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ABSTRACT
Read-across is a data gap filling technique utilized to predict the toxicity of a target chemical using toxicity data from similar
analogues. Recent efforts such as Generalized Read-Across (GenRA) (Shah et al., 2016) facilitate automated read-across
predictions for untested chemicals. GenRA aims to make predictions of toxicity outcomes based on “neighboring” chemicals
characterized by chemical and/or bioactivity fingerprints. Here we investigated the impact of biological similarities (based on
targeted transcriptomic data) on neighborhood formation and read-across performance in predicting hazard classifications
(based on repeat-dose testing outcomes from US EPA ToxRefDB v2.0) using the recently developed python package, genra-
py. We treated HepaRG™ cells with 8 concentrations of 1,060 chemicals and measured the expression of 93 transcripts,
which measure nuclear receptor activation, xenobiotic metabolism, cellular stress, cell cycle progression, and apoptosis.
Transcriptomic similarity between chemicals was calculated using binary hit-calls from concentration-response data for each
gene. We evaluated GenRA performance in predicting ToxRefDB v2.0 toxicity outcomes using area under the ROC curve
(AUC) for the baseline approach (chemical fingerprints) versus transcriptomic fingerprints and a combination of both
(hybrid). Overall, an increase in read-across performance was noted for various toxicity endpoints when using either
transcriptomic or hybrid fingerprints over baseline. For example, for all liver endpoints, there was a 10% improvement in
performance utilizing transcriptomic fingerprints and a 16% improvement with hybrid descriptors. We also saw
improved predictive performance using a combination of various chemical fingerprints (Morgan, Torsion Topological,
and ToxPrints). Thus, integration of diverse descriptors, either bioactivity combined with chemical information or
combinations of various chemical fingerprints, offer significant benefit in predicting in vivo toxicity outcomes. This abstract
does not reflect U.S. EPA policy.

 Given both national and international efforts to significantly reduce animal testing through developing new approach
methodologies (NAMs) to inform chemical hazards and risks, our objective was to investigate the feasibility and
performance of targeted high-throughput transcriptomics (HTTr) in assigning in vivo toxicity read-across predictions for
untested chemicals using the Generalized Read Across (GenRA) approach (Shah et al., 2016).

 In subsequent analyses, we have focused on exploring enhancements to read-across; either through characterizing other
similarity considerations, e.g., physicochemical properties as a surrogate for bioavailability (Helman et al., 2018) and
quantifying their relative contribution to improving read-across performance or transitioning to predictions of
potency (Helman et al., 2019a, b).

 Our current works utilizes the newly developed genra-py package to evaluate whether HTTr descriptors individually or in
combination with chemical structure descriptors offer improvement and/or significant benefit in predicting in vivo toxicity
outcomes.

METHODS

RESULTS

OVERVIEW

In this study, using the newly developed stand-alone version of GenRA, genra-py (Shah et al., submitted ) , we 
extended the GenRA approach to transcriptomic data comprising binary hit calls (activity calls) from concentration-
response data for each gene. Our analysis estimated the global performance of GenRA (using diverse individual and 
combinations of transcriptomic binary hit call measures and chemical structure fingerprints) in predicting liver toxicity 
and other systemic toxicity effects. 
The global read-across performance for all neighborhoods suggests that hybrid combinations of biological and 
chemical descriptors were effective for numerous toxicity endpoints. This was also the case for the combination of 
multiple chemical descriptors. 
Next Steps in progress:
 Evaluation of  HTTr  in multiple cell types (beyond the liver) for screening thousands of chemical 
 Expansion of scope of biological fingerprints to biological pathways 
 Comparison of the GenRA approach to other machine learning approaches
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Data
1. 1060 Chemicals and Reference 
Chemicals
2. Chemical descriptors (chm):

• 2048 Morgan (mrgn)
• 2048 Topological Torsion 

(tptr) 
• 729 ToxPrints (toxp)

3. Transcriptomic 
descriptors(bio):

• 95 Gene (ge)
• 189 Assay (asy)

4. 922 Toxicity outcomes (tox)
5. 86 Predefined Chemical 
Clusters

Find Best n-Neighbors and 
Similarity Metric

Utilize a 5-fold grid search 
cross validation and AUC 
scoring to determine 
appropriate number of 
neighbors and similarity 
metric for each descriptor 
type.

Generate Local 
Neighborhoods

Group chemicals using a 
similarity-weighted activity 
score of nearest neighbors. 
Similarity calculated by:
• Jaccard distance
• Manhattan distance
• Euclidean distance

Performance Evaluation
Evaluate the impact of 
diverse descriptors (chm, 
bio, chm+bio) on GenRA 
global and local read-
across performance. 

Figure 1: Workflow for analysis of multiple descriptor types in GenRA.

SUMMARY & FUTURE DIRECTIONS

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Descriptor Type Descriptor Name AUC Metric Number of Neighbors

Chm tptr 0.6303 Euclidean 9

Chm mrgn 0.64549 Jaccard 8

Chm toxp 0.61379 Jaccard 7

Bio ge 0.648847 Euclidean 14

Bio asy 0.6632 Euclidean 11

Hybrid mrgn + asy (ma) 0.6883 Jaccard 13

Hybrid toxp + ge (txg) 0.7044 Jaccard 10

Hybrid tptr + ge (ttg) 0.6818 Euclidean 6

Hybrid (CB) all 0.6999 Jaccard 14

Chm (CA) all 0.6702 Jaccard 10

Hybrid mrgn + ge (mg) 0.7049 Jaccard 10

Hybrid toxp + asy (txa) 0.6992 Jaccard 14

Hybrid tptr + asy (tta) 0.6721 Manhattan 5

Data Representation:
 1060 test chemicals and reference chemicals from the ToxCast Phase I and Phase II libraries
 Each chemical was represented by binary chemical (chm), biological (bio), and toxicity (tox) vectors:
 729+ Chemical fingerprints descriptors were generated by the python library RDKit or the

Chemotyper (Yang et al., 2015; chemotyper.org) (for ToxPrints)
 95 + Biological ”hit call” descriptors from metabolically competent HepaRGTM cells LTEA assay of

ToxCast HTS data set we derived for the tcpl package in R.
 922 Toxicity effects (derived from ToxRefDB v2.0) were aggregated by study types including: chronic

toxicity (chr), subchronic toxicity (sub), subacute toxicity (sac), developmental toxicity (dev),
multigenerational reproductive toxicity (mgr), reproductive toxicity (rep)), acute toxicity (acu), and
neurological toxicity (neu).

 Note: presence of chemical structure features , biological activity, and/or significant target effect
(tox), was denoted as ”1”, else denoted as “0”

 A total of 13 chemical [mrgn, tptr, CA (all chemical fingerprints)], biological [ge, asy], and hybrid
(chemical + gene) [ ma, mg, tta, ttg, txa, txp, cb (all gene and chemical descriptors] were assessed for
prediction of in vivo toxicity using genra-py.

Table 1: Determining appropriate metrics and number of nearest neighbors to assess the performance of various descriptor 
read-across prediction of chronic liver toxicity. 
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Figure 3: Gene (A), Morgan (B), and Hybrid (C)  local neighborhoods for target chemical Diethyl phthalate derived from a predefined group of chemicals. 
Numbers in the center represent the pairwise similarity scores. (D) Heatmap of local neighborhood chemicals gene activity, 0 and 1 correspond to inactive (0) or 
active (1) gene hits.

Figure 2: Global Prediction Performance (AUC) for All Liver Endpoints Using Various descriptor types (dt) including: Chemical Structure (C), Biological (B), and Hybrid (CB) 
Descriptors.

A. Gene B. Morgan

C. Gene + Morgan Hybrid

Diisobutyl phthalate

0.33

0.29

0.
250.250.25

0.15

0.13

0.06

Fludioxonil

3-Iodo-2-propynyl-N-butylcarbamate

Di(2-ethylhexyl) phthalate

Dihexyl phthalate

Di-n-octyl phthalate

0.04 1.00

Benzyl butyl phthalate

4-Nonylphenol, branched

Diallyl phthalate

Diethyl phthalate
Monobenzyl phthalate

0.56

0.51

0.51
0.490.46

0.41

0.39

0.21

Di(2-ethylhexyl) phthalate

Dihexyl phthalate

Di-n-octyl phthalate

0.18 0.57

Benzyl butyl phthalate

Diethyl phthalate

Diallyl phthalate

Monobenzyl phthalate

Dibutyl phthalate

Diisobutyl phthalate
Propoxycarbazone-sodium

Azoxystrobin

0.53

0.49

0.47
0.430.43

0.40

0.34

0.20

Di(2-ethylhexyl) phthalate

Dihexyl phthalate

Di-n-octyl phthalate

0.13 0.58

Benzyl butyl phthalate
Diethyl phthalate

Diallyl phthalate

Monobenzyl phthalate

Dibutyl phthalate

Diisobutyl phthalate

Propoxycarbazone-sodium

3-Iodo-2-propynyl-N-butylcarbamate

D. Local Neighborhood Chemical Gene Activity

Chemical neighborhood order and pairwise score varied by descriptor type utilized
While Gene descriptor produced a perfect pairwise similarity score for Diethyl phthalate Morgan descriptors the most 

consistent average scores for similar this group of chemicals. 
Note: Figure 3D confirms similar gene activity for various chemicals, particularly, diethyl phthalate and diisobutyl phthalate as 

expected by similarity score.   
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