⇒EPA

qlqlqtv yptppsktyr gafqnlfqsv qqqqqqq qqqqqqts prqqqqqq pergcvp epgaavaask glpqqlpapp eastmql lqqqqqeavs egsssgrare mglgvea lehlspgeql rgdcmyapll aeyspfk ggytkglege slgcsgsaaa fplalag ppppppphp hariklenpl psaaass swhtlftaee gqlygpcggg **Performer**

Evaluation of Cross-Species Conservation of the Androgen Receptor and the basis for Identifying Androgenic Chemicals in Nonmammalian Taxa Using Mammalian Test Systems

Sara M. Vliet

ORISE Postdoctoral Fellow Great Lakes Toxicology & Ecology Division Office of Research and Development U.S Environmental Protection Agency

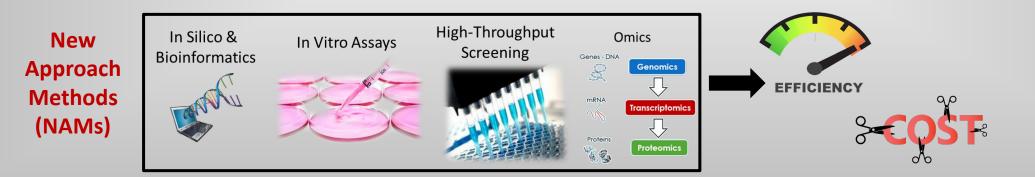
U.S. Environmental Protection Agency – Japan Ministry of the Environment 14th Bilateral Meeting on Endocrine Disruption Test Methods Development June 9-10, 2021 ifplalag pppppppp hariklenpl spsaaass swhtlftaee gqlygpcggg opglagg esdftapdvw vpggmvsrvp gafqnlfgsv gafgalpapp sassgrare mglgvea lehlspgeql rgdcmyapll agyopfk ggytkglege slgcsgsaaa ppoppppppppppp havidlenpl ppulses swhtlfta ggosepigg associate solitapdus under the sol

rmrhlsq efgwlqitpq efilmalll rkmptsc srrfvqltkl ldsvapiare

€PA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the US EPA.

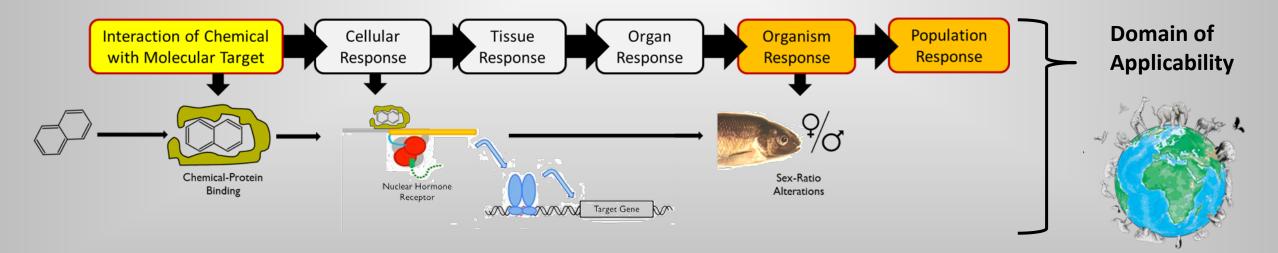
pergcvp epgaavaask glpqqlpapp eastmql lqqqqqeavs eqsssgrare mglgvea lehlspgegl rgdcmyapll aeyspfk ggytkglege slgcsgsaaa fplalag ppppppppp hariklenpl psaaass swhtlftaee gqlygpcggg pqglagq esdftapdvw ypggmvsrvp vlpidyy fppqktclic gdeasgchyg frrkncp scrlrkcyea gmtlgarklk gyecqpi flnvleaiep gvvcaghdnn rnlhvdd qmaviqyswm glmvfamgwr rmrhlsq efgwlqitpq eflcmkalll rknptsc srrfyqltkl ldsvqpiare ifplalag ppppppppp hariklenpl psaaass swhtlftaee gglygpcggg >pgglagg esdftapdvw vpggmvsrvp vqlglgrv yprppsktyr gafqnlfqsv lddddddd ddddddafer brddddddae ipergcvp epgaavaask glpgglpapp eastmol loggogeavs egsssgrare mglqvea lehlspgegl rgdcmvapll pfk ggytkglege slgcsgsaaa


rmrhlsq efigwlqitpq efformaill
:rknptsc srrfyqltkl ldsvqpiare

The Need for New Approach Methods (NAMs)

- EPA & the Endocrine Disruptor Screening Program (EDSP) are tasked with evaluating thousands of chemicals for their potential to adversely impact human health and the environment through perturbation of endocrine pathway targets.
- Large numbers of chemicals lacking bioactivity data requires the use of new methods to rapidly screen compounds for the prioritization of chemicals for further evaluation

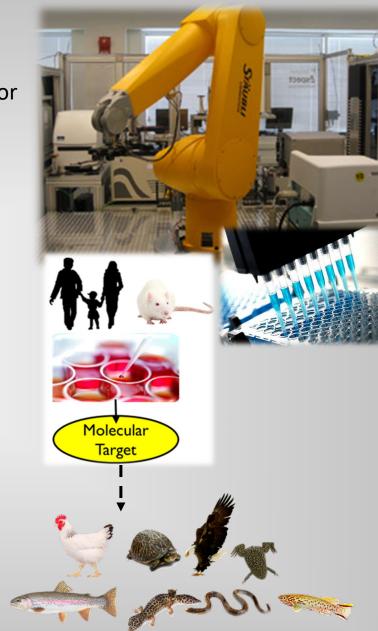
 Limited data for many compounds, limited resources for traditional toxicity testing, and international efforts to reduce animal use all necessitate the development of new approach methods (NAMs)



Surrogate Species in Toxicity Testing

• In whole animal testing, it is assumed that the sensitivity of species to a chemical is a function of their relatedness

- High throughput screening assays (US EPA ToxCast) rapidly test chemicals, identify those most likely to be endocrine disruptors, and help inform putative molecular targets for chemicals using <u>mammalian cells</u>
- Knowledge of the molecular target can be linked, though biochemical events, to an adverse outcome of regulatory concern


U.S. EPA Toxicity Forecaster (ToxCast)

U.S. EPA ToxCast Program:

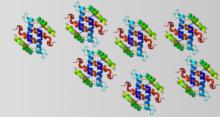
- Screens thousands of chemicals in mammalian-based high throughput assays for potential bioactivity
- Predicts chemical toxicity and prioritizes chemicals for further testing
- Identifies putative molecular targets

Assay Name	Assay Target	Model organism
ATG_TRANS	Androgen receptor, AR	Human (Homo sapiens)
NVS_NR_hAR	Androgen receptor, AR	Human (Homo sapiens)
OT_AR_ARELUC_AG_1440	Androgen receptor, AR	Human (Homo sapiens)
OT_AR_ARSRC1_0480	Androgen receptor, AR	Human (Homo sapiens)
OT_AR_ARSRC1_0960	Androgen receptor, AR	Human (Homo sapiens)
TOX21_AR_BLA_Agonist	Androgen receptor, AR	Human (Homo sapiens)
TOX21_AR_BLA_Antagonist	Androgen receptor, AR	Human (Homo sapiens)
TOX21_AR_LUC_MDAKB2_Agonist	Androgen receptor, AR	Human (Homo sapiens)
TOX21_AR_LUC_MDAKB2_Antagonist	Androgen receptor, AR	Human (Homo sapiens)
NVS_NR_cAR	Androgen receptor, AR	Chimpanzee (Pan troglodytes)
NVS_NR_rAR	Androgen receptor, AR	Norway rat (Rattus norvegicus)

- Do mammalian-based screening approaches reasonably reflect potential impacts to other species?
 - Can we expect compounds that interact with the mammalian androgen receptor (AR) to also interact with the AR in other species?

SeqAPASS: Sequence Alignment to Predict Across Species Susceptibility

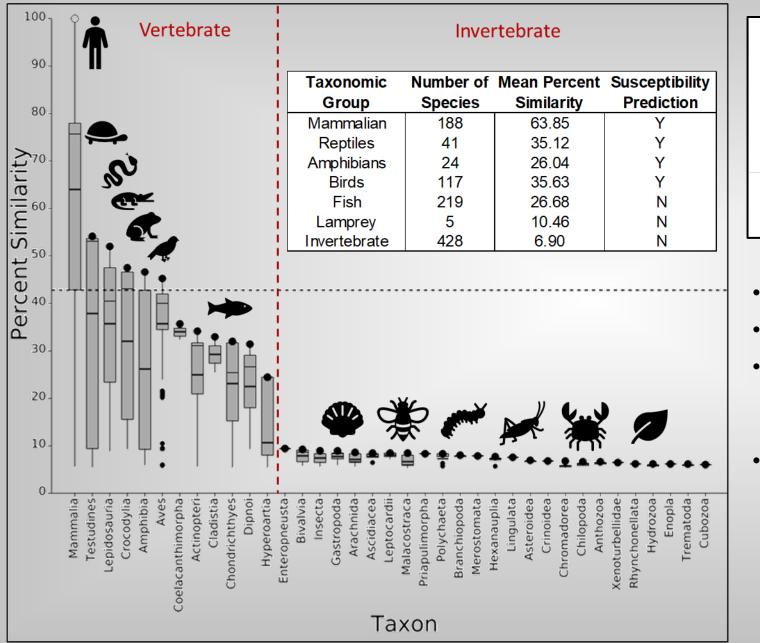
• Online, publicly available tool for understanding target conservation across thousands of diverse species

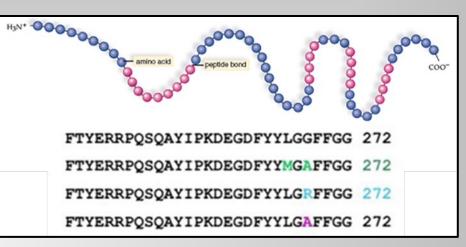


SeqAPASS Applications

- Extrapolate high throughput screening data
- Extrapolate biological pathway knowledge across species
- Predict relative intrinsic susceptibility

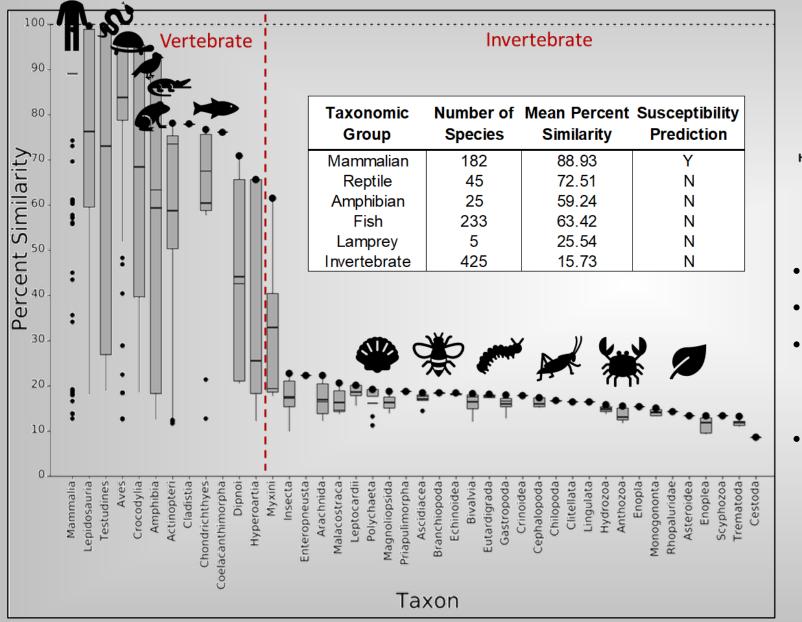
Mammalian Protein

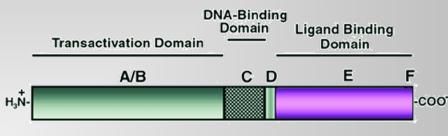

- Generate research hypotheses
- Prioritize testing efforts



Millions of Proteins Representing Thousands Of Species

Assessing AR Conservation Across Species Using the SeqAPASS Tool





Level 1 SeqAPASS Analysis

- Primary Amino Acid Sequence Alignments
- Large difference in AR amino acid sequence seen between vertebrates and invertebrates
- Results suggest fish species have lower percent similarity relative to other vertebrate species

Assessing AR Conservation Across Species Using the SeqAPASS Tool

- Level 2 SeqAPASS Analysis
- Primary Amino Acid Sequence Alignments
- Large difference in AR-LBD amino acid sequence seen between vertebrates and invertebrates
- In contrast to Level 1, the AR LBD of fish species show higher similarity to other vertebrates

Assessing AR Conservation Across Species Using the SeqAPASS Tool

Amino Acid 4 878T

853T

859T 854T

858T

857T

747T

747T

661T

661T

642T 680T

746T

748T

750T

281T

810T

826T

701T

697S

833T

156R

687R

673R

703R

578R

572R

712R

Total Match				
Partial Match Susceptible Yes				
Not a Match Susceptible No				
Common Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3
Human	Y	706N	712Q	753R
Rhesus monkey	Y	681N	687Q	728R
Rabbit	Y	687N	693Q	734R
Pig	Y	682N	688Q	729R
Black rat	Y	686N	692Q	733R
Mice	Y	685N	691Q	732R
Mainland tiger snake	Y	575N	581H	622R
Western terrestrial garter snake	Y	575N	581H	622R
Western painted turtle	Y	576N	582Q	623R
Japanese quail	Y	489N	495Q	536R
Chicken	Y	489N	495Q	536R
Zebra finch	Y	470N	476Q	517R
Chinese alligator	Y	508N	514Q	555R
Tropical clawed frog	Y	574N	580Q	621R
African clawed frog	Y	576N	582Q	623R
Reedfish	Y	578N	584Q	625R

Υ Υ

Y

Υ

Υ

Υ

Gray bichir

Rainbow trout Fathead minnow

Zebrafish

Japanese medaka

Little skate

West African lungfish

109N

640N

626N

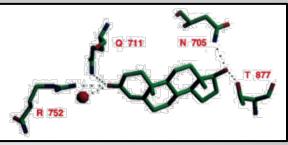
656N

531N

665N

115Q

646Q

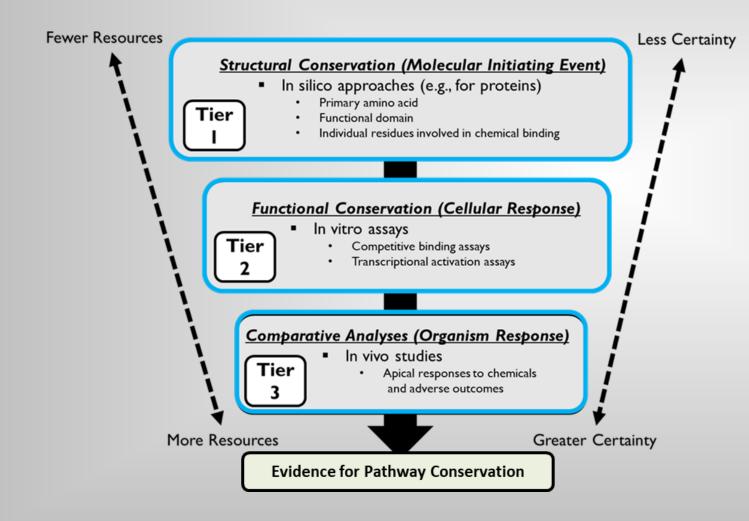

632Q

662Q

537Q

531Q

671Q



- Level 3 SeqAPASS Analysis ٠
- Close-contact amino acids •
- Vertebrate species with available ٠ data are predicted to share similar suseptibility

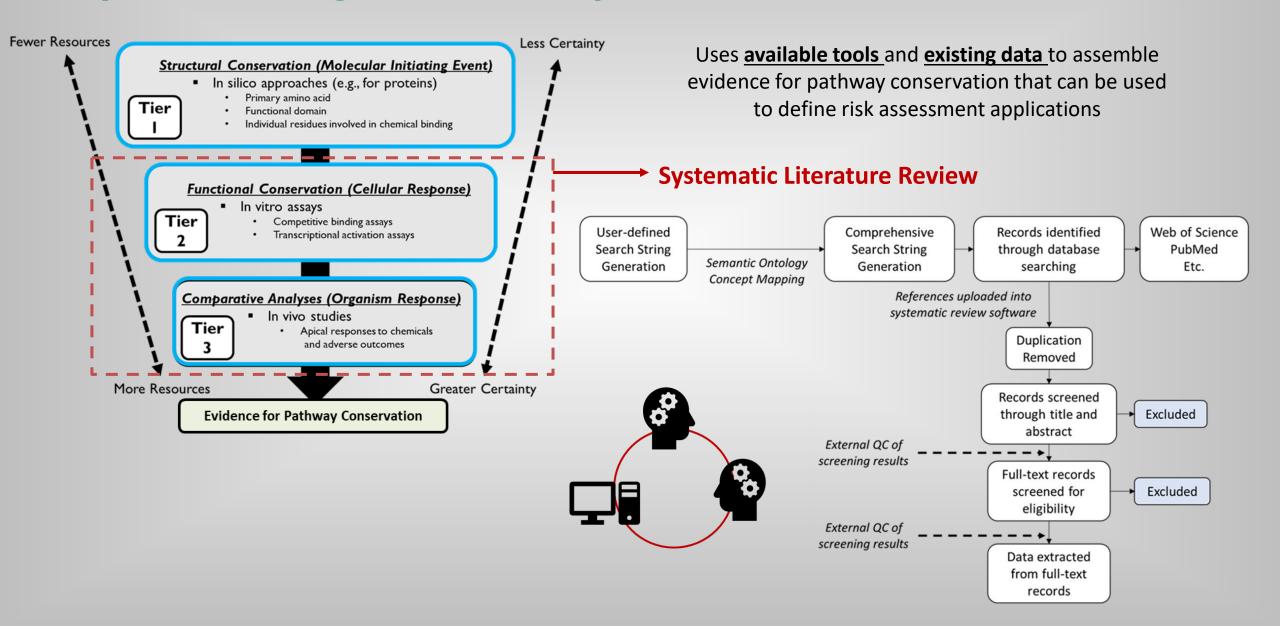
Overall, SeqAPASS analysis suggests chemicals may interact similarly with all mammalian androgen receptors

Evaluating Existing Data to Extrapolate High-Throughput Androgen Receptor Screening Data Across Species

For In Silico tools to be used in a regulatory context it is **essential** to understand how computational predictions relate to empirical data across species

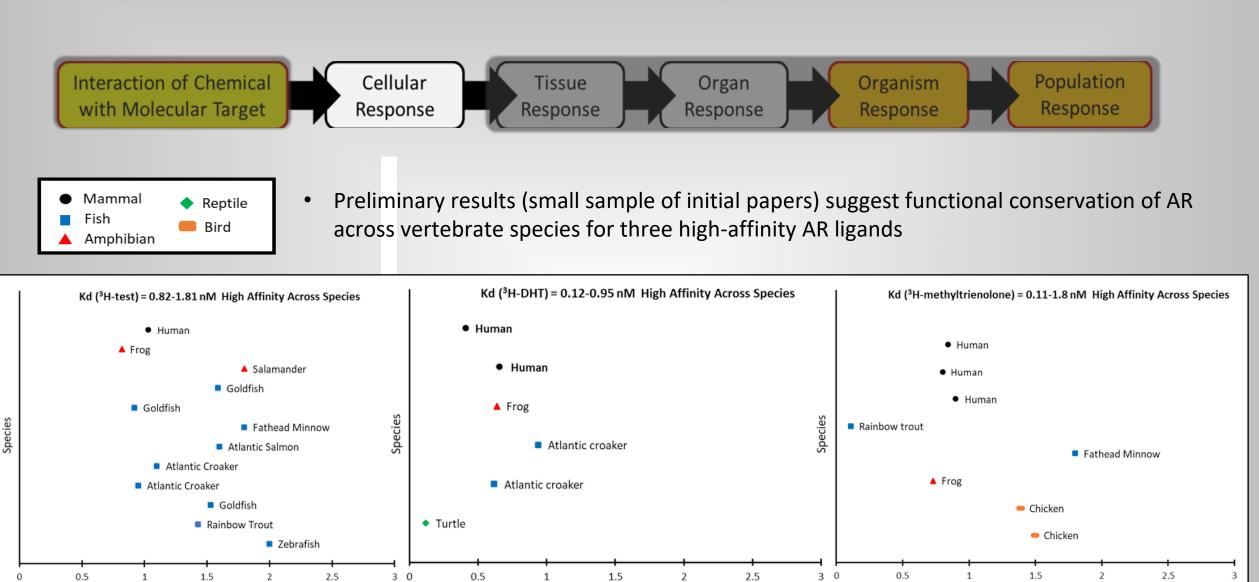
In the lab

- Cross species In vitro studies
- Cross species In vivo studies
- Chemical proteomics
- Etc.


Out of the lab

- Molecular modeling & docking
- Review of existing evidence

Etc.


We are currently working across these areas to evaluate and refine computational predictions of cross-species sensitivity

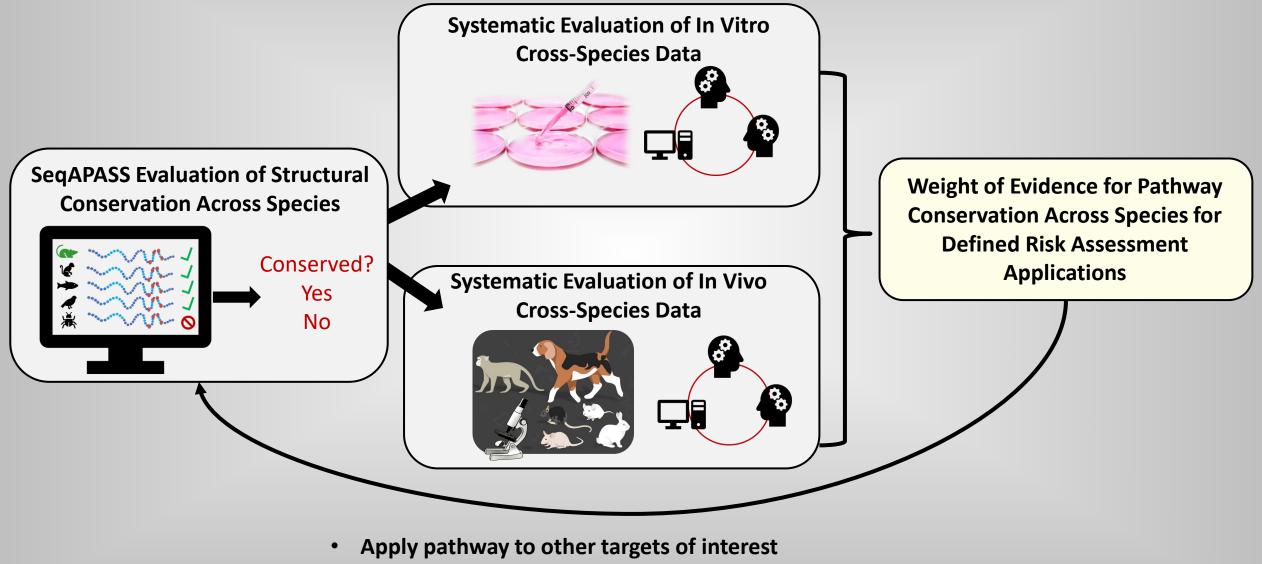
Evaluating Existing Data to Extrapolate High-Throughput Androgen Receptor Screening Data Across Species

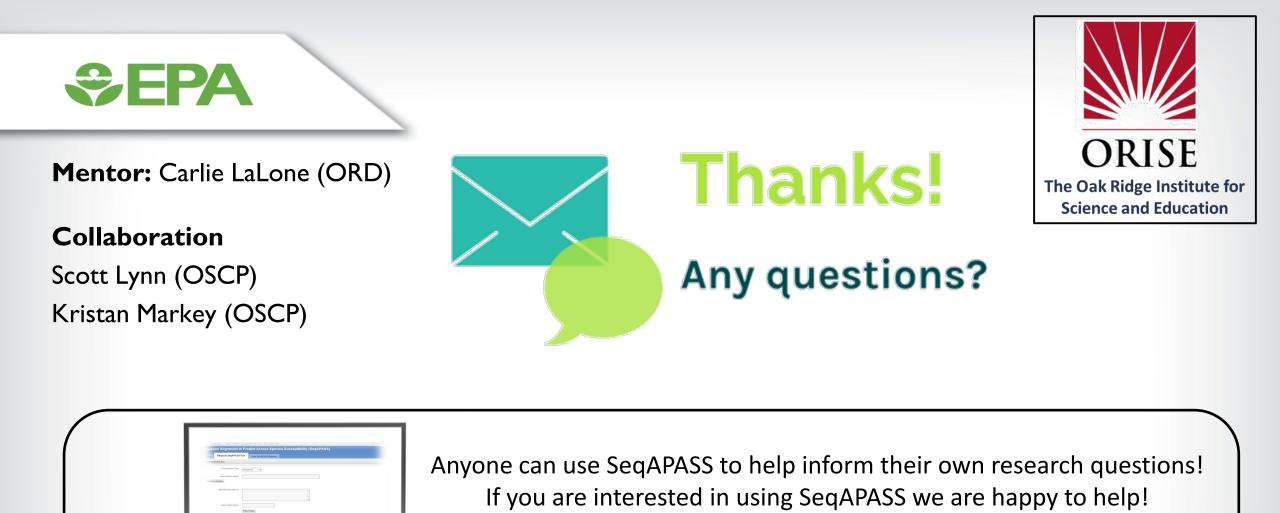
Cross-Species In Vitro Androgen Receptor Responses

Kd (nM, ³H-testosterone)

Kd (nM, ³H-dihydrotestosterone)

Kd (nM, ³H-methyltrienolone)


Cross-Species In Vivo Androgen Receptor Responses


• Preliminary results (small sample of initial papers) suggest comparative AR across vertebrate species for three high-affinity AR ligands

	Vertebrate Class					
Chemical	Fish	Reptile	Amphibian	Bird		
Testosterone (endogenous androgen)	∘Female sex reversal	 Female development of male sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations 	∘Cloacal gland induction ∘Increase in crowing behavior		
Methyltestosterone (synthetic androgen)	 Reduced gonadosomatic index 	 Female development of male sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations 	∘Reduced egg laying in females		
17ß-trenbolone (environmental androgen)	 ∘Female development of male secondary sex characteristics ∘Reduced circulating E2 Levels ∘Masculinized gonad tissue ∘Reduced vitellogenin levels 	 Permale development of male secondary sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations Female development of male secondary sex characteristics Masculinized gonad tissue 	 Cloacal gland induction Altered population sex-rations towards male-based populations 		

Evaluating Existing Data to Extrapolate High-Throughput Androgen Receptor Screening Data Across Species

Repeat process to account for the emergence of new information

https://seqapass.epa.gov/seqapass/

Vliet.Sara@epa.gov LaLone.Carlie@epa.gov Blatz.Donovan@epa.gov