

Epigenetic effects of environmentally relevant concentrations of estrogens in multiple lifestages of the fathead minnow (*Pimephales promelas*)

Adam Biales, Chief, Molecular Indicators Branch, Office of Research and Development, US EPA

The views expressed in this [article/presentation/poster] are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.

Office of Research and Development Full Name of Lab, Center, Office, Division or Staff goes here.

Overview

- Epigenetics
- Regulatory implications
- Environmental estrogens
- Early life stage exposure
 - small non-coding RNA
- Adult exposure
 - ESR1
 - Genome/epigenome-wide

Epigenetics

- Heritable phenotypic changes
 - No change in underlying DNA sequence
- Adaptation
 - Genome X Environment
 - Relevant time scale
- Implicated in disease

Epigenetics

• Mechanisms

- Gene expression levels
- Chromatin state
 - sncRNA
 - DNA methylation
 - Histone modification

Epigenetic mechanism

- Work in concert
 - ncRNA
 - miRNA methyltransferases
 - piRNA guide → DNA methylation
 - DNA methylation
 - CpGs
 - CpG islands and shores
 - Promoter vs. gene body 1
 - Histone modification
 - Methylation
 - Acetylation

- Heritable
 - Mitotic
 - Meiotic
- Trans/Multigenerational effects
 - Phenotypic changes
 - Disease
 - Vinclozolin -> **1** ovarian cancer
 - Metabolic disease

Epigenetics in environmental regulation

• Susceptibility

- Genes related to pharmacokinetics
 - CYPs, transporters, etc.
- Multigenerational effects
 - Sublethal effects
 - Ecosystem function
- Predictive biomarkers
 - Adverse effects
- Forensic biomarkers
 Different time scales
- Exposome

Fathead minnow

- Commonly used aquatic toxicity model for N. America
- Endemic huge natural range
- Highly contiguous and complete genome

De novo assembly and annotation of a highly contiguous reference genome of the fathead minnow (Pimephales promelas) reveals an ATrich repetitive genome with compact gene structure

John Martinson¹, David C. Bencic¹, Gregory P. Toth¹, Mitchell S. Kostich^{1,3}, Robert W. Flick¹, Mary J. See¹, David Lattier¹, Adam D. Biales^{1*}, Weichun Huang^{2*}

Assembly statistics	FHM1	FHM2	ZF		
	(GCA_000700825)	(WIOS0000000)	(GRCz11)		
Number of scaffolds	73,057	910	993		
N50 contig	7,513	300,151	1,428,257		
N50 scaffold	60,380	11,952,773	54,304,671		
Complete BUSCOs	3,506 (76.5%)	4,357 (95.1%)	4,384 (95.7%)		
Complete and single-copy BUSCOs	3,324 (72.5%)	4,115 (89.8%)	4,215 (92.0%)		
Complete and duplicated BUSCOs	182 (4.0%)	242 (5.3%)	169 (3.7%)		
Fragmented BUSCOs	507 (11.1%)	73 (1.6%)	66 (1.4%)		
Missing BUSCOs	571 (12.4%)	153 (3.3%)	134 (2.9%)		
Total contig size	811,183,656	925,375,343	1,368,782,359		
Total scaffold size	1,219,326,373	1,066,412,313	1,373,471,384		

Environmental Estrogens

- Identified intersex individuals
- Experimental Lake Study -> population collapse
- Commonly found in low ng/L to pg/L in surface water
 - Biologically active levels
- Mixtures additive effects
- Difficult to predict estrogenicity based on structure

Small Non-coding RNA

Development of omics biomarkers for estrogen exposure using mRNA, miRNA and piRNAs

Gregory P. Toth^a, David C. Bencic^a, John W. Martinson^a, Robert W. Flick^a, David L. Lattier^a, Mitchell S. Kostich^b, Weichun Huang^c, Adam D. Biales^{a,*}

^a US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States

^b The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, United States

^c US Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States

Biomarkers development

- Evaluate biomarker training and testing scenarios
 - Increase effective concentration range
- Evaluate sncRNAs as potential source of biomarkers
 - Implicated in broad number of diseases
 - One to many -> smaller number of biomarkers
 - Extracellular
- Evaluate genome assembly and annotation
 - 620 FHM miRNAs miRDeep compare to *Danio* miRNAs for exact matches
 - piRNA -> mapped against *Danio* piRNA reference set 1.33M

MicroRNA - Mechanism

- RISC AGO proteins
- Translational repression
- mRNA degradation

Klaus D. Linse, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Design

- Exposure
 - Three identical experiments
 - 96 hpf 48 h exposure
 - 0.12 10 ng/L EE2
- mRNA
 - Sense RNA-seq 1 X 50 bp SE HiSeq 4000
 - n = 30 per treatment from across experiments (control, 1.2, 10 ng/L)
 - N = 18 (.12, 2.5. 5 ng/L)
- sncRNA
 - TruSeq small RNA kit
 - n = 10 per treatment (control vs. 10 ng/L EE2)

- mRNA
 - Differential expression in all but lowest concentration
 - Near complete overlap
 - Circadian related transcripts
 - Few typical estrogen-related genes
 - Esr1
 - Vtg1
 - aromatase
- 23 miRNA and 12 piRNA none were significant after FDR
 - Random Forest classification
 - miRNA AUC 0.83
 - piRNA AUC 1.0

Summary

- mRNA classifier accurate at environmental/biologically active concentrations
- sncRNAs potential for biomarker development
 - Relatively high accuracy
 - sncRNA induced at biologically relevant concentrations of EE2
 - Potential for indicators of timing
- Mechanistic interpretation difficult
 - Poorly annotated
 - One-to-many regulation & poor sequence complementarity
 - Whole larvae

Contents lists available at ScienceDirect

Aquatic Toxicology

journal homepage: www.elsevier.com/locate/aqtox

DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α -ethynylestradiol

J.K. Fetke^{a,d}, J.W. Martinson^b, R.W. Flick^b, W. Huang^c, D.C. Bencic^b, M.J. See^b, E.M. Pilgrim^b, R.W. Debry^d, A.D. Biales^{b,*}

^a Oak Ridge Institute for Science and Education (ORISE) Research Participant at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States

^b US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States

^e US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, United States

^d Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States

Methylation

- Experimentally accessible
- Mostly in CpG context in animals
 - 60-90% in mammals, < in inverts
 - Differs across taxa (D. melanogaster, C. elegans)
- DNMTs
 - DNMT1 maintenance
 - DNMT3a & b do novo
- Demethylation passive
 - TET active

DNA Methylation Mechanism/Function

٠

Perturbation of Methylation

Heterochromatin

Hypermethylated

Euchromatin

Hypomethylated

Gene body

Study Design

ESR1

- Estrogen Receptor-a
 - Expressed in most tissues
- Tissue specific expression
 - Protective function in brain
 - Sex differentiation
 - Reproduction
 - 7 putative isoforms in FHM
- Dysregulation implicated in disease
 - Cancer
 - Neurological disorders (Alzheimer's)
 - Coronary artery disease

FHM & ZF ESR1

- Single copy
- Differ in isoform number
- Conserved exon order
- Intronic regions differ

Danio rerio (zebrafish) strain Tuebingen (UCSC vUCSC, softmasked by RepeatMasker) ENSDART00000087844 (chr: 20 26389363-26412982)

• • • • • • • • • • •

FHM ESR1 Gene Structure

Differential Methylation

ESR1 methylation and expression

- Esr1 differentially expressed in liver
 - Low and high doses
- Methylation
 - Tiled window analysis
 - Inverse correlation
 - Both concentrations
 - Near two putative ERE
 - Potential for alternative upstream promoter
 - Differences b/w ZF and FHM

Summary

- Methylation
 - Differences among tissues
 - Promoter
 - Dose-dependent methylation response Liver
 - Female-"like" methylation pattern in promoter of males
 - Negatively correlated with Tx
 - Gene body
 - Large regional shifts in methylation in low dose males
 - Differed from female pattern
 - Potential for isoform usage
 - Lasting methylation differences

EE2 – whole genome methylation

Research Questions/Drivers

- Biological
 - What are main epigenetic changes associated with the short-term EE2 exposure in brain and liver.
 - Dose-specific responses
 - Kinetics of methylation
- Methodological
 - Limitations & benefits of reduced representation bisulfite sequencing
 - Functional quality assessment of the FHM genome assembly

Reduced Representation Bisulfite Sequencing

- Targets CpG enriched regions
- Single base pair resolution

vironmental Protection

Agency

- Relatively inexpensive (compared to whole genome) ~8% of total CpG
- 85% CpG islands, 60% of promoters

Total number of covered CpGs by RRBS

Environmental Protection

Agency

#DMCs between the male control and the other groups

compared to male control (0D2)

- In brain, the low-dose group has the highest #DMCs, while the female control has the fewest
- In liver, the high-dose has the largest #DMCs, while the 14-day depuration has the lowest #DMCs
- In the female control, the brain tissue has much lower #DMCs than the liver tissue

#DMCs between the female control and the other groups

compared to female control (femaleD2)

- The low-does group has the fewest #DMCs, indicating lowdose treatment might lead to male more like female in liver
- In both brain and liver, all highdose treated groups have more much DMCs than the male control, and #DMCs is the largest in the 14-day depuration group, suggesting potentially longlasting detrimental effects

		00						-	2 20-	000	ooin.	000	
Stoup z	Stoupz	n "rom	Orer	of ton of	intron do	tother tok	, ⁶ 0	P. 104		DRS TON	ions ton	DRS CRET	O _{R5}
BOD2	B2p5D2	160501	2.70%	39.71%	33.11%	24.47%	242	128	29	7.8%	25.0%	32.0%	35.2%
BOD2	B10D2	147657	2.67%	39.61%	33.11%	24.62%	172	99	17	4.0%	22.2%	29.3%	44.4%
BOD2	B10D7	38912	2.37%	52.42%	25.86%	19.35%	42	27	0	0.0%	14.8%	14.8%	70.4%
BOD2	B10D14	37706	2.37%	51.88%	26.11%	19.65%	39	32	18	0.0%	18.8%	46.9%	34.4%
B0D2	BfemaleD2	39057	2.41%	52.19%	25.92%	19.48%	24	8	2	0.0%	37.5%	62.5%	0.0%
B2p5D2	BfemaleD2	50954	2.48%	52.30%	25.87%	19.35%	32	9	0	33.3%	66.7%	0.0%	0.0%
B10D2	BfemaleD2	82481	2.30%	49.40%	27.57%	20.73%	118	87	18	0.0%	37.9%	20.7%	41.4%
B10D7	BfemaleD2	244735	2.54%	39.19%	33.61%	24.66%	1098	528	178	3.6%	40.7%	28.8%	26.9%
B10D14	BfemaleD2	234376	2.58%	38.81%	33.83%	24.78%	1649	950	395	2.0%	37.9%	30.5%	29.6%
L0D2	L2p5D2	438902	2.59%	38.99%	34.19%	24.23%	1785	851	155	2.2%	33.0%	39.2%	25.5%
L0D2	L10D2	456330	2.57%	38.76%	34.33%	24.34%	1901	970	193	1.6%	41.9%	37.0%	19.5%
L0D2	L10D7	114259	2.47%	48.52%	27.83%	21.17%	605	273	69	1.5%	41.0%	30.4%	27.1%
L0D2	L10D14	129909	2.53%	47.39%	28.59%	21.49%	347	166	81	0.0%	44.6%	29.5%	25.9%
L0D2	LfemaleD2	138943	2.48%	46.96%	28.90%	21.66%	673	393	80	1.8%	45.0%	31.8%	21.4%
L2p5D2	LfemaleD2	113842	2.34%	50.46%	27.03%	20.17%	340	174	37	2.9%	29.3%	44.3%	23.6%
L10D2	LfemaleD2	139576	2.42%	46.85%	29.02%	21.70%	855	526	160	2.1%	39.9%	31.4%	26.6%
L10D7	LfemaleD2	326027	2.64%	39.42%	33.63%	24.31%	3336	1478	364	3.2%	38.7%	34.2%	24.0%
L10D14	LfemaleD2	438655	2.62%	37.50%	34.92%	24.97%	3756	1857	527	1.9%	34.7%	39.8%	23.5%

#DMRs in the brain tissue between the male control and the other groups

#DMRs in the liver tissue between the male control and the other groups

OD2-FD2: overall change patterns

GO	NS	name	Liver0D2	Liver10D2	Liver10D7	Liver10D14
GO:0000902	BP	cell morphogenesis	Х	Х	Х	Х
GO:0009653	BP	anatomical structure morphogenesis	Х	Х	Х	Х
GO:0032501	BP	multicellular organismal process	Х	Х	Х	Х
GO:0022610	BP	biological adhesion	Х	Х	Х	Х
GO:0032989	BP	cellular component morphogenesis	Х	Х	Х	Х
GO:0007155	BP	cell adhesion	Х	Х	Х	Х
GO:0048870	BP	cell motility	Х		Х	Х
GO:0040011	BP	locomotion	Х		Х	Х
GO:0007267	BP	cell-cell signaling	Х		Х	Х
GO:0023052	BP	signaling	Х		Х	Х
GO:0007275	BP	multicellular organism development	Х		Х	Х
GO:0009790	BP	embryo development	Х		Х	Х
GO:0030154	BP	cell differentiation	Х		Х	Х
GO:0032502	BP	developmental process	Х		Х	Х
GO:0048869	BP	cellular developmental process	Х		Х	Х
GO:0007154	BP	cell communication	Х		Х	Х
GO:0006928	BP	movement of cell or subcellular component	Х		Х	Х
GO:0048646	BP	anatomical structure formation involved in morphogenesis	Х		Х	Х
GO:0005886	CC	plasma membrane	Х			Х
GO:0016020	CC	membrane	Х			Х
GO:000003	BP	reproduction			Х	
GO:0050877	BP	nervous system process		Х	Х	Х
GO:0040007	BP	growth		Х	Х	Х
GO:0050789	BP	regulation of biological process			Х	Х
GO:0071840	BP	cellular component organization or biogenesis			Х	Х
GO:0050794	BP	regulation of cellular process			Х	Х
GO:0009987	BP	cellular process			Х	Х
GO:0065007	BP	biological regulation			Х	Х
GO:0016043	BP	cellular component organization			Х	Х
GO:0007165	BP	signal transduction			Х	Х
GO:0003008	BP	system process			Х	Х
GO:0031012	CC	extracellular matrix				Х

SUMMARY

- Dose-dependent methylation differences
- Sex differences in methylation
 - Female lower methylation in brain & slightly higher in liver
- General loss of methylation
 - Some lasting effects up to 14 d
 - Potential for altered phenotype/adverse effects
- Low dose males similar to females based on gene expression
- Distribution of DMRs appears non-random
 - 7 d depuration intronic -> isoform usage (future studies)

Conclusions

• EE2

- Targets multiple epigenetic mechanisms
- Lasting effects
 - Potential for biomarkers of life history/exposome
 - Potential for impacts on risk estimates
 - Multiple exposures etc.
- Genome
 - Demonstrated sufficient contiguity and completeness
- Methods
 - RRBS reasonable approach to identify methylation differences

Thanks

US EPA

- David Bencic
- Robert Flick
- Weichun Huang
- Greg Toth
- John Martinson
- Eric Pilgrim

External

- Janine Fetke, ORISE
- Ron Debry, University of Cincinnati
- Mitch Kostich, Jackson Labs