

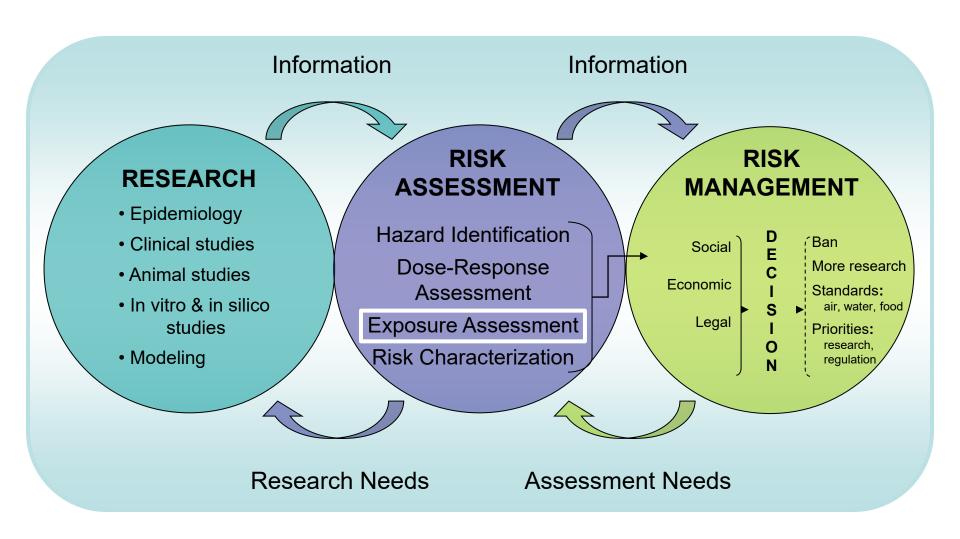
General Concepts of Exposure Assessment

Abdel-Razak Kadry, DVM, PhD, DABT Center of Computational Toxicology and Exposure, ORD, USEPA, Washington, DC, USA

International Conference on Risk Assessment of Environmental Genotoxicants, Cairo, Egypt
December 22, 2019

What You Can Expect to Learn from this Course

- How exposure assessment relates to human health risk assessment
- Important elements of exposure assessment
- How to handle uncertainty and variability in exposure assessment
- What EPA resources are available for exposure assessors

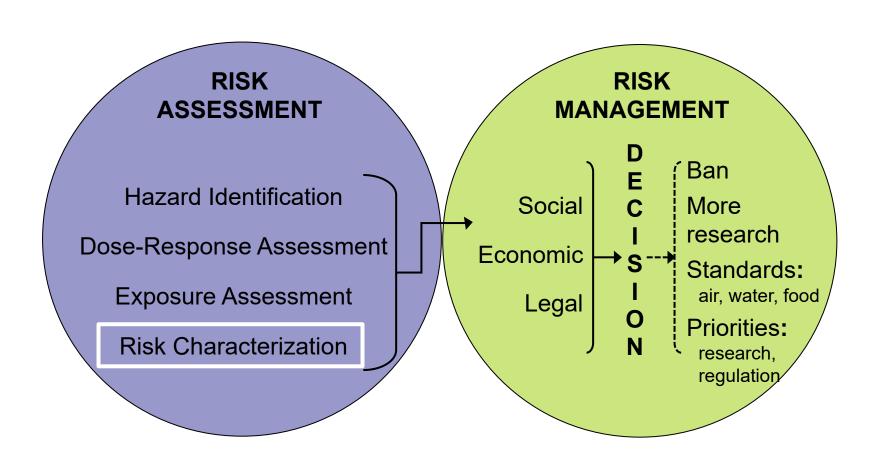

EXA 401

INTRODUCTION AND BACKGROUND CONCEPTS

The Risk Analysis Paradigm and the Role of Exposure Assessment

The Dose Makes the Poison

- Attributed to Paracelsus, 16th c. Swiss physician & chemist


Exposure is a critical element of risk

Hazard × **Exposure** = **Risk**

- A hazardous chemical release does not necessarily mean a high-risk situation
- Exposure assessment used to evaluate risk for future and past decision-making
 - Future: More uncertainty, but can prevent health impacts
 - Past: Less uncertainty, accurately quantify population health impacts and mitigation

The Utility of Risk Assessment in Environmental Decision-Making

Source-to-Effect Continuum

EXA 401

What is Exposure?

Exposure is contact made between a chemical, physical, or biological agent and the outer boundary of an organism.

- Two-step process
 - 1. Contact
 - Inhalation, ingestion, or dermal contact
 - 2. Absorption
 - Skin, respiratory tract, gut

Exposure is quantified as the amount of an agent available at the exchange boundaries of the organism (e.g., skin, respiratory tract, gut).

EXA 401

The Exposure Equation

Exposure = f (Concentration, Time, Behavior)

EPA Guidelines for Exposure Assessment (1992)

What is Dose?

- Dose: The amount of substance available for interactions with metabolic processes or biologically significant receptors after crossing the outer boundary of an organism
 - Applied dose is the amount of substance at an absorption barrier (skin, respiratory tract, gut) that can be absorbed by the body.
 - Potential dose is the amount of substance ingested, inhaled, or applied to skin, not all of which will be absorbed.
 - Internal dose is the amount of substance absorbed and available for interaction with biological receptors.

EXA 401

Dose Equation

Potential Dose = $\frac{C \times IR \times CF \times ED \times EF}{AT \times BW}$

Absorbed Dose = Potential Dose x AF

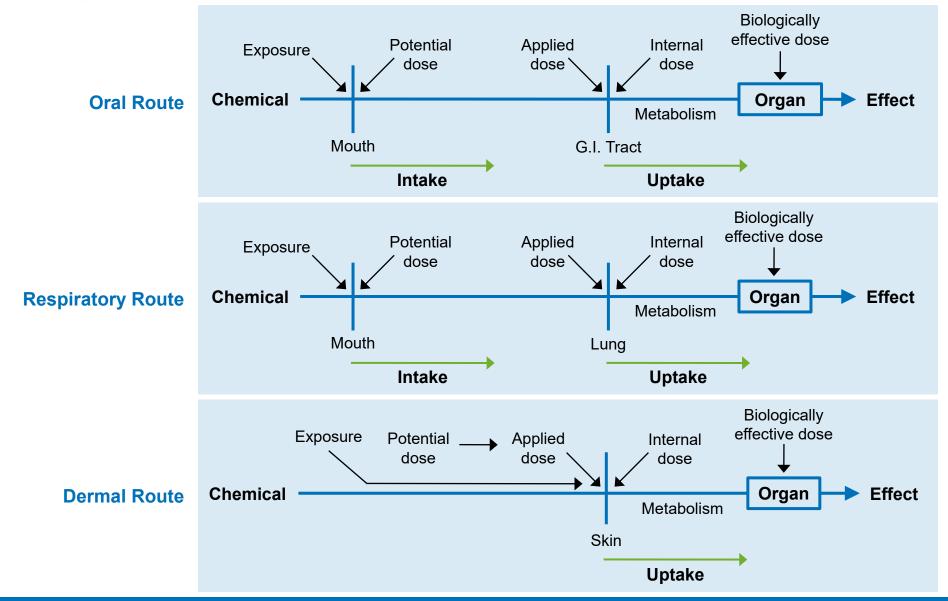
Absorbed Dose = Internal Dose

Where:

IR = Intake Rate AT = Averaging Time

CF = Contact Fraction BW = Body Weight

ED = Exposure Duration AF = Fraction of Potential Dose Absorbed


General units for dose:

Mass contaminant

Averaging time x Body weight

Dose Illustrated

EXPOSURE ASSESSMENT: EXAMPLES OF EXPOSURE

Four Exposure Examples

- Meet Jim
- Four hazards in and around Jim's home
 - Benzene in drinking water
 - Nickel and lead in garden soil
 - Smoke in the kitchen
 - Pesticide residue on garden vegetables
- Four different routes of exposure
 - Consumption of drinking water, skin absorption, inhalation, eating

Exposure Example 1: Benzene in Drinking Water

- Jim has a well and drinks 2L of water/day
- Old, leaking underground storage tank in adjoining lot

Exposure: Occurs when a chemical or agent contacts the visible exterior of the person, making contact with the skin or openings into the body such as the mouth or the nose

- Benzene in Jim's water: >5 ppb
- Intake: The substance enters Jim's body without passing through a barrier for ingestion and inhalation

Intake versus uptake, discussed more later in the course

Exposure Example 1: Benzene in Drinking Water

Chronic Exposure: Repeated exposures by either ingestion, inhalation, or skin exposure for more than about 10 percent of a person's lifespan

- How much benzene was Jim exposed to, on average?
 - Average Daily Dose (ADD)
- Estimate average daily dose based on assumptions

Exposure Example 1: Average Daily Dose

$$ADD = \frac{C \times IR \times ED \times EF}{BW \times AT}$$

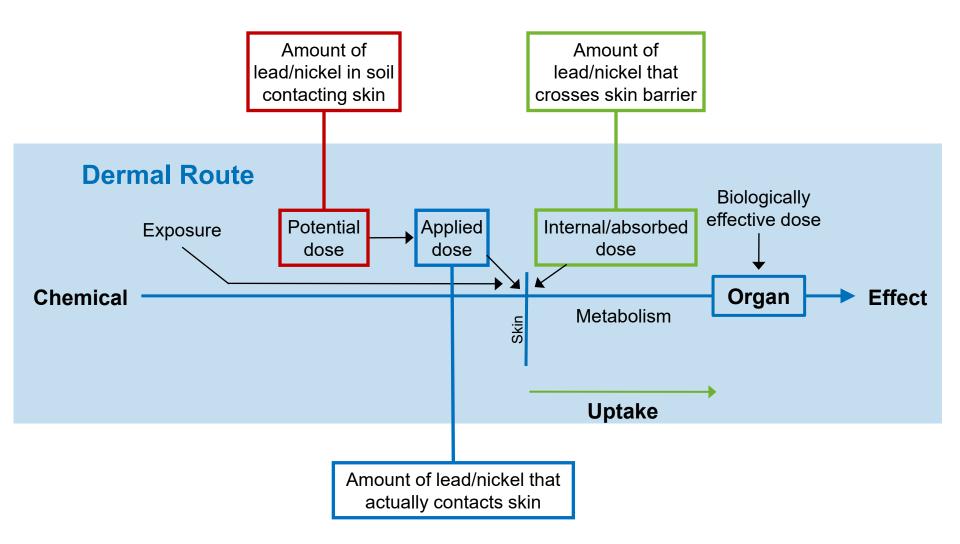
```
how long Jim
 levels of
                [how much ]
                                                           how often
                                  has been drinking
benzene in
                                                          Jim drinks
                    water
Jim's water<sup>J</sup>
                 Jim drinks J
                                      the water
                                                             water
                                      number of
                  [Jim's weight]
                                       years to
                                    average overJ
```


Exposure Example 1: Lifetime Average Daily Dose

Lifetime Average Daily Dose (LADD)

$$LADD = \frac{[C \times IR \times ED \times EF]}{[BW \times LT]}$$

- LADD is a projection based on current data
- Key element of risk assessment


Exposure Example 2: Skin Exposure to Soil Metals

- Jim's vegetable garden
- Raised beds for tomatoes and other vegetables
- Garden soil contaminated with nickel and lead
- Jim doesn't use gloves

Exposure Example 2: Skin Exposure to Soil Metals

Exposure Example 3: Kitchen Smoke Inhalation

- Jim likes to cook burgers on his kitchen range
- Hamburgers + Hot Pan + Too Much Time = Smoke!
- Smoke inhalation from the fire

Exposure Example 3: Kitchen Smoke Inhalation

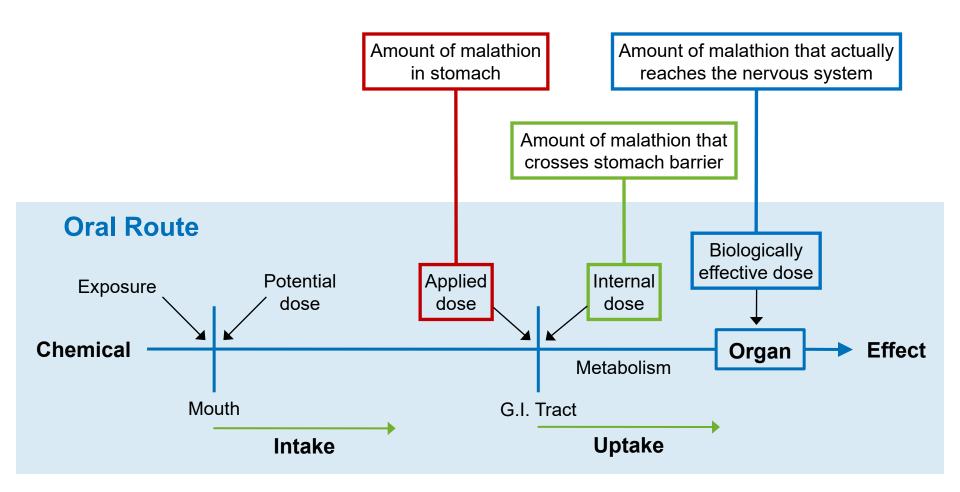
Jim's smoke exposure was brief, but he still didn't feel well

Acute Exposure: Short-term exposure that lasts no longer than a day

Contaminants in smoke are varied and complex

Difficult exposure to characterize, compared to others

Exposure Example 4: Ingestion of Pesticide Residues



- Jim grows tomatoes and peppers in the garden
- He uses malathion to control insect problems
- He eats produce in the garden or in the home without washing
- Exposure during application
 - Dermal
 - Inhalation

Exposure Example 4: Ingestion of Pesticide Residues

Exposure Examples: Concepts Introduced

Benzene in Drinking Water

- Intake versus Uptake
- Chronic Exposure
- Average Daily Dose

Kitchen Smoke Inhalation

- Acute Exposure
- Complex Mixtures
- Exposure Characterization

Skin Exposure to Soil Metals

- Dose (Potential and Internal)
- Absorbed Dose
- Uptake versus Intake

Pesticide Residues on Produce

- Applied Dose
- Internal Dose
- Biologically Effective Dose

EXPOSURE CONSIDERATIONS

Individual- versus Population-Level Assessments

- Exposure assessment usually conducted for populations or groups
- Exposure factors, or characteristics of the population, important to estimate exposure and risk:
 - Food and water intake
 - Population behaviors
 - Inhalation rates
 - Other factors relevant to scenario

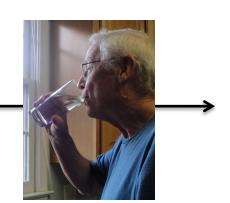
Variability and uncertainty in exposure factors

Elements of Exposure

- Pollutant source: Where are the pollutants coming from, at what rate, and where are they going?
- Exposure pathways: Connection between pollutant source and exposure including exposure media and route of exposure.
 Useful in identifying exposures of concern
- Contaminants of concern: Specific contaminants that are of concern for human health for the exposure pathway
- Receptor: The individual or population that is exposed

Pollutant Source

Leaking storage tank


Exposure Pathway

Ingestion of water

Receptor

Human drinking

Exposure Factors

- Exposure Factors: Account for variability in populations, and allow for assessment of the risks to those populations
- Include:
 - Ingestion and inhalation rates
 - Skin exposure factors
 - Body weight
 - Life expectancy
 - Others

Uncertainty and Variability

- Uncertainty refers to a lack of knowledge arising from:
 - Incomplete data
 - Incomplete understanding of processes
- Reduce by collecting more data or better data
- Compensate for by approximations and assumptions

- Variability refers to heterogeneity or diversity
 - Inherent property of a population
- Characterize with more data
- Cannot reduce or eliminate, only describe

Variability versus Uncertainty in Water Intake

Variability

- Known
 - Water intake within age groups or population groups
 - Differences in intake based on activities or climate
 - Variability in contaminant concentrations

Uncertainty

- Unknown
 - Missing water intake data
 - Media concentration data
 - Information about the geographic extent of population exposed
 - Other exposure information for the population

EPA's Guidelines for Exposure Assessment

- Published in 1992
 - Revised version currently under development
 - Topics and chapters

Introduction

Chapter 1: General Concepts in Exposure Assessment

Chapter 2: Planning an Exposure Assessment

Chapter 3: Gathering and Developing Data for Exposure Assessments

Chapter 4: Using Data to Determine or Estimate Exposure and Dose

Chapter 5: Assessing Uncertainty

Chapter 6: Presenting the Results of the Exposure Assessment

Other Key EPA Resources

- Exposure Factors Handbook and Child-Specific Exposure Factors Handbook
- Example Exposure Scenarios
- Risk Assessment Guidance for Superfund (RAGS)
- Guidance on Selecting Age Groups for Monitoring and Assessing Childhood Exposures to Environmental Contaminants
- Dermal Exposure Assessment: Principles and Applications
- Additional resources available

EXA Course Series

- **402** Approaches for Quantifying Exposure
- 403 Developing Exposure Scenarios and Calculating Dose
- 404 Fate and Transport
- **405** Monitoring and Modeling Strategies
- **406** Obtaining and Using Exposure Factor Data
- **407** Assessing Uncertainty and Variability
- **408** Interpreting Biomonitoring Data
- **409** Lead Case Study
- 410 Dioxin Case Study

United States Environmental Protection Agency

Acknowledgements

- John Stanek, PhD
- Geniece Lehmann, PhD
- Linda Philips, PhD
- Matthew Lorber, MS
- Jay Zhao, PhD
- Maureen Gwinn, PhD
- Norman Birchfield, PhD
- Cheryl Scott, MS
- Michael Troyer, PhD
- Sue Norton, PhD
- Mary Ross, PhD
- Anne Sergeant, PhD
- Michael Kravitz, PhD

- Jeff Frithsen, PhD
- Tara Greaver, PhD
- Jeff Herrick, PhD
- Glenn Suter, PhD
- John Vandenberg, PhD
- Debra Walsh, MS
- Ila Cote, PhD
- Abdel Kadry, PhD
- Reeder Sams, PhD
- And many others within NCEA contributed to development of the RATE Program Material

For more information:

Abdel-Razak Kadry, DVM, PhD, DABT

U.S. EPA/ORD/CCTE

1200 Pennsylvania Ave. NW

Mailcode 8601-RR

Washington, DC 20460

Telephone: 1-202-564-0180

kadry.abdel@epa.gov

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the **U.S. Environmental Protection** Agency