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Scenario: Screening a large number of data-poor
chemicals for potential human health risk

* In vivo toxicity data aren’t available for thousands of chemicals
present in the environment & used in commerce [NRC 2007; Bell et
al. 2018; Bessems et al. 2014]

 Alternative: in vitro high-throughput screening (HTS) assays (e.g.
ToxCast/Tox21) [Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018]

* Chemicals are examined by a battery of in vitro tests for biological activity
across a variety of different endpoints

* In vitro HTS data are available on the EPA CompTox Dashboard



In vitro to in vivo extrapolation (IVIVE)

Translate in vitro bioactive concentration to an equivalent
in vivo dose

AC10
ACB
ACC

ACS50

Response

Bioactivity

’ ‘ i R
Adapted from ToxCast Owners Manual f_
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Concentration, uM 4 Dose, mg/kg/day



IVIVE is performed using toxicokinetics (TK) modeling:
relate external dose to internal body concentration

Body
concentration

External
dose

Toxicokinetics (TK)

e Absorption

e Distribution

 Metabolism
* Excretion



Reverse dosimetry: go from concentration to dose

External
dose

Body
concentration

Toxicokinetics (TK)

Find the administered

Assume: if this i | t
equivalent dose (AED): The u IT this Is equal to

dose that would produce a ) A.bsc?rpti.on the in Vitro.bioactive
body concentration equal to * Distribution co_ncentratlon, then you
the in vitro bioactive * Metabolism might see some effects in
concentration. e Excretion VIVO

Tan et al. 2007; Wetmore et al. 2015



A TK model relates dose and body concentration by describing
how a chemical moves through the body

inhaled Gas Body is represented by “compartments” connected by “flows” — mass
: balance applies
Lung Tissue |Q_, 4.
——| Lung Blood >
For a physiologically-based TK (PBTK) model, compartments represent
Q. | Kidney Tissue o individual organs/tissues (like Iiyer, kidn.ey, gut, lung, blood), and/or
«__*—1 Kidney Blood F—— represent “lumped” groups of tissues (like a catch-all “rest of body”
compartment)
3 Gut Lumen =
= =i % B PBTK model parameters fall into two groups:
3 I_ ; * Physiological parameters: Describe physiological quantities that stay
§ 8 the same regardless of chemical, like organ masses; blood flows to
0, T SsUEM 0| organs; body weight; kidney function
+—+—1_Liver Blood 2 = * Chemical-specific parameters: Describe quantities that change for
different chemicals, like intrinsic hepatic metabolism; plasma protein
Rest of Body binding; blood:tissue partition coefficients (how much of the chemical
) Body Blood | et diffuses into organ tissue vs. staying in the bloodstream)

Linakis et al., 2020 Campbell etal., 2012



Ckidney

Cliver

Cplasma

TK model tracks the amount or concentration of a chemical in
each compartment (vs. time), after single or repeated dosing

.
10.0-
s0-
;D 1 mg/kg/day for 20 days
| EII EI 1I|:| 1I5 EIEI
Days

Example: Benzo(a)pyrene



Ckidney

Cliver

Cplasma

For screening purposes, we are usually interested in long-term,
low-level exposures, so we focus on the steady-state plasma
concentration (Css) after long-term repeated dosing

a0 -

.
10.0 -
s0-
;D 1 mg/kg/day for 20 days
| EII EI 1I|:| 1I5 EIEI
Days

Example: Benzo(a)pyrene



We use relatively simple TK models where Css has a linear
relationship with dose

Dose 0.5 1 15 %
120- S
> 80 - g P d [
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200- O]
© Slope = C for 1 mg/kg/day
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N
0- .
. (Can solve analytically for Css vs. dose;
generally no need to iterate the full time-
T 10z dependent model) R
5 0 :
° s Daily Dose (mg/kg/day)
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Example: Benzo(a)pyrene  Pays 10



Linear relationship makes reverse dosimetry quick & easy: calculate slope,
start with the “target” concentration on the y-axis (in vitro bioactive
concentration)... then read off the equivalent dose on the x-axis

A

Prediction

‘ Slope = C for 1 mg/kg/day

CSS, target n mmm o o myd I EEE S N EEE IS O BN BN S B S

Steady-state Concentration (uM

Css, target
slope

| administered equivalent dose =

»
»

Daily Dose (mg/kg/day)
H Wetmore et al. (2012)



For rapid reverse dosimetry for large numbers of
chemicals: we need high-throughput TK (HTTK)

methods [Wetmore 2015]

* Choose generic PBTK models with minimal chemical-specific
parameters

* How to get chemical-specific parameters rapidly (without having to
measure them in vivo):
* jn vitro methods adapted from pharma [Wetmore et al. 2012, 2015]

* in silico prediction methods based on chemical structure [Pradeep et al. 2020;
Mansouri et al., 2018; Ingle et al., 2018; Sipes et al., 2017; Vilar et al. 2008;

Yin et al. 2014]



Generic PBTK models + in vitro TK data to enable
HTTK & IVIVE: R package “httk™ [pearce et al., 2017)

* Ris an open-source programming language & environment for statistical
computing (freely available at https://cloud.r-project.org/ )

* R has a strong culture of user-created packages — and our group at EPA
decided to create one for HTTK, creatively titled “httk”. It is open-source
and freely available at https://cran.r-project.org/package=httk

* The “httk” package contains (among other things):

 Generic PBTK models

* Tables of chemical-specific TK parameters measured in vitro (for about 1000
chemicals) and predicted in silico (for 8758 chemicals)

* Tables of physiological TK parameters (for multiple species)

* Pre-built functions to let users easily solve TK models & perform reverse dosimetry
for large numbers of chemicals



https://cloud.r-project.org/
https://cran.r-project.org/package=httk

Assessing potential risk for a population:
need to model population variability in TK

So far, we’ve shown IVIVE for an But people aren’t average: we all
“average human”. have different body weights, blood

flow, kidney function, hepatic
metabolism, etc.

Jamei et al. (2009); Wetmore et al. (2014); Ring et
al. (2017)
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Population variability in TK = population variability in
equivalent dose

In other words — some people are more sensitive and may see effects at a lower
dose compared to the “average person”. We don’t want to underestimate their
potential risk!

A

More Sensitive

Median

Less Sensitive

Steady-state Concentration (LM)

o,

Dose Raté’(mg/kg/day)



Monte Carlo approach to simulating population variability in
physiology: HTTK—Pop module within “httk” R package

Correlated Monte Carlo
sampling of physiological
model parameters

nrane

National Health and Nutrition Examination Sul

Predict physiological TK
guantities (as used by
generic TK model) for

Sample NHANES measured
guantities for actual

individuals: each individual:
Sex Tissue masses
Race/ethnicity Regression equations from Tissue blood flows
Age literature (McNally et al., 2014) GFR (kidney function)
Height (+ residual marginal variability) Hepatocellularity
Weight (Similar approach used in SImCYP [Jamei et al. 2009], GastroPlus,
Serum creatinine PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB

[Bosgra et al. 2012], etc.)

NHANES: US CDC National Health and Nutrition Examination Survey 0 Ring et al. (2017)



Monte Carlo approach to propagating both uncertainty and
variability in chemical-specific TK parameters

Quantify uncertainty for in vitro measured value
Describe as distribution for each chemical

0.08- Two-stage Monte Carlo to get sampled

Assume population variability values for each simulated individual that
around in vitro measured value include both uncertainty & variability
0.06- !
0.06 - i
£ | Wambaugh et al. 2019
3 0.04 - :
I BO-
h[l.':'-ﬂ-- i
0.0 - E :
H i _
0.00 - 0.02- : E o
10 20 30 40 :
Im witro measured Clint :
|
Wambaugh et al. 2019 om] : 30-
§

0 10 20 30
Aszumed population variability in Clint
Note: This example is just a hypothetical Ring et al. 2017

illustration, not any particular chemical 17 0 20 40 60
Clint with uncert + var




HTTK-Pop lets us estimate equivalent dose for the

more-sensitive portion of the population

The most-sensitive 5% of the population (the steeper, 95t percentile slope) has the lowest equivalent dose
(see purple lines in this graphic) —

in other words, this is the level of exposure where we predict that a sensitive portion of the population
would potentially see some effects.

Steady-state Concentration (UM)

O

A

More Sensitive

Monte Carlo Slope = C o5 for 1 mg/kg/day
Uncertainty .
and Variability Median
Cy. 50 for 1 mg/kg/day

Less Sensitive
............. =, C 5 for 1 mg/kg/day

Dose Rate (mg/kg/day)
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Example: Using httk to find an equivalent dose for a low-
end ToxCast AC50 for benzo(a)pyrene

@ CompTox Chemicals Dashboard X +

< C

wEPA

@& comptox.epa.gov/dashboard/d

United States

Environmental Protection Home Advanced Search  Batch Search  Lists v Predictions  Downloads —
Agency
Ll
I 3\ L]
~.. |Benzo(a)pyrene First: Get AC50 value. ToxCast AC50s can be found on
+»~150-32-8 | DTXSID2020139 the CompTox Chemicals Dashboard.
Searched by DSSTox Substance Id.
DETAILS Chemical Activity Summary €
EXECUTIVE SUMMARY O TOXCAST DATA O ASSAY DETAILS
PROPERTIES AC50 (uM): 0.26
“a Scaled top: 1.58 @
ENV. FATE/TRANSPORT Show Al - 51 :g Assay Endpoint Name: TOX21_55H_3T3_GLI3_Antagonist
channel 2 z '8 Gene Symbol:
55 i 'S Organism: mouse
HAZARD nuclear receptor S :g Tissue: embryo
channel 1 50 - 12 Assay Format Type: cell-based
b SAFETY background measurement :‘g‘ Biological Process Target: regulation of transcription factor
45 .
cell morphology X = activity
» ADME _ 0 :g Detection Technology: Luciferase-coupled ATP quantitation
dna binding |5 Analysis Direction: positive
» EXPOSURE 354 : Intended Target Family: dna binding
: Description: Data from the assay component
! TOX21_55H_3T3_GLI3_Antagonist was analyzed into 1 assay
¥ BIOACTIVITY 304 ' . . : :
1 endpoint. This assay endpoint, TOX21_55H_3T3_GLI3_Antagonist,
25 - d f | was analyzed in the positive fitting direction relative to DMSO0 as
TOXCAST: SUMMARY | Lower en ToxcaSt AC50 or : the negative control and baseline of activity. Using a type of
20 h- h . I — : inducible reporter, loss-of-signal activity can be used to
EDSP21 t |S C em |Ca - 0.26 u M 1 understand changes in the reporter gene as they relate to the
15 < : gene GLI3. Furthermore, this assay endpoint can be referred to as
TOXCAST/TOX21 : a primary readout, because this assay has produced multiple
10 < : assay endpoints where this one serves a reporter gene function.
1
PUBCHEM 1
54 1
y . AC50 (uM) |
, ] L o] ubij
TOXCAST MODELS 0 T T T TTTTIT T T T TTITT T T TTTTTIT T T TTTTTIT T T T TTITIT T T TTTTITI0 T T T TTTTIT LI IIII[III
0.00001 0.0001 0.0 0.01 0.1 1 10 100 1001
SIMILAR COMPOUNDS
-
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To calculate population equivalent dose, use httk function
calc mc oral equiv ()

> library (httk)
> set.seed (42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:
calc mc oral equiv(conc=0.26,
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
output.units = "mgpkgpday"“)
uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%
0.003821 0.019090 0.067080

20



Let’s break down this function call a little bit

> |library (httk) First, load the httk package. (You only need to do this once per R session.)
> set.seed(42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

calc mc oral equiv(conc=0.26,
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
output.units = "mgpkgpday"“)

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk) Set a seed for R’s random number generator. This makes the Monte Carlo sampling

> |set.seed(42) reproducible (otherwise, we’d get a slightly different answer every time).
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

calc mc oral equiv(conc=0.26,
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
output.units = "mgpkgpday"“)

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080

22



Let’s break down this function call a little bit

> library (httk)
> set.seed (42) Any line of R code starting with “#” is a comment (ignored & not executed by R)

> [#Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

calc mc oral equiv(conc=0.26,  callthe function calc_mc_oral_equiv()
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),

input.units = "uM",

output.units = "mgpkgpday"“)
uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%
0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> set.seed(42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

(Calc_mc_oral_equiv(conc=0.26, Call the function calc_mc_oral_equiv() to actually do the Monte Carlo )
chem.name="benzo (a) pyrene", analysis
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
\_ output.units = "mgpkgpday"“) )
uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%

0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> set.seed(42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

6alc_mc_oral_equiv[(conc=O .26,| Supply target Css (here, low-end ToxCast AC50 for benzo(a)pyrene) )
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",

\_ output.units = "mgpkgpday"“) )

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%
0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> gset.seed (42)

> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

(Calc mc oral equiv(conc=0.26, Supply chemical name (or use chem.cas )
chem.name="benzo (a) pyrene", = ... to supply CASRN instead). This allows

which.quantile = c(0.95, 0.5, httktolookup itsbuilt-inin vitro TK data for
this chemical.

input.units = "uM",
\_ output.units = "mgpkgpday"“) )
uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%

0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> gset.seed (42)

> #Steady-state equivalent dose (mg/kg BW/day)

to produce 0.26 uM in plasma:

(Calc mc oral equiv(conc=0.26,

chem.name="benzo (a)pyrene",

which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
\_ output.units = "mgpkgpday"“)

Specify which quantiles of Css
slope to calculate equivalent
doses for (95t percentile slope
= lower-end equivalent dose)

J

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> gset.seed (42)

> #Steady-state equivalent dose (mg/kg BW/day)

to produce 0.26 uM in plasma:

(Calc mc oral equiv(conc=0.26,

chem.name="benzo (a)pyrene",

Optional: explicitly specify input
units (for conc) and output

which.quantile = ¢ (0.95, 0.5, 0.095), units (for equivalent dose). If
input.units = "uM", not specified, these are the
\_ output.units = "mgpkgpday"“) defaults.

J

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080
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Let’s break down this function call a little bit

> library (httk)
> set.seed (42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:
calc mc oral equiv(conc=0.26,
chem.name="benzo (a)pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",

output.units = "mgpkgpday"“)

(UM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080

\_

The function returns the results (plus some messages & warnings, which I've trimmed out to save space here).
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Compare these results to HT exposure predictions available on
EPA CompTox Chemicals Dashboard

. ) — O X
Monte Carlo equivalent dose from 1 @ Complox ChemicalsDashooard X |+
ht t k s *Cca l C mc ora l e qu iv ( ) . | < C & comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID2020139#exposure-predictions Q © % » e :

uM concentration converted to

mgpkgpday dose for 0.95 0.5 | O Benzo(a)pyrene
0.05 quantile. {,”|50-32-8 | DTXSID2020139

Searched by DSSTox Substance Id.

DETAILS o Exposure Predictions (mg/kg-bw/day)
95% 50% 5% ;
EXECUTIVE SUMMARY & Download =
0.003821 0.019090 0.067080 , PROPERTIES
{ Demographic ¥ Median ¥ 95th Percentile g
ENV. FATE/TRANSPORT
Ages 6-11 1.43e-6 7.69e-5
HAZARD Ages 12-19 1.35e-6 6.44e-5
> SAFETY Ages 20-65 1.020-6 7.63e-5
» ADME Ages 65+ 7.51e-7 5.12e-5
BMI > 30 9.44e-7 6.760-5
v EXPOSURE
BMI < 30 1.16e-6 7.71e-5
.. PRODUCT & USE CATEGORIES _ e e
HT exposure predictions from Dashboard: |
CHEMICAL WEIGHT FRACTION Females 1.28e-6 1.260-4
m Ed lan = 1 . 16e_6; CHEMICAL FUNCTIONAL USE Liales 2t Bees
. ! Total 1.16e-6 132e-2
upper bound on median = 1.32e-2 . - .
10 records
mg/kg/day
=
PRODUCTION VOLUME

31 Ring et al. 2019, Wambaugh et al. 2014



Graphical comparison of HTTK-predicted equivalent dose for

ToxCast AC50, vs. HT exposure prediction

1e-01-

mglkgiday

1e-05-

Benzo(a)pyrene
32
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Example: using HTTK for chemical prioritization

Equivalent doses for most-sensitive 5% of population for ToxCast AC50s

NG
Qjﬁﬂ;%éﬁﬁ - ;E%ﬁ %@? T Gl e ég : é ﬂfﬁﬁ*

=
o

[k

[}

‘Compare to popula’uon median exposure predictions
based on NHANES biomonitoring

b4

TH
5

Predicted Exposure (mg/kg BW/day)

Administered Equivalent Dose or

Chemicals Monitored by CDC NHANES 33 Ring et al. (2017)



Other things you can do with “httk”: get population equivalent
doses for a specific demographic (e.g. adults ages 65+)

> library (httk)
> set.seed (42)

> calc mc oral equiv(conc=0.20,

which.quantile = 0.95,
input.units = "uM",
output.units = "mgpkgpday",

(

#lowest ToxCast AC50 in uM
chem.name="benzo (a) pyrene",

httkpop.generate.arg.list
resampling",

agelim years

)

c(65,80)

\ )

list (method = "direct

a named list of arguments that control the

underlying population-simulation function,
httkpop generate ()

uM concentration
95%
0.001781

34

converted to mgpkgpday dose for 0.95 quantile.




Even more things you can do with httk

* Forward, time-dependent TK modeling with function solve model ()

 Summary TK statistics (e.g. mean concentration, peak concentration, AUC) using
function calc stats ()

e Add your own TK data for new chemicals, with function
add chemtable ()

* Inter-species extrapolation of in vivo tox data from animal studies, using
built-in TK data for various species (e.g. rat, mouse, dog, monkey, human) +
combination of forward and reverse dosimetry

* Use HTTK-Pop module separately to generate a sample of population
physiology, body measures, demographics for use in other modeling
applications (e.g. population exposure models [East et al., 2020])



Summary

We would like to know more about the risk posed by
thousands of chemicals in the environment — which ones

should we start with? Potential hazard
. . . ] from in vitro
We can use in vitro high-throughput screening (HTS)  converted to dose

assays to fill data gaps when in vivo toxicology data are by HTTK
not available

mg/kg BW/day

To extrapolate in vitro HTS data to equivalent in vivo

Potential
doses, we use high-throughput toxicokinetics (HTTK) --  exposure Rate
generic model that can be parameterized with in vitro
data
HTTK methods are available through the free, open lower  pedium  Higher

Risk : Risk

source R package “httk” Risk
Simulating population variability and measurement The views expressed in this presentation
uncertainty for TK parameters allows us to examine are those of the author and do not

. . . . . necessarily reflect the views or policies
potential risk for potentially sensitive sub-populations of the U.S. EPA
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Appendix:
Additional information



Modules within R Package “httk”

Feature Description Reference
Wetmore et al. (2012,

Chemical Specific In Vitro Metal?ollsm and protein blndlr?g for ~1000 2013, 2015), plus
Measurements chemicals in human and ~200 in rat

others
Chen.nc'aI—Speuflc In Silico Metabollsm.and protein binding for ~8000 Sipes et al. (2017)
Predictions Tox21 chemicals

One compartment, three compartment,
Generic toxicokinetic models physiologically-based oral, intravenous, and
inhalation (PBTK)

Pearce et al. (2017a),
Linakis et al. (2020)

Tissue partition coefficient

oredictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)

In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)
Model parameters can be described by Wambaugh et al.

Uncertainty Propagation distributions reflecting uncertainty (2019)




Setup: Getting R

The Comprehensive R Archive Network

= Ris freely available from the Download and Install R
CO m p re h en S|Ve R Arch |Ve N etwo rk Precompiled binary distributions of the base svstem and contributed packages, Windows and Mac users most likely want one of

these versions of -
(CRAN): o
. s Download R for Linux
https://cloud.r-project.org/ » Download R for (Mac) OS X
. . . ¢ Download B for Windows
Available for Windows, Mac, Linux

E. is part of many Linux distributions, vou should check with vour Linux package management system in addition to the link
above.

Source Code for all Platforms

= | like to use the RStudio
. d d | Windows and Mac vsers most likely want to download the precompiled binaries listed in the upper box, not the source code. The
| nteg rate evelo p ment sources have to be compiled before vou can use them. If vou do not know what this means, vou probably do not want to do it!

environment (IDE) , which is also
freely available:
https://rstudio.com/
(but use of RStudio is optional — R
comes with a basic GUI, or it can be
used completely from the system

The latest release (2020-02-29, Holding the Windsock) B-3.6.3 tar gz, read what's new in the latest version.

Sources of B alpha and beta releases (daily snapshots, created only in time periods hefore a planned release).

Daily snapshots of current patched and development versions are available here. Please read about new features and bug
fixes before filing corresponding feature requests or bug reports.

Source code of older versions of K 15 available hers.

Contributed extension packages

Command IInE) Questions About R

s If vou have questions about R like how to download and install the software, or what the license terms are, please read our
answers to frequently asked guestions before vou send an email.
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https://rstudio.com/
https://cloud.r-project.org/

Setup: Installing and loading “httk” package at

the R command line
> install.packages ("httk") < . Install HTTK from the

Installing package into ‘c:/Users/jwambaug/Rpackages’ Command ||ne
(as ‘lib’ is unspecified) . . .
——— Please select a CRAN mirror for use in this session --- (GUIS Ilke RStUdIO also prOVIde

trying URL 'https://cloud.r- menus for this)
project.org/bin/windows/contrib/3.6/httk 2.0.1.zip"

Content type 'application/zip' length 10127063 bytes (9.7 MB)
downloaded 9.7 MB

package ‘httk’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\jwambaug\AppData\Local\Temp\Rtmp4STebz\downloaded packages

> library (httk) < |
> packageVersion("httk")

[1] '2.0.1"

Check what version you are using

Load the HTTK
package: data, models,
and functions




Q: How do | know which arguments to use
forhttkpop.generate.arg.list |wmem
to specify my population demographics? st

Generate a virtual population
Usage

httkpop_generate(

A: Look at the help for i

gendernum = NULL,

agelim_years = NULL,
agelim_months = NULL,

h t t k O e n e r a t e ( ) weight_category = c("Underweight™, "Normal", "Overweight", "Obese"),
gfr_category = c("Normal", "Kidney Disease", "Kidney Failure"),

— reths = c("Mexican American", "Other Hispanic", "Non-Hispanic White",
"Non-Hispanic Black", "Other")
)

Arguments
M method
e C O I I l I I l a n I n e y p e The population-generation method to use. Either "virtual individuals" or "direct resampling." Short names may be used: "d" or "dr" for "direct
’ resampling", and "v" or "vi" for "virtual individuals".

nsamp

> h e l p ( h t t kp O p g e n e r a t e ) The desired number of individuals in the virtual population. nsamp need not be provided if gendernum is provided.

gendernum
Optional: A named list giving the numbers of male and female individuals to include in the population, e.g. list(Male=100, Female=100). Default is
NULL, meaning both males and females are included, in their proportions in the NHANES data. If both nsamp and gendernum are provided, they must

You will see a detailed help page pop

agelim_years

H : Y Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is ¢(0,79). If only a
u p W I t ex p a n a t I O n S O r e a C single value is provided, both minimum and maximum ages will be set to that value; e.g. agelim_years=3 is equivalent to agelim_years=c(3,3). If

’ agelim_years is provided and agelim_months is not, agelim_years will override the default value of agelim_months.
L]
function argument, and (usually)
] Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is c¢(0, 959),
equivalent to the default agelim_years. If only a single value is provided. both minimum and maximum ages will be set to that value: e.g.
S O m e exa m I e S Of h O W to u S e t h e agelim_months=36 is equivalent to agelim_months=c(36,36). If agelim_months is provided and agelim_years is not, agelim_months will override the
p default values of agelim_years.

: weight_category
u n C I O n Optional: The weight categories to include in the population. Default is c('Underweight', 'Normal', 'Overweight', 'Obese'). User-supplied vector
. g

must contain one or more of these strings.

gfr_category

YO u Ca n get h e I p O n a ny fu n Cti O n t h i S The kidney function categories to include in the population. Default is ¢('Normal®, 'Kidney Disease', 'Kidney Failure') to include all kidney
function levels.

reths
Wa y. Optional: a character vector giving the races/ethnicities to include in the population. Default is c('Mexican American', 'Other Hispanic', 'Non-
Hispanic White', 'Non-Hispanic Black','Other'), to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector
must contain one or more of these strings.

Value

A dat&taﬁe where each row represents an individual, and each column represents a demographic, anthropometric, or physiological parameter.




You can see the index of help files for all
the functions in the httk package by
typing at the R command line

> help (package="httk")

[ web2.elsevierproofcentr: X

C O 0 127.0.012;3:* libra

&

& Confluence

[ web2.elsevierproofcent:: X

! Apps & DSStox

e Package NEWS.

httk-package
httkpop-package

add_chemtable
age_dist_smooth
age_draw_smooth

blood_mass_correct
blood_weight
bmiage
body_surface_area
bone_mass_age

brain_mass

calc_analvtic_css
calc_css
calc_elimination_rate
calc_hepatic_clearance
calc_iomzation
calc_mc_css

calc_mc $511 equiv

calc_rblood2plasma

e DESCRIPTION file.
o User guides. package vignettes and other documentation

available_rblood2plasma

R R:High-Throughput Tox: X
ary/httk/html/00Index.htm

JESEE A EHP E Battelle Box

High-Throughput Toxicokinetics R

DI0)

Documentation for package ‘httk’ version 1.6

Help Pages

High-Throughput Toxicokinetics httk: High-Throughput Toxicokinetics
httkpop: Virtual population generator for HTTK.

se Ross

Add a table of chemical information for use 1n making httk predictions.
Smoothed age distributions by race and gender.

Draws ages from a smoothed distribution for a given gender/race combination
Find the best available ratio of the blood to plasma concentration constant.

Find average blood masses by age.
Predict blood mass.

CDC BMI-for-age charts

Predict body surface area.

Predict bone mass.

Predict brain mass.

re Qe

Calculate the analytic steady state concentration.

Find the steady state concentration and the day 1t 1s reached.
Calculate the elimination rate for a one compartment model.
Calculate the hepatic clearance.

Calculate the 1onization.

Find the monte carlo steady state concentration.

Calculate Monte Carlo Oral Equivalent Dose

Calculate the constant ratio of the blood concentration to the plasma concentration.




How do | find out which chemicals have sufficient built-in
chemical-specific HTTK data to run the model?

> library (httk)

> get_cheminfo ()

[1] "2971-36-0"
[6] "71751-41-2"
[11] "15972-60-8"
[16] "1912-24-9"

"94-775-7"
"30560-19-1"
"116-06-3"
"86-50-0"

"94-82-6"
"135410-20-7"
"834-12-8"
"131860-33-8"

List all CAS numbers for all
w chemicals with sufficient data

"90-43-7"

"34256-82-1"
"33089-61-1"
"22781-23-3"

Is a chemical available?

> "80-05-7" %in% get cheminfo ()
[1]

TRUE

"1007-28-9"
"50594-66-6"
"101-05-3"
"1861-40-1" ..

> get cheminfo (info="all") <:| List all information

All data on chemicals A, B, C

subset (get cheminfo (info=
"all"),Compound %$1in%
C ("A", "B"’ "C") )

Human Hl.Jman Human DSSTox
Clint Funbound  Substance
Compound CAS Accept Donor MW Clint pValue plasma Id Formula Substance Type
2,4-d 94-75-7 221.03 0 0.149 0.04 DTXSID0020442 C8H6CI203 Single Compound
2,4-db 94-82-6 249.09 0 0.104 0.01 DTXSID7024035 C10H10CI203  Single Compound
2-phenylphenol 90-43-7 170.211 2.08 0.164 0.04 DTXSID2021151 C12H100 Single Compound
6-desisopropylatrazine 1007-28-9 1.15 173.6 0 0.539 0.46 DTXSID0037495 CS5H8CINS Single Compound




If my chemical doesn’t have built-in in vitro information, how
can | check whether it has built-in in silico information?

httk package includes a table of human Clint and Fup values for 8758 chemicals,

predicted in silico using Simulations Plus ADMET Predictor software (Sipes et al.
2017).

> library(httk)

> origlist <- get_cheminfo()

> length(origlist) #number of chems with in vitro TK data

[1] 987

> load_sipes2017() #adds 1n silico data to built-in TK data set
Loading predictions from Sipes et al. (2017) for 8758 chemicals.
Existing data are not being overwritten. Please wait...

> newlist <- get_cheminfo()

> length(newlist) #number of chems with in vitro OR in silico TK data
[1] 8797

Now you can query the get cheminfo () function the same way as on the previous slide
It will now include the in silico data as well as the in vitro data



If | need to “bring my own” chemical-specific data for a
chemical that doesn’t have data built into the httk package,
how do | do that?

1. Create a data frame identifying chemicals by (at least) CASRN, containing
data on (at least) log P (octanol-water partitioning coefficient), molecular
weight, fraction unbound in plasma, and intrinsic hepatic clearance rate.
(For example, you may have made your own in vitro measurements in-
house, used in silico/QSAR models to predict these quantities, etc.)

2. Usethe httk function add chemtable () to add your data frame to
httk’s built-in table of chemical-specific information. (This only affects
your current, local R session — it will need to be re-done every time you
restart R.) Type help (add chemtable) to see details on how to use
this function.

3. Call TK modeling functions like calc mc oral equiv () asusual-
httk will use the new chemical-specific info you provided.



Example R code for HT reverse dosimetry for
multiple chemicals & in vitro HTS assays

#Assume acb0 = data frame storing in vitro AC50s listed by chemical CASRN &
assay, with columns “CASRN”, Y“assay”, and “AC50”
equiv _doses <- sapply(l:nrows(ac50), #loop over rows of acb0 data frame
function(n) { #apply the following function to row n:
if (chem %$in% get cheminfo()){ #if chemical has TK info
sufficient to run model
return (calc mc oral equiv(conc = ac50[n]S$AC50,
chem.cas = ac50[n] SCASRN,

which.quantile = 0.95)
)
}else{ #1if no TK info, can’t run model, so return NA
return (NA real )
} #end if/else block
} #end function to apply to row n of ac50 data frame
) #end loop over rows of acbh0 data frame
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