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ORD Facility in
Research Triangle Park, 

NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
• 543 peer-reviewed journal articles in 2019

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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US EPA’s ExpoCast Project: 
New Approach Methodologies for Exposure Forecasting

“Obama's FY10 Budget Includes Increased Toxicology”:

“Investment in 21st century exposure science is now required to 
fully realize the potential of the NRC vision for toxicity testing.” 

Cohen Hubal (2009)

Wambaugh et al., (2019)

Since 2010:
• 45 peer-reviewed publications
• 5 STAR grants awarded
• 3 Federal research contracts 

(SWRI and Battelle)
 Funding allows for 

complementary exposure 
predictions from ExpoCast, which 
is slated to be launched in FY10

 Predict the impact of chemicals 
on the human body using data 
from ToxCast

Thomas et al. (2019)

High 
Throughput 

Exposure Rate 
Predictions

mg/kg BW/day

High 
Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Models MeasurementsMachine 
Learning

ExpoCast is
Applied

StatisticsDatabases

Consumer Ambient Occupational Ecological



4 of 50 Office of Research and Development

Calculating Chemical Risk

High throughput risk prioritization based upon in vitro screening requires comparison to exposure             
(for example, NRC, 1983)
 Information must be relevant to the scenario, for example, consumer, ambient, or occupational exposure. 
Data obtained in vitro must be placed in an in vivo context:  in vitro-in vivo extrapolation (IVIVE) 
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Most Chemicals lack Toxicokinetic Data
 Toxicokinetics (TK) describes adsorption, distribution, metabolism, and excretion 

(ADME) by the body
 Most non-pharmaceutical chemicals – for example, flame retardants, plasticizers, 

pesticides, solvents – do not have human in vivo TK data. 
 Non-pesticidal chemicals are unlikely to have any in vivo TK data, even from animals
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HTTK:  A NAM for Exposure

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, 
et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, 
Wetmore et al., 2015)

 A secondary goal is to provide open source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation (IVIVE)

 HTTK allows in vitro-in vivo extrapolation (IVIVE) 
– the use of in vitro experimental data to predict 
phenomena in vivo. 
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 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects
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 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 Effect of molecules/chemicals at biological target in vivo
 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects

HTTK only covers toxicokinetic extrapolation
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Fit for Purpose IVIVE

 Make the complexity of the model and 
the number of physiological processes 
appropriate to decision context

 Bessems et al. (2014): We need “a 
first, relatively quick (‘Tier 1’), 
estimate” of concentration vs. time in 
blood, plasma, or cell

 They suggested that we neglect active 
metabolism – thanks to in vitro 
measurements we can now do better

 We still neglect transport and other 
protein-specific phenomena

Bessems et al. (2014)
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𝐀𝐀𝐀𝐀𝐀𝐀 = 𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 × [𝑿𝑿]

 We make various assumptions that allow simple conversion of an in vitro 
concentration [𝑿𝑿] (µM) into an administered equivalent dose (AED) with units of 
mg/kg body weight/day:

 AED is the external dose rate that would be needed to cause a given steady-state 
plasma concentration

 FIVIVE is a scaling factor that varies by chemical

IVIVE by Scaling Factor
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IVIVE by Scaling Factor

 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration as the result of a 1 mg/kg/day exposure

 The “95” refers to the upper 95th percentile – due to human variability and 
measurement uncertainty there are a range of possible Css values

 All of this assumes that the individuals have enough time to come to “steady-state” 
with respect to their daily exposures

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

IVIVE Allows Chemical Prioritization
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
biomarkers 
(Wambaugh 
et al., 2014)
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U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

IVIVE Allows Chemical Prioritization



22 of 50 Office of Research and Development Chemicals Monitored by CDC NHANES

10

10-3

10-7

Ad
m

in
is

te
re

d 
Eq

ui
va

le
nt

 D
os

e 
or

 
Pr

ed
ic

te
d 

Ex
po

su
re

 (m
g/

kg
 B

W
/d

ay
)

Ring et al. (2017)

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
biomarkers 
(Wambaugh 
et al., 2014)

IVIVE Allows Chemical Prioritization
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U.S. Centers for 
Disease Control 
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National Health 
and Nutrition 
Examination 
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Higher priority chemicals
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HTTK on the CompTox 
Chemicals Dashboard

 The CompTox Chemicals Dashboard provides Css,95 values for >1000 chemicals

https://comptox.epa.gov/dashboard/

 We use EPA’s R package “httk” to provide 
IVIVE predictions

 The value reported is calculated assuming a 
1 mg/kg/day dose rate

 We give the upper 95th percentile of the 
calculated values based on a Monte Carlo 
simulation of human variability and 
uncertainty

https://comptox.epa.gov/dashboard/
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Generic PBTK Models

The idea of generic PBTK has been out there for a while…
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Why Build Another Generic PBTK Tool?

SimCYP ADMET Predictor / GastroPlus PK-Sim IndusChemFate httk
Maker SimCYP Consortium / 

Certara Simulations Plus Open Systems 
Pharmacology Cefic LRI US EPA

Reference Jamei et al. (2009) Lukacova et al., (2009) Eissing et al., (2011) Jongeneelen et al., (2013) Pearce et al. (2017a)

Availability License, but inexpensive for research License, but inexpensive for research
Free:

http://www.open-systems-
pharmacology.org/

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No GitHub No CRAN and GitHub
Default PBPK Structure Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No Yes

Batch Mode Yes Yes Yes No Yes
Graphical User 

Interface Yes Yes Yes Excel No*
Built-in Chemical-

Specific Library Many Clinical Drugs No Many pharmaceutical-
specific models available

15 Environmental Compounds 980 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Yes No Yes
Export Function No No Matlab and R No SBML and Jarnac

R Integration No No Yes (2017) No Yes
Easy Reverse 

Dosimetry Yes Yes Yes No Yes

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models
Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard
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Obstacles to Regulatory Acceptance

“…the default state of new and modernized Government information 
resources shall be open and machine readable.”

“Although publication of a PBPK model in a peer-
reviewed journal is a mark of good science, subsequent 

evaluation of published models and the supporting 
computer code is necessary for their consideration for 

use in [Human Health Risk Assessments]”
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Verifying 
PBTK Models

Process for the Evaluation of PBPK Models
1. Assessment of Model Purpose
2. Assessment of Model Structure and 

Biological Characterizations
3. Assessment of Mathematical Descriptions
4. Assessment of Computer Implementation
5. Parameter Analysis and Assessment of 

Model Fitness
6. Assessment of any Specialized Analyses

McLanahan et al. (2012)

Clark et al. (2004)
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data
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 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
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Building Confidence in TK Models
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Building Confidence in TK Models
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In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

35Sayre et al. (2020)

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
https://github.com/USEPA/CompTox-PK-CvTdb
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Modules within R Package “httk”

Feature Description Reference

Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 
2013, 2015), plus 
others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals Sipes et al. (2017)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020)

Tissue partition coefficient 
predictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)
In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. 
(2019)
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HTTK Limitations:
“Domain of Applicability” 

 Oral absorption
 100% assumed, but may be very different
 In silico models not necessarily appropriate for environmental chemicals
 Honda et al. (in preparation) developing QSAR using new in vitro data for ToxCast Chemicals

 Hepatic Clearance (CLint)
 Not isozyme-specific (Isozyme-specific metabolism assays not HT)
 Ten donor pool in suspension for 2-4 h misses variability and low turnover compounds
 Isozyme abundances and activity: varies with age, ethnicity (at least) (Yasuda et al. 2008, Howgate et al. 2006, Johnson et al. 

2006)
 Parent chemical depletion only
 In silico predictions of isozyme-specific metabolism? Not easy!

 Though ADMET Predictor can do this for some isozymes, training data is mostly for pharmaceuticals
 Plasma binding assay (Fup)

 Plasma protein concentration variability (Johnson et al. 2006, Israili et al. 2001)
 Albumin or AAG binding? (Routledge 1986)

 Analytical chemistry
 Must be able to develop method for each compound
 Working to develop QSARs for other compounds



39 of 50 Office of Research and Development

Conclusions

 HTTK allows dosimetric adjustment of 
high-throughput screening (HTS) data 
 Thousands of chemicals 
 Open source, free, and evaluated software

 Generic PBTK models allow for 
verification of model implementation

 Comparing model predictions for 
chemicals with in vivo data allows 
estimation of model bias and uncertainty 

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

 Establishes the confidence in predictions for chemicals without in vivo data
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Predictions
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