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“Translation of high throughput data into risk-based
rankings is an important application of exposure data for
chemical priority-setting.

Recent advances in high throughput toxicity
assessment, notably the ToxCast and Tox21
programs... and in high

USING

21ST CENTURY throughput computational exposure
'?cc)lffs\ﬁzio\/E assessment [ExpoCast] have enabled first-tier
RISK-RELATED risk-based rankings of

EVALUATIONS High Throughput chemicals on the basis of margins of

Risk exposure” -National Academies of
L. . Sciences, Engineering, and
Prioritization Medicine (NASEM)

Toxicokinetics Exposure

(easier to deal with than toxicodynamics)

NASEM (2017)

New approach methodologies (NAMs) enable risk assessors to more

oty TR rapidly address public health challenges and chemical regulation
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Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models P . =L > EAEITing : e o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from _ .
, , . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . ® o o o - o
. , on a per chemical basis
a prediction for a new chemical
\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -
. e . Integration of exposure and other NAMs to .. ,
Prioritization . ) . Expert decision making ® © o o o o
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning
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Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses ‘HEeolRoRle® °
present in a sample

High throughput methods using in vitro data

Measurement
Toxicokinetics
Descriptors
Machine Learning

Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models P . = IRy ! e o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from . o
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in e o o o - o

_ : on a per chemical basis
a prediction for a new chemical
\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

Integration of exposure and other NAMs to
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Prioritization

Expert decision making ® o o o o o
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" Suspect screening / Non-targeted analyses (SSA/NTA) present

opportunities for new exposure data

® What NTA methods are available? What is the coverage of chemical
universe and matrices? How do methods differ in their coverage?

The Chemical Universe

Method 1

>
4 i

Method 2
Office of Research and Development

Led by Jon Sobus,
Seth Newton and Elin Ulrich

EPA’s Non-Targeted Analysis
Collaborative Trial (ENTACT)
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Phase 1:

" Collaborators provided 10 mixtures of 100-

400 ToxCast chemicals each

" Mass spectrometry equipment vendors

provided with individual chem

Phase 2: Fortified reference house
serum, and silicone wristbands

ical standards

dust, human

Ulrich et al. (2019)
Sobus et al. (2019)
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Statistical approaches that use the data from _ .
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . e o o o - o
_ : on a per chemical basis

a prediction for a new chemical

\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to .. :
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identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning
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Ar-——- N _ OPEN: Data Descriptor: The Chemical and
) Contents lists available at ScienceDirect EReeut | :
‘ ‘ =5 . Products Database, a resource for
pe i 0 Food and Chemical Toxicology Occurrence and exposure-relevant data on
FLSEVIER journal homepage: www.ealsevier.com/locate/foodchemtox quantitative chemicals in consumer products

Received: 16 October 2017 - . I . . N
: Kathie L. Dionisio®, Katherine Phillips*, Paul S. Price®, Christopher M. Grulke®,

Ch emical Composition Acceptect: 30 Aprl 2018 i Antony Williams®, Derya Biryol™*, Tao Hong" & Kristin K. Isaacs®

Fublished: 10 July 2018

Development of a consumer product ingredient database for chemical @Cmsm,k
exposure screening and prioritization

M.-R. Goldsmith**, C.M. Grulke ?, R.D. Brooks ", T.R. Transue *, Y.M. Tan?, A. Frame %, P.P. Egeghy *,
R. Edwards 9, D.T. Chang?, R. Tornero-Velez *, K. Isaacs *, A. Wang *%, ]. Johnson?, K. Holm#, M. Reich’,
J. Mitchell &, D.A. Vallero®, L. Phillips ®, M. Phillips %, ].F. Wambaugh %, R.S. Judson ?,

a

Green Chemistry "

PAPER View Article Online
View Journal | View lssue
®90_55n{ay High-throughput screening of chemicals as
functional substitutes using structure-based

Cite this: Green Chemn., 2017, 19,

1063 classification modelst

Contents lists available at ScienceDirect N N
Katherine A. Phillips,*** John F. Wambaugh,® Christopher M. Grulke,

Kathie L. Dionisio® and Kristin K. Isaacs®

Functional

Toxicology Reports

ELSEVIER journal homepage: www.elsevier.com/locate/toxrep

The roles that
Use Data chemicals serve in
products

mnca& ac “ “qu ® Cite This: Environ. Sci. Technod. 2015, 52, 3125-3135 pubs.acs.org/fest

Suspect Screening Analysis of Chemicals in Consumer Products

Katherine A. 1"]1illip5|.+ Alice ‘.(’au,¢ Kristin A. Favela,” Kristin K. Isaacs,” Andrew McEachmn,§'||
Measu red Christopher Grulke,' Ann M. Richard," Antony J. Williams," Jon R. Sobus," Russell S. Thomas,"

and John F. Wambaugh*'"
Data

Chemistry Dashboard

Exploring consumer exposure pathways and patterns of use (!)Cm,m
for chemicals in the environment

Kathie L. Dionisio?, Alicia M. Frame" !, Michael-Rock Goldsmith =2,
John F. Wambaugh®, Alan Liddell ~-*, Tommy Cathey*, Doris Smith®,
James Vail?, Alexi S. Ernstoff¢, Peter Fantke®, Olivier Jolliet!,

Ingredient

.
Joumal of Exposure Sclence and Environmental Epidemiclogy (2018) 28, 216-222 Llsts
© 2018 Mature America, Inc, par of Springer Mature. All rights reserved 1359-D631/18

www.nature.com/jes

ORIGINAL ARTICLE
Consumer product chemical weight fractions from

ingredient lists

Kristin K. Isaacs’, Katherine A. Phillips’, Derya Biryol'?, Kathie L. Dionisio' and Paul S. Price’

L . .
ccurrence Measurement of chemicals in

consumer products

Office of Research and Development https:llco m ptOXoe pa,gOVId aSh board
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present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g : &P > FEAHRTE : ®© o - o
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. e . Integration of exposure and other NAMs to .. ,
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Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning
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Chemical Structure
and Property Descriptors
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Machine Learning NAMS

Chemical Functional Use Database (FUSE)

Positive Examples

Negative Examples

additive additive_for_lguid_system additive_for_rubber adhesion_promaoter antimicrobilal anthoxidant antistatic_agent
{ 1L
additive 1q . . . . .
- < additive adhesion anti- anti- antistatic
additive for liquid . g .
- for rubber promoter microbial oxidant agent
system
buffer catalyst helator colorant amollient emulsifier
[
buffer catalyst chelator colorant crosslinker emollient emulsifier
emulsion_stabilizer film_forming_agent flame_retardant flavorant foam_boosting_agent foamer fragrance
B 1L | 1 | 1| |
. film foam
4 emulsion . flame .
At forming flavorant \ boosting foamer fragrance
stabilizer retardant ‘
agent | agent
hair_conditioner hair_dye heat_stabilizer Iubricating_agent agent monomer
I | ][
hair condi- . heat lubricatin maskin
. hair dye . humectant & & monomer
tioner stabilizer agent agent
) oral_care organic_pigment oxidizer perfumer ph_stabilizer photoinitiator plastic
B 11 [ 1
organic === H hoto- i
oral care . & oxidizer perfumer p_ . .p. ) plasticizer
pigment stabilizer initiator
preservative reducer rheology_modifer skin_conditioner shin_protectant soluble_dye solvent
| | | |
] pre- rheology skin condi- skin soluble
. reducer T . \ solvent
4 servative modifier tioner protectant dye
surfactant ubiquitous uv_absorber winyl viscosity_coentrolling_agent wetting_agent whitener
4 | 1] |
viscosit .
— uv . .y wetting .
surfactant ubiquitous vinyl controlling whitener
absorber L ent agent

Random Forest
Classification Models
(Breiman, 2001)
with five-fold cross
validation

Successful
Model

Failed
Model

» Probabilistic

Predictions of
Potential Chemical
Uses

Phillips et al. (2017)
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\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -
. e . Integration of exposure and other NAMs to .. :
Prioritization . ) . Expert decision making ® © o o o o
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Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning




o High Throughput Exposure (HTE) Models
N7 uEtl?b for Key Pathways

Environmental Protection

Agency Consumer (Near-Field) Pathways Ambient (Far-Field) Pathways Dietary Pathways

SHEDS-HT (Isaacs et al., 2014
( ) UseTox (Rosenbaum et al,, 2008) UseTox (Rosenbaum et al. (2008)

Population
Characterization

Chemical Data
Chemi i
on

Fate
factor —

i Intake FF

— fraction iF
iF=XF+FF

| L Human
i FE ot | exposure
rated concent®

Ecotox
Effect _|
factor
EF,

Ecotox
Effect _|
factor
EF,

ecotox
‘ecotox

RAIDAR-ICE (Li et al., 2018)

RAIDAR-ICEAG
X

Risk Assessment,

Deaiiicaion And Ranking RAIDAR (Arnot et al., 2006, SHEDS-HT (Biryol et al., 2017)

Indoor & Consumer Exposure 2 00 8) s,
g
g RY-061
. g p=0.00018 @
FINE (Shin et al., 2015) : A
3 e
s . A0
) -
g —ch/ 4 %
« € Rt f
1> Indoor Air (M,) 4> 4  — [
] £ —=
=3 K Pathway
3 seon
2 | inhalation — ponsiistary ig eFC
ingestion 3
14 dermal I* -10 -8 6 -4
Vi il Log inferred median exposures {mg/kg-BWi/day)
€= carpet(M] | Vinyl Floors (M,) =t

Office of Research and Development Slide from Kristin Isaacs
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Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning
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10!  R®=0.816

"  SEEM3 consensus model provides estimates of
human median intake rate (mg/kg/day) for nearly

Path . . .
) i, st 500,000 chemicals via the CompTox Chemicals
Doty Readontil,Industra ) Dashboard (http://comptox.epa.gov/dashboard)
/% Dietary, Residential, Pesticide L
10—3 E W Dietag; Residential, Pesticide, Industrial o ’

B |ndustrial

" SEEMS3 first predicts relevant exposure pathways
from chemical structure — model predictions are

" then weighted according to the models’ abilities to

explain NHANES data

# Pesticide
A Pespmdej; Industrial I
Residential
Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial

" We rely on pathway determinations from CPDat

Consensus Model Predictions

10772 " We rely on NHANES biomonitoring data
' ® 2014 FIFRA Scientific Advisory Panel identified
need for broader sets of evaluation data

107" 107° 107°

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
Office of Research and Development Ring et al., 2018
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Office of Research and Development Wambaugh et al., (2019)
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Open-Source Tools and Data for HTTK
https://CRAN.R-project.org/package=httk

R CRAN - Package httk

< &

5 Apps (&

x

=+

8 cran.r-project.org/web/packages/httk/index.html

Confluence (8! CompTox Dashboard @ Article Request @ Absence Request % Travel Forms W Bitbucket -4 EHP ;-;

httk: High-Throughput Toxicokinetics

Change Password

O X

Q % 0o» @
@ Famas

»

Generic models and chemical-specific data for simulation and statistical analysis of chemical toxicokinetics
Pearce et al. (2017) <doi:10.18637/j35.v079.i04=. Chemical-specific in vitro data have been obtained from r|
experiments. Both physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" mi
parameterized with the data provided for thousands of chemicals, multiple exposure routes, and various spe¢
of systems of ordinary differential equations which are solved using compiled (C-based) code for speed. A N
included. which allows for simulating human biological variability (Ring et al., 2017 <dei:10.1016/j.envint.
propagating parameter uncertainty. Calibrated methods are included for predicting tissue:plasma partition cq
distribution (Pearce et al.. 2017 <doi:10.1007/s10928-017-9548-7=). These functions and data provide a set

vivo extrapolation ("IVIVE") of high throughput screening data (for example, Tox21, ToxCast) to real-world
MR

“Aai- 1N 1N0T Mtavon ILHR1TT 10

dosimetry (also known as "RTK"! (Watmara at al

R package “httk”

Open source, transparent, and peer-
reviewed tools and data for high
throughput toxicokinetics (httk)

*  Available publicly for free statistical
software R

*  Allows in vitro-in vivo extrapolation
(IVIVE) and physiologically-based
toxicokinetics (PBTK)

*  Human-specific data for 987 chemicals

Described in Pearce et al. (2017)

Version: 2.03 d I d 1 0 7 1/ t h

Depends: R(=2.10) Own Oa S mon

Imports: deSolve, msm, data.table, SUrvey, MVINOIM, IMUNCAOrM, STAts, Zrapnics, Utlls, Magritr, [

Suggests: ggplot2. knitr, rmarkdown, R.rsp, GGally, gplots, scales, EnvStats, MASS, RColorBrew
classInt, ks, stringr, reshape, reshape?2. gdata, viridis, CensRegMod, gmodels, colorspad
dplyr, forcats, smatr, gtools, gridExtra

Published: 2020-09-25

Author: John Wambaugh [aut, cre], Robert Pearce [aut]. Caroline Ring [aut]. Greg
Sfeir [aut], Matt Linakis [aut], Jimena Davis [ctb], James Sluka [ctb], Nisha Si
Wetmore [cthb], Woodrow Setzer [ctb]

Maintainer: John Wambaugh <wambaugh.john at epa.gov=

RucoRennrte- httne-//aithih cam/TTSFPA/CamnTav FynnlCact_httlk
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Gas and Aerosol Inhalation
Exposure Route
EPA, USAF, Linakis et al. (2020)

©
=]
Standard httk 2.0.3 PBTK Model 2
5
—> Lung Blood Ot 2
>
Gut Blood Qe
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| Media |

Dermal Exposure Route
EPA, Unilever, INERIS

Office of Research and Development

Toxicokinetics NAMs: In Vitro Measurements and Generic

PBTK Models
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gu '
< Liver Blood > :
CLmolism b Qliver E ﬁ g
Kidney Tissue % ‘ l
+—g Tissue Blood 40*-@-% I T T A T A A -
o ¢ 1 2 = ;i m) o w8
Rest-of-Body Q. 33 ' .;. 3, o e ig‘_
< Rest-of-Body Blood ¢ HTZM |
Lung Tissue
< T Human Gestational Model
- EPA, FDA, Kapraun et al., (2020)
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High throughput in vitro
screening can estimate doses
' needed to cause bioactivity

‘%I E| ﬁ (for example, Wetmore et al., 2015)
" $ | i !

L 1

D

-

(%)

o

Q

<

L

©

Q

0

.g _ i té $ .

sz $ é éﬁ _ . Exposure intake rates can be

S § 103 1| [** ] inferred from biomarkers

% o 1 / (for example, Ring et al., 2018)
no |
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9 £ |
N— _7 ]

g 10 Potential

g. Haz§rd frgm

L in vitro with

© Reverse

% Toxicokinetic

g - - ' - o - - ' - ) Potentiagi

1% Chemicals Monitored by CDC NHANES Exposure

L Rate
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Ring et al. (2017) Risk ~ Risk Risk
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Agency https://comptox.epa.gov/dashboard

= (m] x

%) CompTox Chemicals Dashboard . X + o
&« c 8@ comptoxepa.gov/dashboard Q % O N ‘ H
Apps (8 Dashboard @) Article Request @) Absence Request @3 TravelForms A EHP & Change Password @) FAITAS »

o 1 United States
N Environmental Protection
\’ Agency

CompTox Chemicals Dashboard

883 Thousand Chemicals

Chemicals [GGH AT EICNL T Assay/Gene

I Q, cleaner

CPDat PRODUCT category: general arts and crafts supplies arts and crafts cleaner
solvent- or detergent-based products for removing craft related paints, adhesives, etc. from hands or surfaces

CPDat PRODUCT category: gun cleaner
products for cleaning interior or exterior of firearms

CPDat PRODUCT category: bathroom bathroom cleaner
bathtub, tile, and toilst surface cleaners

CPDat PRODUCT category: carpet and floor carpet cleaner
carpet-cleaning products that may be used directly (or require dilution), includes solutions that may be used by hand or in mechanical carpet cleaners

CPDat PRODUCT category: carpet and floor floor cleaner

hard floor cleaners, including pre-moistened wipes

CPDat PRODUCT category: general household cleaning surface cleaner
products used to clean hard surfaces in the home, including kitchen specific hard surface cleaners

CPDat PRODUCT category: hand cleaner
products that remove grease, oil, and ather hydrophebic materials from hands, includes waterless products

CPDat PRODUCT category: general household cleaning glass cleaner
products used to clean glass, mirrors, and windows

CPDat PRODUCT category: heavy duty cleaner
heavy duty hard surface cleaning products that may require dilution prior to use (i, may be concentrated)

CPDat PRODUCT category: laundry and fabric treatment dry cleaner
dry cleaning fluids or kits for home use

CPDat PRODUCT category: oven oven cleaner
‘products used to clean grills, ovens, or range cooktops

CPDat PRODUCT category: upholstery specific upholstery cleaner

Office of Research and Development
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https://comptox.epa.gov/dashboard
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v

- Wikipedia
EXECUTIVE SUMMARY
CH Amyl acetate (pentyl acetate) is an
3
PROPERTIES crganic compound and an ester with the
o chemical formula CHyCOO[CH3]4CH and
ENV. FATE/TRANSPORT the molecular weight 130,19 g/mol. It has

& scent similer to bananas and apples. The
compound is the condensation product of

HAZARD
H3;C O\/\/\ scetic acid and 1-pentanol. However,
CHy

esters formed from other pentano

b SAFETY : . o
somers (amy alcohols), or mixtures of
o pentanols, are often referred to as amyl
» ADME acetate.
» EXPOSURE Read more
b BIOACTIVITY
«
SIMILAR COMPOUNDS Quality Control Notes
GENRA (BETA)

~ Intrinsic Properties
RELATED SUBSTANCES

SYNONYMS Iy Molecular Formula: C7Hq:05
& Mol File

» LITERATURE
Q Find All Chemicals

HNKS Iy Average Mass: 130,157 a/mol
Ll |sotope Mass Distribution

5 Monoisotopic Mass:

130.09938 g/mo

Structural |dentifiers
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PROPERTIES
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- Searched by DSSTox Substance Id.
) SAFETY DETAILS IVIVE
» ADME
B EXECUTIVE SUMMARY Y
b EXPOSURE wn Download ¥ Columns ~
»  BIOACTIVITY
PROPERTIES
SIMILAR COMPOUI - -
o Label ¥ Measured Predicted Computed Unit v
GENRA (BET) ENV. FATE/TRANSPORT s : :
RELATED SUBSTAN
@ In Vitro Intrinsic Hepatic - 0 - uL/min/million
SYNONYMS HAZARD Claarance hepatocytes
» LITERATURE
e B SAFETY O Fraction Unbound in - 0.56
Human Plasma
v ADME @ Volume of Distribution - - 2.06 L/kg
@ PK Half Life - - 423 hours
P EXPOSURE
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+

wm Download ¥ Columns ~
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type ¥ Products
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paint/stain and related products: PUC 22
degreaser PUC 4
gun cleaner: PUC 2
nails: nail polish PUC 2
active_ingredient, Pesticides CPCat Cassette 1

O

X
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PROPERTIES
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CH
! - Searched by DSSTox Substance Id.
» sarEry DETAILS DETAILS DETAILS Chemical WEIght Fractions o
» ADME
i EXECUTI EXECUT] EXECUTIVE SUMMARY 3
» EXPOSURE wm Download ¥ Columns ~ 10 v
»  BIOACTIVITY
PROPER] PROPER] FROPERTIES
SIMILAR COMPOUI
S Product Name v Maximum  Data  Source
GENRA (BET) ENV. FAT ENV. FA] ENV. FATE/TRANSPORT T s
Type
RELATED SUBSTAN :
SYNONYMS HAZARD HAZARD HAZARD
03520/03528/03505/03555  degreaser: 2.00e-2 MSDS | SIRI
» LITERATURE zero tri super
P SAFETY P SAFETY P SAFETY
LINKS cleanar/degreaser
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Office of Research and Development



EPA

United States

Environmental Protection

Dashboard Information

Agency https: t dashb d
ps://comptox.epa.gov/dashboar
O X l
€) CompTox Chemicals 2) CompTox Chemical CompTox Chemical CompTox Ch (8! CompTox Chemicals Dashboard X + o I
& C @ co & c 8 C & d
Hi Apps (® Dashboar Apps (@ Cc | € C & comptoxepa.gov/dashboard/dsstoxdb/results?search=DTXSID1027263#chemical-fun.. @ ®& % QO B ‘ :

wEPA: &

CH,

CH,

! Apps () Dashbd -

EXECUTIVE SUMMA

PROPERTIES

ENV, FATE/TRANSP

HAZARD

SAFETY

ADME

EXPOSURE

BIOACTIVITY

SIMILAR COMPOU

GENRA (BETA)

RELATED SUBSTAN

SYNONYMS

LITERATURE

LINKS

DETAILS

EXECUTI

PROPER]

ENV. FAT|

HAZARD

P SAFETY

+ ADME

» EXPOSU

Office of Research and Development

DETAILS

EXECUTI

PROPER

ENV. FA]

HAZARLD

SAFETY

ADME

EXPOSY

DETAILS
EXECUT}

PROPER]

ENV. FA

HAZART
SAFETY
ADME
EXPOS L.

PRA

55 Apps (8 Dashboard

£
.

@ Article Request

United States

EPA Environmental Protection
\’ Agency

DETAILS

EXECUTIVE SUMMARY

PROPERTIES

ENV. FATE/TRANSPORT

HAZARD

P SAFETY

» ADME

+ EXPOSURE

PRODUCT & USE CATEGORIES

@ Absence Reguest

@ Travel Forms -4 EHP \'-; Change Password @ FAITAS

Penty| acetate
628-63-7 | DTXSID1027263

Searched by DSSTox Substance Id.
Collected Data on Functional Use €)

3

wm Download ¥

Harmonized functional use ™ Reported functional use v
fragrance fragrance

fragrance masking agent

fragrance solvent

Predicted Probability of Associated Functional
llce 6D

»



A
\"IUEESA Dashboard Information

Environmental Protection

Agency https://comptox.epa.gov/dashboard

| ) = O *
€) CompTox Chemicals 8) CompTox Chemica| (&) CompTox Chemical 8! CompTox Ch (&) CampTox Che (8) CompTex Chemicals Dashboard X + °
& C & < c & <« C & d ~
B apps (© Dsstoor| e o @) puq AP @ &« c I &« c <« C @ comptoxepa.gov/dashboard/dsstoxdb/results?search=DTXSID1027263#exposure-pre... @ & % QO B ‘ :
. [— s :
\f"’EPAE' o ® pf = H! Apps (8) D) % Apps (8 D P Apps (8) Dashboard @ Article Request @ Absence Request @ TravelForms -4 EHP G Change Password @ FAITAS »

SEP) SEP) SEP) SEPH SEPA G-

Pentyl acetate
CHl N W ™
PROPERTIES
o=( 628-63-7 | DTXSID1027263
s . Searched by DSSTox Substance Id.
by sarery DETAILS DETAILS DETAILS DETAILS DETAILS o Exposure Predictions (mg/kg-bw/day)
» ADME 1
) EXECUTI EXECUTI| EXECUT EXECUTI EXECUTIVE SUMMARY ry
» EXPOSURE | mm Download ¥
» BICACTIVITY
PROPER] PROPER] PROPER] PROPERT| PROPERTIES
SIMILAR COMPOUI - - -
. Demographic *  Median ¥  95th Percentile v
GENRA BETR) ENV. FAT ENV. FA] ENV. FA ENV. FAT ENV. FATE/TRANSPORT
RELATED SUSSTAN. Ages 6-11 4.26e-5 2.57e-3
SO HAZARD HAZAR HAZARL HAZARD, HAZARD Ages 12-19 54585 13763
» LITERATURE
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“Investment in 21st century exposure science is now required to
fully realize the potential of the NRC vision for toxicity testing.”
Cohen Hubal (2009)

Lovell and Hegstad (2009): “Obama's FY10 Budget Includes Increased Toxicology”:

" Funding allows for
complementary exposure
predictions from ExpoCast,
which is slated to be
launched in FY10

"  Predict the impact of chemicals
on the human body using data
from ToxCast

Establishing
Confidence

Modeling

Uncertainty
& Variability

Outreach &
Training

Computational

Software &
IT Tools

ExpoCast is

Learning
Consumer Ambient
Office of Research and Development

Models Databases

PPIIE
Statistics

Occupational | Ecological

US EPA’s ExpoCast Project:

Expo cast

Since 2010:
* 65 peer-reviewed publications
5 STAR grants awarded
* 3 Federal research contracts
(SWRI and Battelle)

mg/kg BW/day
N\

High
Throughput
Screening +

Toxicokinetics

High
Throughput
Exposure Rate
Predictions
Lower Medium  Higher
Risk Risk Risk
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