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Abstract

Purpose
In silico tools and models for assessing activity are usually defined by endpoints
and quantitative structural metrics. Although it is useful to obtain
categorical/continuous estimates of activity, traditional SAR provide limited
guidance as to the molecular moieties giving rise to the endpoint. Reverse-
fingerprinting (RF), provides a useful marriage between discretized endpoints and
feature-based molecular fingerprint. RF produces both a quantitative and visual
representation of atomic contribution to an endpoint, mapped on to structure
(Williams C, 2009 PMID: 19442069). Here we introduce the concept of atomic
contribution mapping and exploration (ACME) using the RF framework, as
implemented in the Molecular Operating Environment (MOE)..

Method
Using public datasets, we explore three different ACME-RF examples. First, we
demonstrate the rapid identification of a class of pyrethroid acaricide that is not-
toxic to honeybees while still being toxic to the varroa mite using very basic
insecticide-class information of 80 pyrethoids as inputs. Second, we used the
ToxCast NVS_NR_hER dataset (165/2645) to build a RF model that was used to
identify the toxicophore of hER-a that directly map to known crystal structures.
Finally, we explore photostability half-lives (Blum, Kristin M. 2013) and identify
critical photolabile moieties.

The generalized scheme involve in RF modeling workflow consists of identifying
an active / inactive dataset, computing a fingerprint metric of choice, calculating
the mutual information between a bit state K and the active state as a function of
its probability in an active structure set relative to all fingerprint bits in an inactive
structure set. This metric is subsequently normalized and expressed as
contributing positively or negatively to the endpoint being mapped.

Reverse Fingerprint Modeling Workflow

Identifying Bee-Friendlier Chemistries

Conclusion and Future DIrection

Results/Conclusion
Using ACME-RF we identified and visualized moieties of molecules that resulted in
(I) apical endpoints across species (II) chemical-biological interactions and (III)
photodegradation liabilities. The method can be used to identify toxic chemicals and
critical toxicophore fragments or sub-structures essential for molecular discovery
and de-risking. Future efforts will include adapting the ToxPrint fingerprints into the
same framework. [This abstract solely represents the views of the authors and not
the view of the Agency.]
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• Light sensitive moieties are highlighted in green spheres (violet background 
are photo-labile < 24 hours half-life in filtered river water (Blum K, 2013)

• Photostable moieties are highlighted in magenta.
• Decision tree classifier indicates key groups (see below)
• Testing this approach on methylene blue provides well known liabilities

PHOTO

Crystal structure of hER alpha (PDB 6CBZ) With 
pharmacophore elucidated using autoPH4 

Estradiol binding site, 2D representation from PDB 6CBZ

Finding the Estrogen Receptor Pharmacophore

Anticipating Photolabile Moieties

Relative Selectivity of Acaricides in Database
▪ Goal: 

– Identify compounds most selective for the varroa mite (which feeds 
on the honeybee) but be a poor insecticide – not kill the bee.

– Use MACCS RF model to compute all molecule scores (Sm) and 
atomic scores for all 14 acaricides.

Result
 Compounds with highest 

SM are tau-fluvalinate and 
fluvalinate (in green box)
 High SM scoring compounds 

have few red spheres
 Fluvalinate is compound 

used by beekeepers to 
control mites 

Molecule:
Score 
(Sm):

Fluvalinate 5.9
tau-fluvalinate 5.9
Flucythrinate 5.6
Brofluthrinate 5.6
Fenvalerate 5.0
Acrinathrin 4.4
Cyhalothrin 4.3
Flumethrin 3.8
α-cypermethrin 3.6
Cypermethrin 3.6
Fenpropathrin 3.0
Halfenprox 1.9
Permethrin 0.8
bifenthrin -0.5

Acaricide vs Insecticide

▪ Arachnid Selective Pesticide 
– Identify features for arachnid selectivity (kill mites not bees) 

• Set  Activity as ‘acaricide> 0’  14 active, 66 inactive MACCS fingerprint

▪ Notes: Acaricide
– Cyano group important
– Corresponds to TypeII pyrethroid – acaricides (ticks and mites)

acaricide

non-acaricide
Threshold

▪ Arachnid Selective Pesticide 
– Apply FCFP and 2D_PCH fingerprints to same problem
– FPs highlight common things, but highlighting differences also appear

▪ FCFP6
– Heavily highlights Ph-O-Ph 

moiety
– Highlights –CN slightly
– Down scores cyclopropyl 

▪ 2D_PCH
– Heavily highlights 

–CN and C=O moieties
– Slightly down scores alkene 

group 

Acaricide vs Insecticide
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Atomic contribution maps of activity (green = +ve, magenta = -ve) calculated based on training set of 2128 
chemistries (126 actives), an 80% subset of the full NVS_NR_hER dataset. (A) estradiol showing the classic motif 
(S = 4.9) (B) Genistein showing similar activity motif (S = 3.9), and then (C ) Tamoxifen (S=1.4) versus its active 
metabolite (D) endoxifen (S= 3.0). Test set of 503 chemistries (33 actives) provided a total of 21 chemistries with S 
> 2.04 of which 13 were active (nearly a 10 X enrichment from 6.5% active to 62% active). The model score can 
differentiate active from inactive with a misclassification rate of 5% (i.e. 95% accuracy).

The generalized workflow consists of a training database, a reverse fingprinting algorithm, a panel to control 
fingperint types and comparison metrics (average versus maximum similarity) and a scored dataset along with the 
atomic contributyion map for exploration (ACME) and riverse fingerprint contribution.
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BINARY CLASSIFICATION TREE:
Misclassification rate = 0.117

ROOT
MACCS(146) <= 0.5

MACCS(-85) <= 1.5
<0> (0.064) MACCS(-36) == 0
<1> ( 0.25) MACCS(-36) <> 0

MACCS(-85) > 1.5
MACCS(154) <= 0.5

<1> ( 0) MACCS(-72) <= 1
<0> ( 0) MACCS(-72) > 1

<0> ( 0.2) MACCS(154) > 0.5
MACCS(146) > 0.5

MACCS(125) == 0
<1> (0.286) MACCS(117) <= 0.5
<0> ( 0) MACCS(117) > 0.5

<1> (0.179) MACCS(125) <> 0

LEGEND

MACCS(146) Key(164)-2 if key(164)>2; else 0
MACCS(-36) #S atoms in rings
MACCS(-72) #O separated by 3 bonds
MACCS(-85) #N bonded to >= 3 C
MACCS(117) #N 2 bonds from an O
MACCS(125) Is # AROMATIC RING > 1?
MACCS(146) Key(164)-2 if key(164)>2; else 0
MACCS(154) #O in C=O
MACCS(164) #oxygens
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