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“Translation of high throughput data into risk-based 
rankings is an important application of exposure data for 
chemical priority-setting. 

Recent advances in high throughput toxicity 
assessment, notably the ToxCast and Tox21 
programs… and in high 

throughput computational exposure 
assessment [ExpoCast] have enabled first-tier 
risk-based rankings of

chemicals on the basis of margins of 
exposure” -

NASEM (2017)

National Academies of 
Sciences, Engineering, and 
Medicine (NASEM)

Exposure

Hazard

High Throughput
Risk 

Prioritization

Toxicokinetics
(easier to deal with than toxicodynamics)

Calculating Chemical Risk

New approach methodologies (NAMs) enable risk assessors to more 
rapidly address public health challenges and chemical regulation
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Wambaugh et al., (2019)
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Method 1

EPA’s Non-Targeted Analysis 
Collaborative Trial (ENTACT)

 Phase 1: 
 Collaborators provided 10 mixtures of 100-

400 ToxCast chemicals each
 Mass spectrometry equipment vendors 

provided with individual chemical standards 

 Phase 2: Fortified reference house dust, human 
serum, and silicone wristbands

The Chemical Universe

Method 2

 Suspect screening / Non-targeted analyses (SSA/NTA) present 
opportunities for new exposure data

 What NTA methods are available? What is the coverage of chemical 
universe and matrices? How do methods differ in their coverage?

Ulrich et al.  (2019)
Sobus et al. (2019)

Led by Jon Sobus, 
Seth Newton and Elin Ulrich



6 of 27 Office of Research and Development

NAM Makes Use of

M
ea

su
re

m
en

t

To
xi

co
ki

ne
tic

s

M
od

el
s

De
sc

rip
to

rs

Ev
al

ua
tio

n

M
ac

hi
ne

 L
ea

rn
in

g

Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboard
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Wambaugh et al., (2019)
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Machine Learning NAMS

Chemical Structure 
and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Probabilistic 
Predictions of 

Potential Chemical 
Uses

Chemical Functional Use Database (FUSE)

Phillips et al. (2017)

Successful 
Model

Failed
Model

Random Forest 
Classification Models

(Breiman, 2001) 
with five-fold cross 

validation
Positive Examples Negative Examples
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Wambaugh et al., (2019)
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High Throughput Exposure (HTE) Models 
for Key Pathways

Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Slide from Kristin Isaacs
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13

SEEM3: Pathway-Based Consensus Modeling

Ring et al., 2018

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
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 SEEM3 consensus model provides estimates of 
human median intake rate (mg/kg/day) for nearly 
500,000 chemicals via the CompTox Chemicals 
Dashboard (http://comptox.epa.gov/dashboard)

 SEEM3 first predicts relevant exposure pathways 
from chemical structure – model predictions are 
then weighted according to the models’ abilities to 
explain NHANES data

 We rely on pathway determinations from CPDat

 We rely on NHANES biomonitoring data
 2014 FIFRA Scientific Advisory Panel identified 

need for broader sets of evaluation data

http://comptox.epa.gov/dashboard
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Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Toxicokinetics NAMs: In Vitro Measurements and Generic 
PBTK Models

Media
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Gut Blood
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Standard httk 2.0.3 PBTK Model
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Dermal Exposure Route
EPA, Unilever, INERIS

Gas and Aerosol Inhalation 
Exposure Route

EPA, USAF, Linakis et al. (2020)

Human Gestational Model
EPA, FDA, Kapraun et al., (2020)

... .
..
. .. . .1 2

Wetmore et al. (2012, 2013, 2015), Wambaugh et al. (2019)
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Class Description Traditional Approach
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present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
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Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
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Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Chemical Prioritization NAMs
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Dashboard Information
https://comptox.epa.gov/dashboard
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Dashboard Information
https://comptox.epa.gov/dashboard
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https://comptox.epa.gov/dashboard
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US EPA’s ExpoCast Project: 
New Approach Methodologies for Exposure Forecasting

Lovell and Hegstad (2009): “Obama's FY10 Budget Includes Increased Toxicology”:

“Investment in 21st century exposure science is now required to 
fully realize the potential of the NRC vision for toxicity testing.” 

Cohen Hubal (2009)

Since 2010:
• 65 peer-reviewed publications
• 5 STAR grants awarded
• 3 Federal research contracts 

(SWRI and Battelle)
 Funding allows for 

complementary exposure 
predictions from ExpoCast, 
which is slated to be    
launched in FY10

 Predict the impact of chemicals 
on the human body using data 
from ToxCast

High 
Throughput 

Exposure Rate 
Predictions

mg/kg BW/day

High 
Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Models MeasurementsMachine 
Learning

ExpoCast is
Applied

StatisticsDatabases

Consumer Ambient Occupational Ecological
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