

A quantitative structure-activity relationship (QSAR) model to estimate serum half-lives of per- and polyfluoroalkyl substances (PFAS) in multiple species

Daniel Dawson¹, Chris Lau¹, Prachi Pradeep², Richard Judson¹, Rogelio Tornero-Velez¹, and John F. Wambaugh¹ 1. U.S. Environmental Protection Agency, Office of Research and Development 2. Oak Ridge Institutes for Science and Education

Trying to characterize the toxicokinetics of PFAS

- What are per- and polyfluoroalkyl substances (PFAS)?
 - Highly diverse group of anthropogenic molecules that substitute fluorine for hydrogen along carbon backbones
 - 1223 PFAS chemicals are currently in EPA's TSCA inventory
 - 602 PFAS chemicals are known to be commercially active
 - Generally non-biodegradable, and widely distributed in environmental media, humans and wildlife

• What do we want to do?

- Characterize toxicokinetics (TK) of PFAS and extrapolate from data-rich to datalimited substances
- Prioritize PFAS for in-depth assessment based on predicted half-life and exposure

• What's the problem?

- TK parameters vary widely and non-allometrically across species
- Some TK parameters vary by sex within species
- Read-across methods and cross-species extrapolations are unreliable

• A potential solution: Machine Learning

- Data from in vivo testing of PFAS across multiple species and chemicals
- Integrate multiple chemical and physiological characteristics
- Produce fit-for-purpose predictions of TK parameters
- Contribute to prioritization of chemicals for more in-depth evaluation

Putting it together: datasets and model assembly

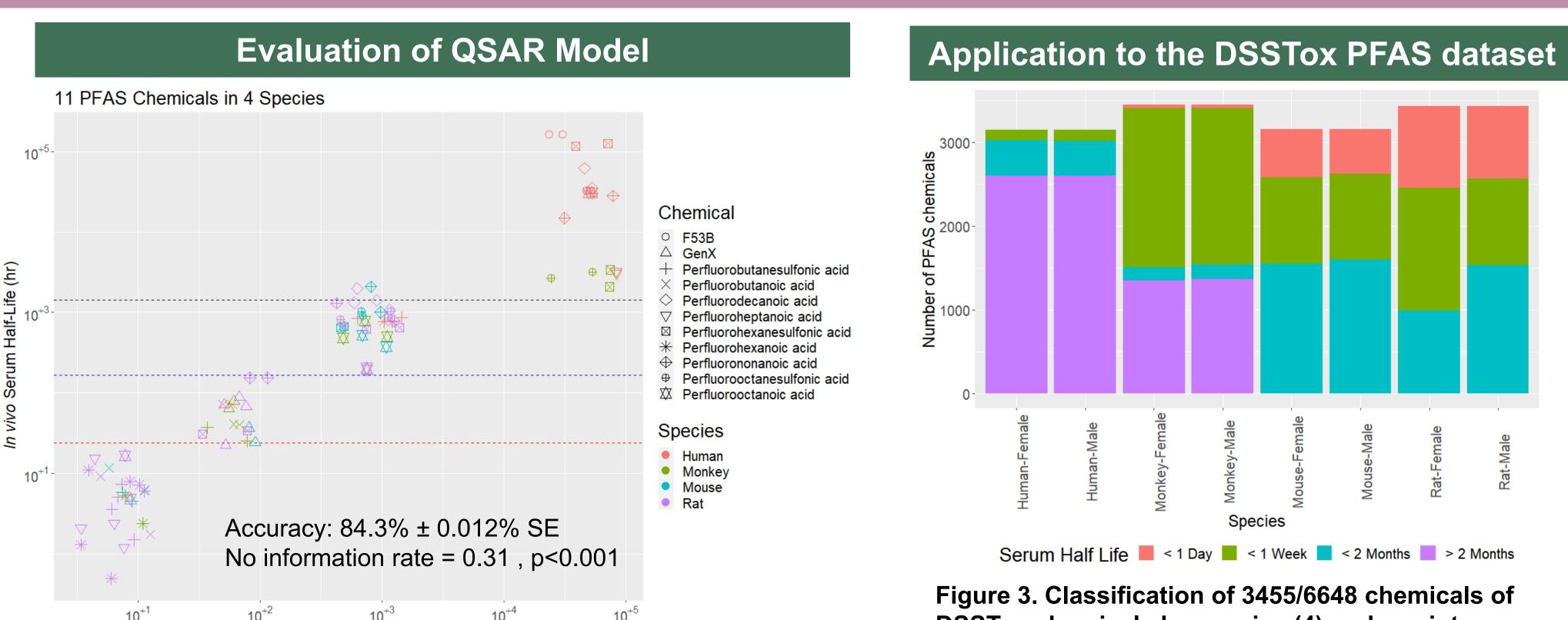
- In vivo serum half-life (SHL) data
 - Expert curated set of peer-reviewed literature¹⁻²⁹
 - Mean SHL values assembled through hierarchical process based on data availability
 - 89 datapoints
 - 11 PFAS chemicals
 - 4 species (Human, Monkey, Rat, Mouse), sex-specific values when available

Model predictors: capturing PFAS chemical/structural diversity

- Considered 118 predictors in 6 general categories
- Physio-chemical characteristics (OPERA)^{30,31}
- Species-specific kidney characteristics^{32,33,34} Similarity to endogenous compounds³⁵
- ✤ Protein binding affinities^{36,37} Critical micelle concentrations³⁸
- Inclusion of ether bond
- Pruned down to 29 predictors for model construction

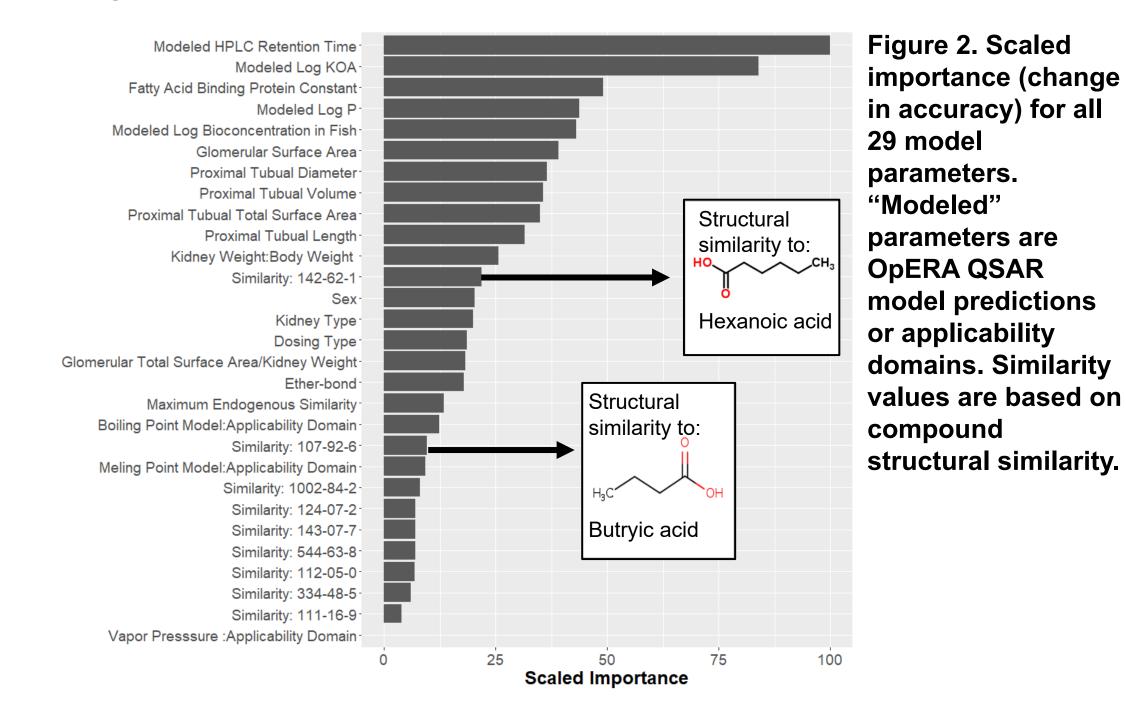
Machine learning method: Random Forest (RF)

- RF Classification model with SHL segregated into 4 bins
- Very Fast (<1 day), Fast (1 day 1 week), Slow (1 week 2 months) and Slow (>2 months)
- 10-fold cross validation, replicated 10 times



RF Classification 4 Bin Mean Predicted Serum Half-Life (hr)

Figure 1. RF *classification* model results. Predicted (very fast, fast, moderate, or slow) vs in vivo SHL, shown by chemical and species.



Innovative Research for a Sustainable Future

Daniel Dawson I dawson.daniel@epa.gov I 919-541-5662

DSSTox chemicals by species (4) and sex into very fast, fast, moderate, or slow SHL categories. Chemicals outside of applicability domain⁹ (3193) excluded from prediction.

Conclusions and future directions

Summary

- The model is less precise than a concurrently developed regression model but is still highly accurate
- Top Predictors: HPLC retention time and Log KOA
- Secondary: FABP constants > correlates of lipophilicity (Log P and Log BCF) > kidney characteristics > endogenous compound similarity
- Application of model to DSSTox database suggests many PFAS may have long SHLs (> 2 months) in humans (Fig 3)

Limitations

- Lack of independent test set due to data paucity
- Model is likely overfit (29 parameters with 89 obs)
- However, RF methodology (collection of trees created over random subsets of data and parameters) is generally robust

Future work

- Refitting of models with additional SHL data and parameters
- Development of evaluation sets of *in vitro* and *in vivo* data
- Incorporation of predictions into TK modeling effort

*Numbered references available upon request