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Dose with 
potentially adverse 

effect

Potential 
exposure

Lower Medium Higher

Distribution of doses: 
represents uncertainty 
& variability

Distribution of potential 
exposures: represents 
uncertainty & variability

Risk is a function of both hazard and exposure
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High-throughput chemical prioritization: 
rapidly prioritize large numbers of chemicals that may 
not have much data

Dose with 
potentially adverse 

effect

Potential 
exposure

Lower Medium Higher Priority

Chemicals may not have 
in vivo tox studies –
estimate using in vitro HT 
screening assays (e.g. 
ToxCast/Tox21) [Schmidt 
2009; Dix et al. 2007; Kavlock et 
al. 2018]
Chemicals may not have 
detailed exposure data –
estimate using HT 
exposure models 
[Wambaugh et al. 2013; 
Wambaugh et al. 2014; Ring et al. 
2019]

in vitro-in vivo 
extrapolation 

(IVIVE)

[NRC 2007; Bell et al. 2018; Bessems et al. 2014]
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IVIVE is performed using toxicokinetic (TK) modeling: 
relate external dose and body concentration by describing 
“what the body does to the chemical”

External dose

Body 
concentration 

(assumed same 
as in vitro

bioactive conc.)

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion
[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2015]
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For high-throughput chemical prioritization: 
High-throughput TK (HTTK)

Generic physiologically-based TK (PBTK) 
model: can be parameterized for many 
chemicals with minimal chemical-specific 
data requirements

.
.

.
.

..
.

.
. .1 2

In vitro measurements of the minimal chemical-
specific TK model parameters (hepatic clearance 
rate & plasma protein binding)+

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017a)

Ring et al. (2017)
Linakis et al. (2020)

Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Rapid Equilibrium Dialysis (RED) 
Waters et al. (2008)
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HTTK models & data freely available in R package “httk”

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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For prioritization: focus on steady-state plasma concentration 
(Css) & simple TK models where Css is linear with dose
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Prediction (line)

Slope = Css for 1 mg/kg/day

Kidney 
conc. 
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Liver 
conc. 
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Plasma 
conc. 
(uM)

Days
Wetmore et al. (2012)
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Linear relation makes it easy to do IVIVE: convert concentration 
to equivalent dose — as long as you know the slope of the line!
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Daily Dose (mg/kg/day)0

Slope = Css for 1 mg/kg/day
Concentration 
of interest: 
e.g. in vitro
bioactive 
concentration

Equivalent dose

in httk R package: 
calc_analytic_css()

Wetmore et al. (2012)
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Q: What determines the slope of the line? 
A: The TK model parameters.

Chemical-specific parameters
Intrinsic hepatic clearance rate Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity
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TK model parameters represent biology — so they 
have population variability

Chemical-specific parameters
Intrinsic hepatic clearance rate Represent chemical-body interactions —

vary with individual genetics, environmental 
factors, age, etc.

Fraction unbound to plasma protein

Tissue:blood partition coefficients (for 
compartmental models)
Physiological parameters
Tissue masses (including body weight)

Represent physiology — vary with individual 
genetics, environmental factors, age, etc.

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity
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Dose with 
potentially 

adverse effect

Potential 
exposure

That means the slope of the line varies across the 
population — so a single in vitro concentration 
corresponds to a distribution of external doses.

St
ea

dy
-s

ta
te

 C
on

ce
nt

ra
tio

n 
(µ

M
)

Dose Rate (mg/kg/day)0

More Sensitive
(conc = lower dose)

Less Sensitive
(conc = higher dose)

Median Sensitivity
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Monte Carlo approach to population TK in IVIVE

Cs
s(

µM
)

Dose Rate (mg/kg/day)

Dose with 
potentially 

adverse effect

Potential 
exposure

Sample from population 
distribution of TK parameters

Calculate corresponding 
distribution of slopes for 
dose-Css relation & 
equivalent doses for in vitro
bioactive concentration of 
interest

Compare equivalent dose 
distribution to potential 
exposure distribution to 
calculate potential risk

VliverGFR

Fup
Clint

(+ other params)
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HTTK-Pop: correlated Monte Carlo approach to population TK

Predict physiological TK 
quantities (as used by 
generic TK model) for 
each individual:

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES-measured 
quantities for actual 
individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine
Hematocrit

Regression equations from 
literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)

Ring et al. (2017)

Based on physiology data measured as part of the US CDC National Health and Nutrition Examination Survey 
(NHANES) — publicly available on the web at https://www.cdc.gov/nchs/nhanes/index.htm

https://www.cdc.gov/nchs/nhanes/index.htm
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Monte Carlo approach to propagating both uncertainty and 
variability in chemical-specific TK parameters

Quantify uncertainty for in vitro measured value
Describe as distribution for each chemical

Assume population variability 
around in vitro measured value 

Two-stage Monte Carlo to get sampled 
values for each simulated individual that 
include both uncertainty & variability

Wambaugh et al. 2019

Ring et al. 2017

Wambaugh et al. 2019

Note: This example is just a hypothetical 
illustration, not real data 14
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HTTK-Pop lets us estimate equivalent dose for the 
most-sensitive portion of the population
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Dose Rate (mg/kg/day)0

Median
Css,50 for 1 mg/kg/day

More Sensitive
Slope = Css,95 for 1 mg/kg/day

Less Sensitive
Css,5 for 1 mg/kg/day

Monte Carlo 
Uncertainty 

and Variability

The most-sensitive 5% of the population (the steeper, 95th percentile slope) has the lowest equivalent dose 
(see purple lines in this graphic) —
in other words, this is the level of exposure where we predict that the most sensitive 5% of the population 
might potentially see some effects.



16

Then, we compare the low-end equivalent dose to 
the high-end potential exposure to calculate 
Bioactivity-Exposure Ratio (BER)

Dose with 
potentially adverse 

effect

Potential 
exposure

BER >1

BER ~ 1

BER < 1
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Example: BER-based prioritization of 84 chemicals, 
using IVIVE of ToxCast AC50s. 

Population distributions 
of equivalent dose for 
10th percentile ToxCast 
AC50 (bottom point = 
most-sensitive 5%)

Population median 
aggregate exposures 
with 95% credible 
interval, inferred from 
NHANES urinary 
biomonitoring data

Updated version of analysis from 
Ring et al. (2017)

Bioactivity-exposure 
ratio (BER)
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How might this prioritization change for 
potentially-sensitive subpopulations? Equivalent dose might 

shift if subpopulation TK 
distribution is different 
from the overall US 
population

Exposures might shift if 
subpopulation-specific 
NHANES-inferred 
exposures were 
different from overall US 
population

Updated version of analysis from 
Ring et al. (2017)

BER might therefore shift —
changing prioritization?
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Evaluating potentially-sensitive subpopulations

• Potential population median exposures were inferred from NHANES urine 
biomonitoring data for 10 subpopulations of interest: ages 6-11; ages 12-19; 
ages 66+; men; women; reproductive-aged women (age 18-45); BMI < 30, 
and BMI > 30 (Wambaugh et al. 2014; Ring et al. 2017)

• Used HTTK-Pop to simulate population TK variability for the same 10 
subpopulations & calculate equivalent doses for ToxCast AC50s. 

• Computed BERs for each chemical and each subpopulation.

• How much did BERs change, relative to the BER for the same chemical in the 
Total US population?
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How different are subpopulation BERs vs. Total population?

Rows: Chemicals 
(listed in same 
order as for Total 
population BER 
rankings)

Sidebar colors 
indicate BER order 
of magnitude in 
Total population

Columns: Potentially-
sensitive 
subpopulations

Heatmap colors: BER 
change vs. Total population 
(order of magnitude) 
Darker blue = BER shifts up 
(lower priority)
Darker red = BER shifts 
down (higher priority)
Max shift = 10x either 
direction

Updated version of 
analysis from 
Ring et al. (2017)
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For these chemicals 
& subpopulations, 
BER shifts aren’t big 
enough to 
substantially change 
chemical 
prioritization.

However, we do see 
some chemical-
specific shifts —
and some broader 
subpopulation-wide 
shifts across 
chemicals —
illustrating the 
potential of 
subpopulation-
specific prioritization.

Updated version of 
analysis from 
Ring et al. (2017)

How different are subpopulation BERs vs. Total population?
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An even-more high-throughput application: BER prioritization 
of 7104 chemicals based on HTTK-Pop IVIVE of ToxCast AC50s 
and HT exposure predictions from SEEM3 model

1083 chemicals with BER < 1
(higher-priority)

6020 chemicals with BER > 1
(lower-priority)

SEEM3 (Systematic Empirical Evaluation of Models, 
v.3): Consensus modeling of median chemical intake 
for the U.S. population based on predictions of 
exposure pathways (Ring et al., 2019). A HT exposure 
model that predicts exposure for ~500,000 chemicals, 
even if they have little or no exposure data.
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Active work is ongoing to update and expand 
HTTK, HTTK-Pop, and exposure models!
• HTTK-Pop is being updated to include the most recent NHANES data 

(2013-2018) (Breen et al., in prep)
• New HT-PBTK models are being developed

• an inhalation TK model (Linakis et al., 2020; Breen et al., in prep) – currently 
available in httk package (though not yet for IVIVE/reverse TK)

• a dermal TK model (Evans et al., in prep) — not yet available in httk package, 
but watch this space

• a gestational/fetal TK model (Kapraun et al., 2018; Kapraun et al., in prep) —
not yet available in httk package, but watch this space

• HT exposure models are being updated
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HTTK-Pop is being updated to include more recent 
NHANES data (2013-2018) (Breen et al., in prep)

Figure courtesy of Dr. Miyuki Breen
See Dr. Breen’s poster (Abstract 2564, 
Poster P302) for more information!

Comparing Css95 from NHANES 2013-2018 to Css95 from NHANES 2007-2012

122 chemicals with NHANES urine 
biomonitoring data & TK data

Css from 1 mg/kg/day dose = slope of 
linear conc. vs. dose relation
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Gas inhalation PBTK model added to httk (Linakis et al., 2020) & 
being linked with HTTK-Pop for population TK (Breen et al., in prep)

1

Figure courtesy of Dr. Miyuki Breen

54 chemicals with NHANES blood 
biomonitoring data & TK data

Css from 1 mg/kg/day dose = slope of 
linear conc. vs. dose relation

Comparing Css95 from NHANES 2013-2018 to Css95 from NHANES 2007-2012
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NHANES population exposure inferences are being 
updated to reflect latest NHANES biomonitoring data 
(Stanfield et al. in prep)

Figure courtesy of Dr. Zachary Stanfield

See Dr. Stanfield’s poster for more info!
Abstract 2649, Poster P115
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Conclusions
• High-throughput toxicokinetics (HTTK) allows IVIVE — extrapolating in vitro

HT screening bioactivity to external doses
• implemented in free, open-source R package “httk”

• Monte Carlo approach to simulating population TK (HTTK-Pop) allows high-
throughput evaluation of population TK variability in IVIVE

• specifically, characterization of population distribution of equivalent doses for a given 
in vitro bioactive concentration

• Combining population TK with population exposure estimates (e.g. via 
ExpoCast or SEEM3) allows rapid chemical prioritization based on 
bioactivity-exposure ratio (BER), a metric of potential risk

• Including population TK variability allows estimates to be protective of 
most-sensitive portion of the population and potentially-sensitive 
subpopulations

• Many updates and additions to httk and HTTK-Pop are in progress!
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