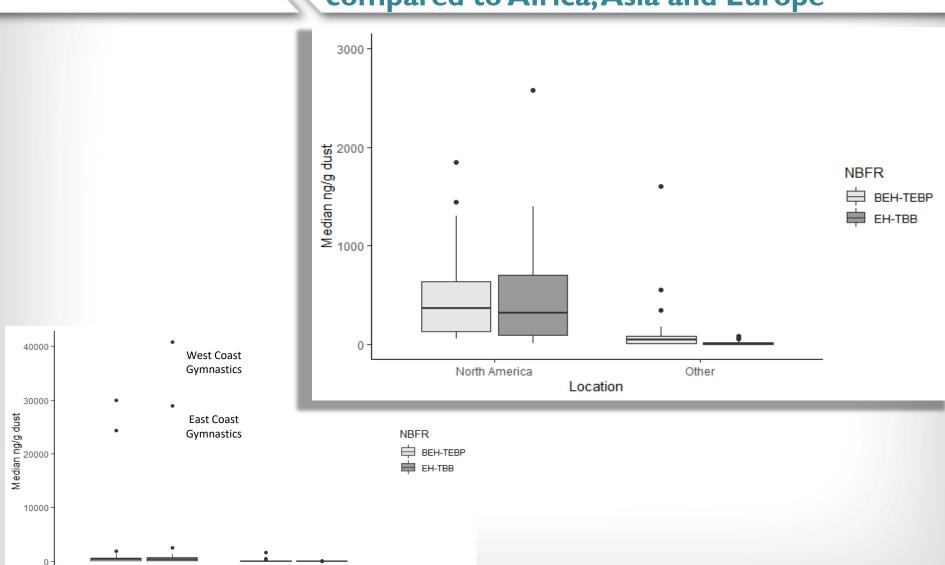
ITPs

mixture of isopropylated triphenylphosphate isomers

triphenyl phosphate

TPP

Environmental Exposure


- Primary route of exposure is ingestion
- Detected with similar frequency in dust and external biological samples (hand wipes, nails and hair)
- Detected in human serum and milk
 - Uptake from ingestion
 - Transfer to infants
- EH-TBB metabolite (TBBA) detected in adult and child urine

North America

Location

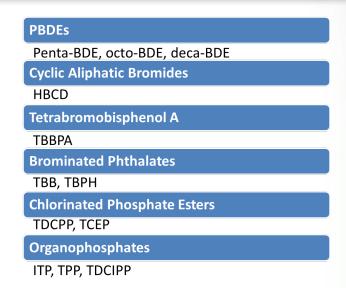
Median dust concentration of BEH-TEBP and EH-TBB in United States and Canada compared to Africa, Asia and Europe

Estimated Daily Intake

$$EDI = \frac{Conc._{NBFR} * IR * AF}{body\ weight}$$

- EDI = Estimated Daily Intake (pg/kg/day)
- Conc._{NBFR} = Dust concentration (pg/g)
- IR = Dust Ingestion Rate
 - Adult median IR = 0.03 g/day, for a
 - Child median IR = 0.06 g/day and the
 - Maximum IR for both adults and children = 0.10 g/day
- AF = Absorption factor
 - $-AF_{EH-TBB} = 0.48$ $-AF_{BFH-TFBP} = 0.25$ Fang et. al. 2014
- Body weight is 70 kg for adult and 18.6 for child 3 6 years old

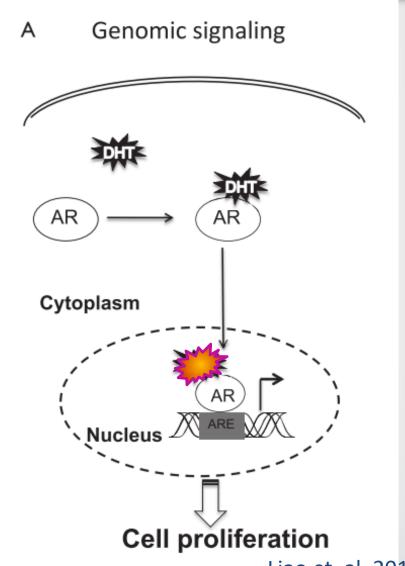
Estimated Daily Intake (pg/kg/d)


		Med	dian	Maximum			
		EH-TBB	ВЕН-ТЕВР	EH-TBB	ВЕН-ТЕВР		
North	Adults	13 - 1,011	22 – 410	10,650 - 26,008	4,039 - 7,554		
America	Children	96 - 7,607	166 - 3,085	40,081 - 97,879	15,201 - 28,431		
Africa, Asia,	Adults	2 – 4	3 – 25	0 - 1,805	350 - 1,581		
Australia and Europe	Children	12 - 30	25 - 187	0 - 6,793	1,317 - 5,949		

90% confidence around the mean

Flame Retardant Risks

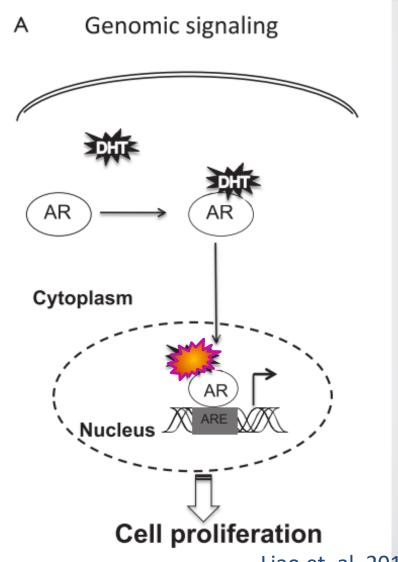
- Correlation with
 - Endocrine disruption
 - Cancer
 - Anxiety & ADHD
- EH-TBB + BEH-TEBP



- Prenatal exposure increased anxiety behaviors in male mice (Patisaul et. al. 2013, Baldwin et. al., 2017)
- Thyroid disruption (Dong et. al., 2021)
- Disruption of steroid hormone production (Mankidy et. al., 2014, Saunders et. al., 2013)

AR inhibition by EH-TBB & BEH-TEBP

- In vitro AR inhibitor
 - YAS assay, Saunders et. al., 2013
 - YAS assay, Fic et. al.,2014
 - Luciferase assay in breast cancer reporter cell line, Klopčič et. al., 2016



Liao et. al. 2013

Hypothesis

Brominated phthalates (BP) inhibit AR function causing disruption of androgen mediated processes including AR dependent gene expression and cell proliferation in androgendependent prostate cancer cells.

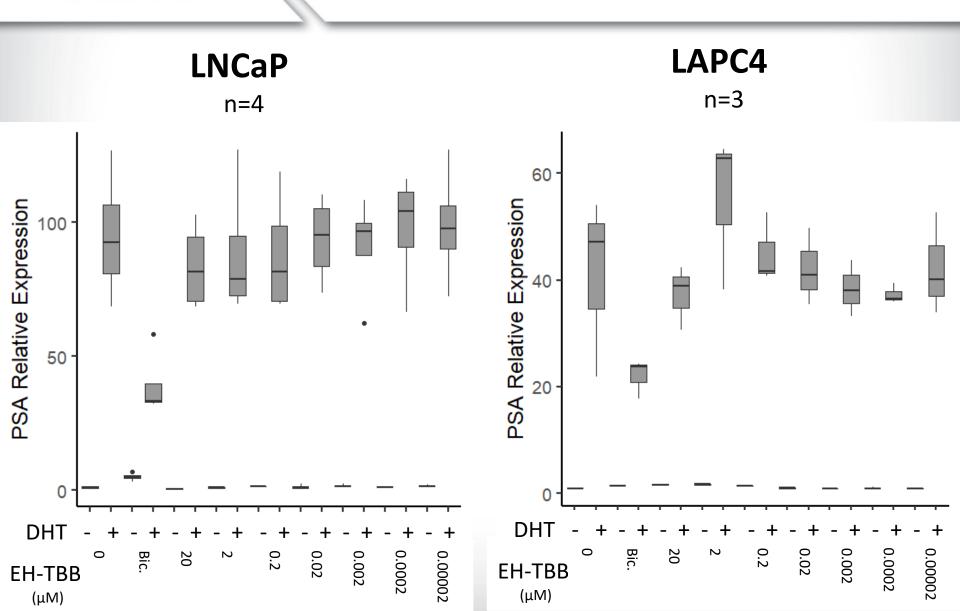
Liao et. al. 2013

AR dependent gene expression experimental design

10nM DHT	0.1% ethanol	10 μM Bic.	20	2	0.2	0.02	0.002	0.0002	0.00002
Without DHT	0.1% ethanol	10 μM Bic.	20	2	0.2	0.02	0.002	0.0002	0.00002

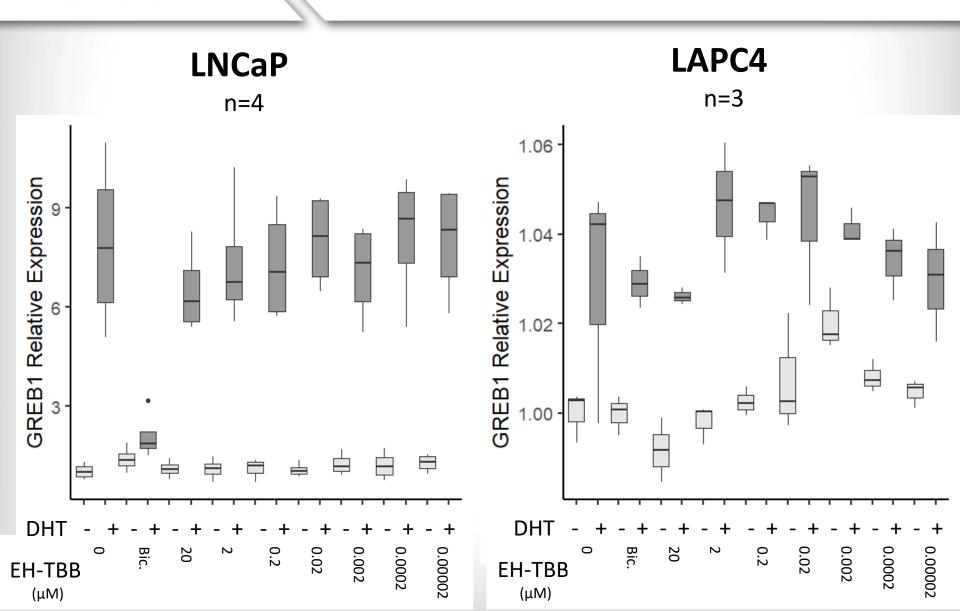
Decreasing concentration of EH-TBB (µM)

LNCaP cell line

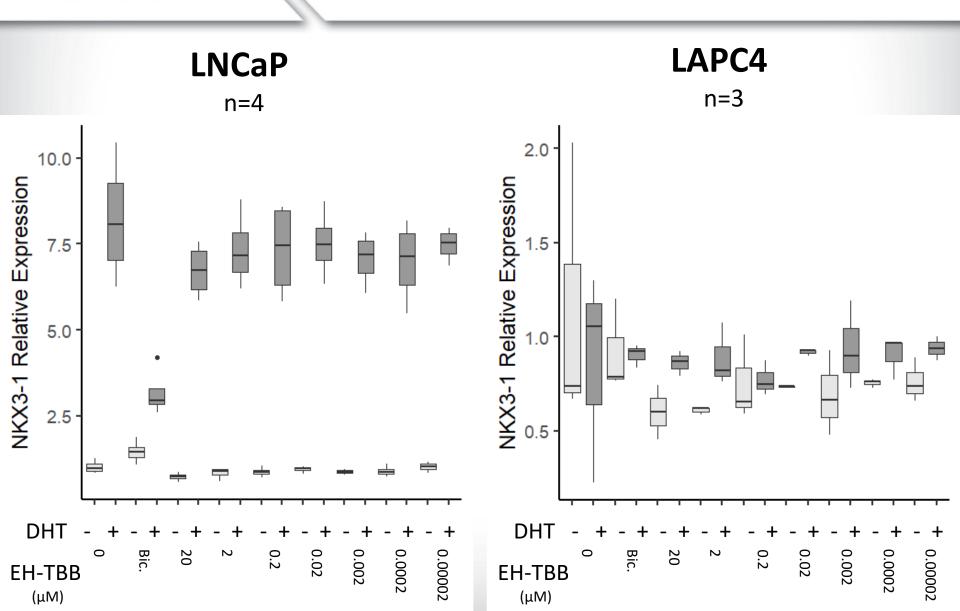

- Derived from prostate cancer lymph node metastasis
- Express AR (T877A)
- Express high levels of the androgen-regulated gene prostate specific antigen (PSA)

LAPC4 cell line

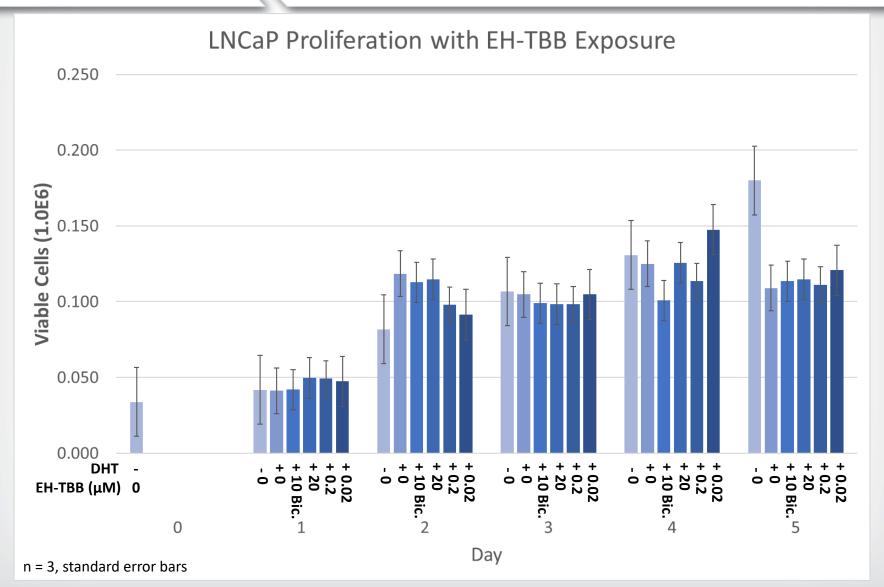
- Derived from xenograft of prostate cancer lymph node metastasis
- Express wild type AR
- Express lower levels of PSA
- Target genes; PSA (KLK3), GREB1, and NKX3-1
- Reference genes; GAPDH, TBP and HPRT1



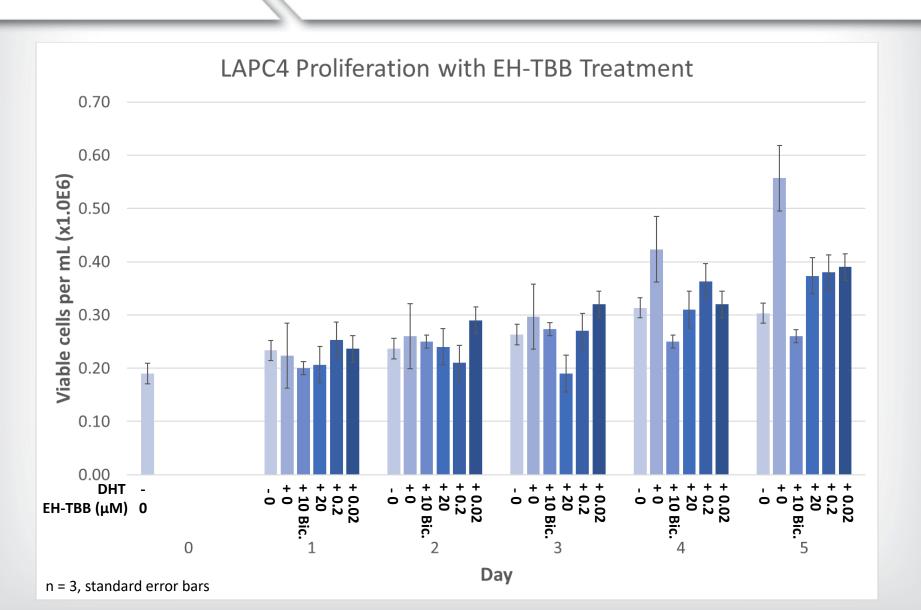
PSA mRNA expression is not significantly different in PCa cells treated with EH-TBB



GREBI mRNA expression has different patterns in different cell types



NKX3-I mRNA expression has different patterns in different cell types



LNCaP Proliferation was not altered with EH-TBB treatment

LAPC4 Proliferation had a downward trend with EH-TBB treatment

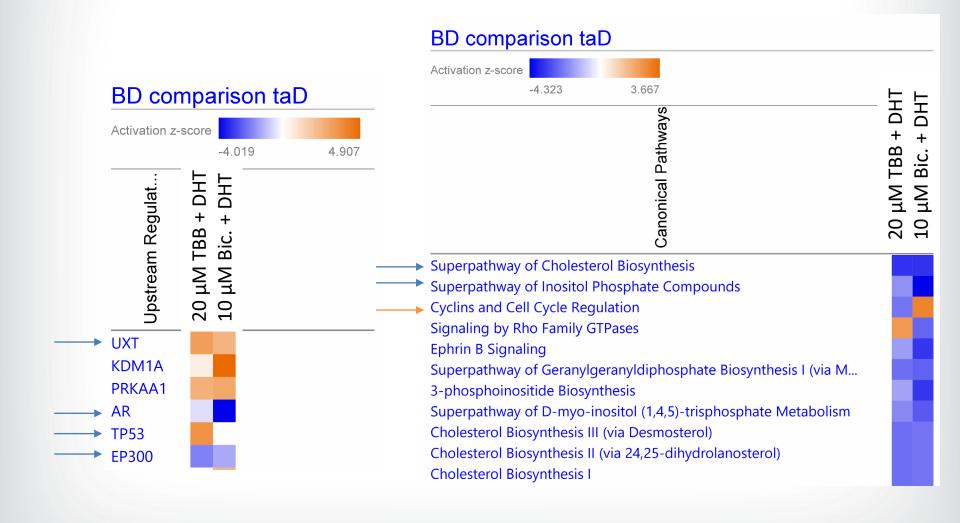
LNCaP global mRNA expression after EH-TBB treatment

	No DHT	10 nM DHT		
	0.1% Ethanol	0.1% Ethanol		
	10 μM bicalutamide	10 μM bicalutamide		
	20 μM EH-TBB	20 μM EH-TBB		
	0.02 μM EH-TBB	0.02 μM EH-TBB		
	0.00002 μM EH-TBB	0.00002 μM EH-TBB		

- LNCaP exposed to treatment for 48 hours.
- RNASeq on mRNA
- DEGs identified compared to vehicle control and DHT control for DHT + treatment

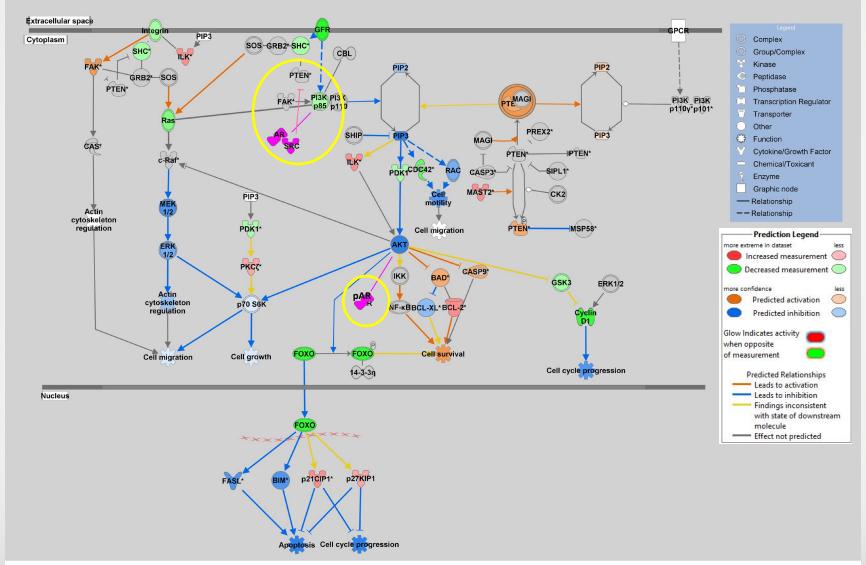
Ingenuity Pathway Analysis

$20 \mu M TBB + DHT$


Ingenuity Toxicity Lists	-log(p-value)	Ratio		
Cholesterol Biosynthesis	2.96	75%		
Cell Cycle: G1/S Checkpoint Regulation	2.26	47%		
Decreases Permeability Transition of Mitochondria and Mitochondrial Membrane	2.07	83%		
Cell Cycle: G2/M DNA Damage Checkpoint				
Regulation	1.86	46%		
p53 Signaling	1.70	40%		

10 μ M Bic. + DHT

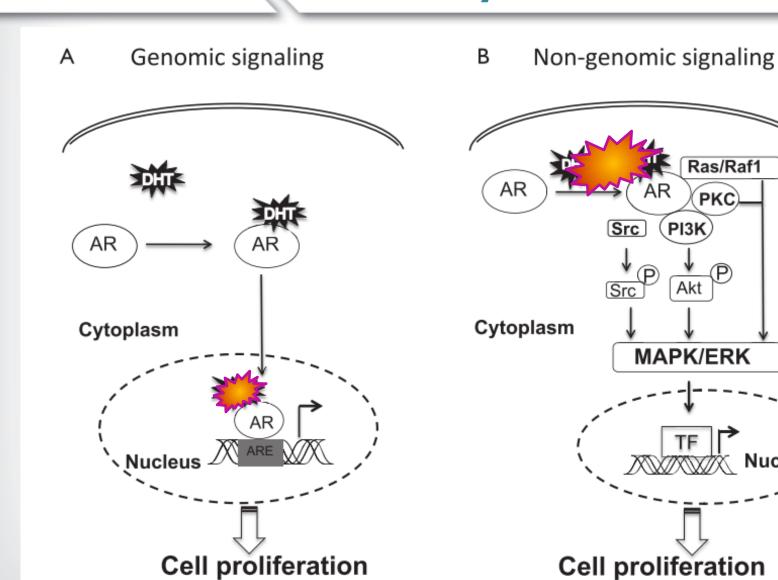
Ingenuity Toxicity Lists	-log(p-value)	Ratio
Cholesterol Biosynthesis	4.07	92%
p53 Signaling	3.60	55%
Renal Necrosis/Cell Death	2.35	42%
Primary Glomerulonephritis Biomarker Panel		
(Human)	2.26	100%
Pro-Apoptosis	1.83	57%



DHT Driven Gene Expression



Non-genomic AR signaling; TBB + DHT



Non-genomic Androgen Receptor Signaling

Summary

Summary

- EH-TBB does not inhibit AR regulated gene expression
 - PSA, GREBI, NKX3-I
- EH-TBB may inhibit prostate cancer cell proliferation
- RNASeq suggests EH-TBB inhibits PI3K/Akt signaling, MAPK/ERK signaling, cell cycle progression and cell growth in LNCaP.

Future work

- Nuclear translocation of AR
 - Immunofluorescent cell imaging
- Western blot of PSA and 3βHSD

Acknowledgements

Kasper Lab

Dr. Susan Kasper - Advisor

Paul Deford

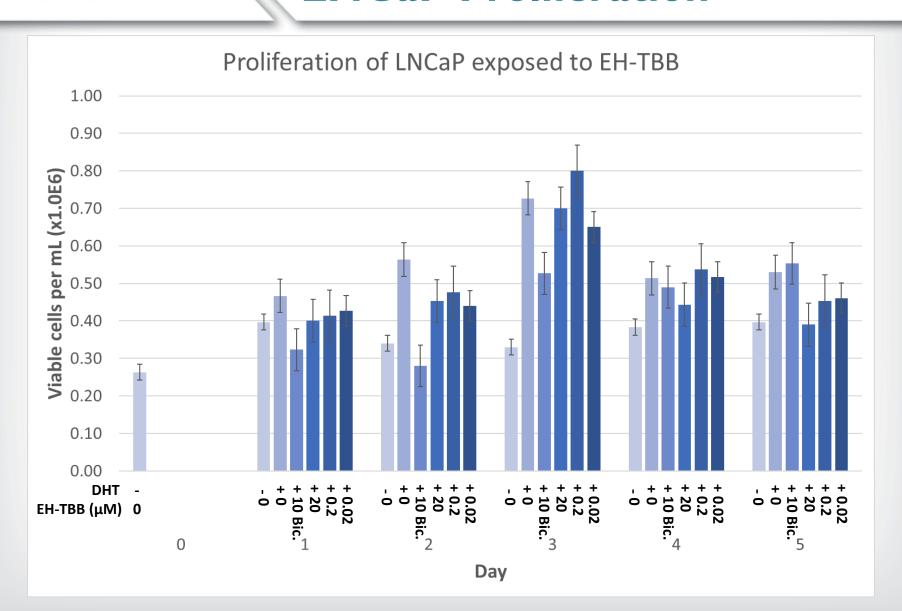
Ali Pecquet

Austin McDermott

U.S. EPA – ORD Center for Computational Toxicology and Ecology

Dr. Adam Biales – Immediate supervisor

Dr. David Lattier


Funding

U.S. EPA Chemical Safety and Sustainability National Research Program

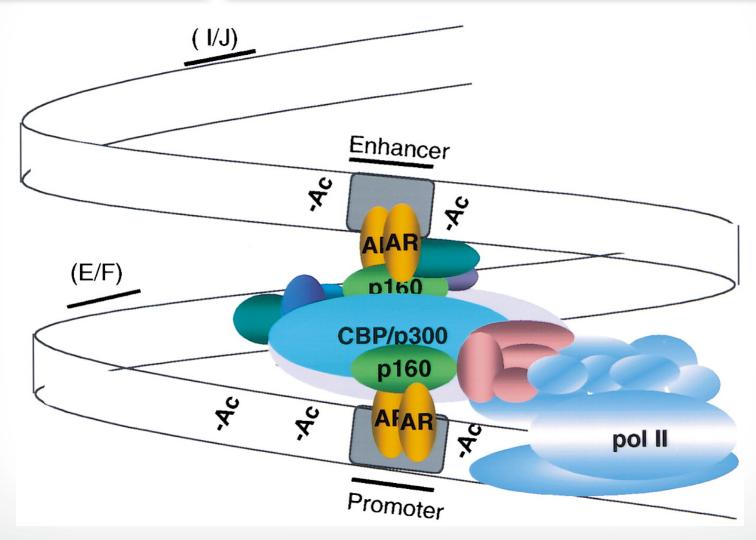
LNCaP Proliferation

RNASeq

- RNASeq libraries were prepared with Illumina TruSeq stranded mRNA kits from RNA samples paired to the luciferase samples (n=4 per treatment). Sequencing was performed on an Illumina HiSeq 4000 with single-end 50bp reads.
- <u>Differentially expressed gene (DEG) lists</u> were generated for each treatment compared to control (ethanol, no DHT) or compared to ethanol + DHT (positive control). Analysis in R (v. 3.6.0 (12)). Normalization (TMM (15)) and feature selection with edgeR (v. 3.26.8, (14)) observation weights and limma/voom (v. 3.40.6, (13) hypothesis testing produced lists of differentially expressed genes (DEGs) ranked by false discovery rate (FDR, (1)).
- Ingenuity Pathway Analysis (IPA) core analysis was performed on the DEG lists (Expression cutoff -5 to 5, p-value cutoff ≤ 0.05). Comparison analysis was done to identify similarities/differences between treatment groups.

BP Inhibition of AR target genes

Treatment + 10 nM DHT		0.4%	Ethanol	0.2 n	м твв	20 nM TBB 20,000 n		nM TBB	M TBB 10,000 nM Bic.			
Symbol	Entrez Gene Name	Expr	p-value	Expr	p-value	Expr	p-value	Expr	p-value	Expr	p-value	Symbol
AR	androgen receptor	-1.469	3.02E-01	-2.551	9.33E-02	-1.734	2.83E-01	-5.730	1.95E-03	-4.670	1.60E-02	AR
GREB1	growth regulating estrogen receptor binding 1	33.666	2.48E-11	26.089	1.85E-08	28.994	2.32E-08	18.922	1.05E-06	17.872	4.66E-06	GREB1
KLK3	kallikrein related peptidase 3	32.620	3.42E-11	35.692	1.94E-09	33.248	9.56E-09	15.029	4.38E-06	24.428	6.08E-07	KLK3
NDRG1	N-myc downstream regulated 1	37.642	8.21E-12	31.735	4.69E-09	30.960	1.51E-08	12.233	1.64E-05	8.684	4.35E-04	NDRG1
NKX3-1	NK3 homeobox 1	42.561	2.43E-12	37.247	1.45E-09	36.829	4.56E-09	31.507	4.01E-08	30.367	1.65E-07	NKX3-1
TMPRSS2	transmembrane serine protease 2	40.467	3.99E-12	38.978	1.06E-09	36.804	4.57E-09	31.041	4.37E-08	24.198	6.20E-07	TMPRSS2


Dose dependent decrease in AR-ligand dependent gene expression

No DHT		20 nN	и твв	20,000	nM TBB	10,000	nM Bic.	
Symbol	Entrez Gene Name	Expr	p-value	Expr	p-value	Expr	p-value	Symbol
AR	androgen receptor	-1.775	7.03E-01	-4.940	2.36E-02	-5.942	9.16E-03	AR
GREB1	growth regulating estrogen receptor binding 1	-2.177	7.03E-01	-6.525	7.43E-03	2.955	1.54E-01	GREB1
KLK3	kallikrein related peptidase 3	1.012	7.03E-01	-9.990	1.39E-03	8.456	1.85E-03	KLK3
NDRG1	N-myc downstream regulated 1	4.191	7.03E-01	0.451	9.10E-01	2.094	3.48E-01	NDRG1
NKX3-1	NK3 homeobox 1	0.148	9.71E-01	-21.467	3.67E-05	1.800	4.48E-01	NKX3-1
TMPRSS2	transmembrane serine protease 2	-1.398	7.03E-01	-6.276	8.69E-03	1.804	4.47E-01	TMPRSS2

Decrease in AR mediated gene expression in cells exposed to high dose TBB. Contrary to expression from competitive AR inhibitor suggesting TBB action is not in the ligand binding domain of AR.

Transcription Regulation by AR

Shang, Myers and Brown 2002