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Background: With thousands of chemicals 

in commerce and the environment, 

efficient tools are needed to support risk 

prioritization and evaluation.

Knowledge gap: Inconsistent data 

availability for concentrations in surface 

water to develop exposure estimates.

The Water Quality Portal 

(https://www.waterqualitydata.us/portal/)

provided millions of concentrations of 

organic chemicals in surface water sampled 

from 2008 to 2018 covering broad spatial

and physicochemical property ranges.

Upper right: Sampling sites of observation set represent 2114 of 2270 hydrologic subbasins. Lower left: Chemical property space 
(log10, calculated using OPERA 2.4) of observation set: vapor pressure (mmHg), octanol:air, octanol:water, water solubility (mg/L).

94 chemicals were excluded based on <2 observed values 

(measurements above the limit value) per sample phase.

We evaluated three different methods of estimation by comparing the 

confidence interval (CI) around the mean concentration across 20 

equal-sized censoring levels from <30% up to >99.5%. In every 

group, MLE had the smallest CI for the greatest number of 

chemicals.

Chemicals with mean CI >1 µg/L were excluded from further 
analysis.
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Proposed solution: Development of an open, reproducible workflow to:

1. Determine representative surface water concentrations for

hundreds of organic chemicals in the United States based on

already available monitoring data

2. Prioritize organic chemicals based on the relationship between

concentration ranges and predicted no-effect concentrations

(PNECs) for standard freshwater test species
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Using two-sample Kolmogorov-Smirnov (KS) tests, we determine

whether observed concentrations per chemical are “same” or 

“different”, comparing sets by:

• 1626 names mapped to
chemical structures using EPA’s
Chemicals Dashboard; 111 names
manually curated

• 117 unmapped; 311 names referring
to mixtures, ambiguous structures,
organometallics manually removed

The final dataset contains 1404 unique 
structures.

https://bpw.mary land.gov /wetlands/PublishingImages/2018/june003.jpg

A palustrine wetland

• Surface (some edge cases like palustrine wetland, hyporheic-

zone/Ranney well, stormwater)

• Samples labeled as simply "water" without metadata

Excluded activities: Not representative of ambient concentrations 

(blanks, spikes, leachate, initial dilution zone, radiolabeled)

Season

Although more samples 

were collected in 

warmer months, 

observations for about 

90% of chemicals were 

not significantly 

different in magnitude

Sample phase

Determined from 

three metadata 

fields. For the 334 

chemicals with both 

bulk and dissolved 

concentrations, 33% 

were significantly 

different.

Limit value type

Observations 

above reporting 

limits, quantitation 

limits, and 

detection limits 

were not 

significantly 

different.

358 dissolved estimated distributions were compared with PNECs 

based on the lowest of three TEST-predicted LC50s.

Concentration 
distributions using (left to 
right) Kaplan-Meier, 
robust regression on 
order (rROS), and 
Maximum Likellihood 
(MLE) for single chemical 
dissolved results 
with multiple censoring 
limits and 92.6% 
censored data.

The PNEC was 

within one 

standard deviation 

of the mean for 

nine chemicals 

and was not 

below any range.
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