
Datamining Relational Databases for Regression Analysis
Paul Harten1, Henry Helgen2, Wilson Melendez2

1US EPA/ORD, Center for Computational Toxicology and Exposure; 2General Dynamics Information Technology, Contractor to US EPA
OBJECTIVES

• Datamine EPA’s database NaKnowBase that contains details
about thousands of experiments involving nanomaterials
conducted by ORD scientists.

• Predict the adverse effects of nanomaterials from models
built from a rich number of examples via regression analysis.

APPROACH

Flatten the relational database NaKnowBase, pivoting on tables
to place multiple entries for each experiment into one unique
row, with all experiments placed in a spreadsheet format.

MAIN RESULTS

• EPA’s relational database NaKnowBase is flattened into a
spreadsheet format. Other organizations can copy and
modify the nanomaterial data for their own analysis.

• Initial steps for EPA’s Chemical Safety for Sustainability (CSS),
Emerging Materials and Technology (EMT) CSS 3.2.3
Predictive model - nanoQSAR

IMPACT

• Approaches to develop nanoQSAR models from relational
databases will facilitate the prediction of adverse activities
of novel nanomaterials.

• EPA Office of Research and Development can use nanoQSAR
models for additional investigative methods.

• For more information, contact: Paul Harten,
harten.paul@epa.gov

This work does not reflect EPA policy.

#235

Datamining Relational Databases for Regression Analysis

Overview

• Most regression analysis algorithms have training and testing samples given
in spreadsheet format, a sample for each row.

• However, sometimes the parameters, variables, and results of experiments
are held in relational databases to reduce the space needed to itemize
corresponding features.

• Because of the structure of relational databases, datamining examples of
detailed experiments into a spreadsheet format can be particularly difficult.

• This method translates your relational database into a spreadsheet format
CSV file ready for regression analysis.

Datamining Relational Databases for Regression Analysis

APPROACH
Flatten the relational database NaKnowBase, pivoting on tables to place multiple entries for each
experiment into one unique row, with all experiments placed in a spreadsheet format.

Datamining Relational Databases for Regression Analysis

APPROACH (cont.)
MySQL script to flatten the relational database NaKnowBase, pivoting on tables to place multiple
concatenated entries for each experiment into one unique row:

Datamining Relational Databases for Regression Analysis

APPROACH (cont.)
Python code to interpret the multiple concatenated entries for each row into multiple columns:

@author: Wilson Melendez
'''
import re

def split_additive_fields(df):
 '''
 Name

 split_additive_fields

 Description

 This function splits up the concatenated fields containing the additives.

 '''
 # Extract column names
 column_names = list(df.columns)

 # Determine number of rows in data frame.
 nrow = len(df.index)

 # Process the additive fields
 additive_regex = re.compile(r'additive\d\d_num_name_amt_unit')
 list_additives = list(filter(additive_regex.match, column_names))
 num_additives = len(list_additives)

 try:
 for icol in range(0, num_additives):
 if (df[list_additives[icol]].isna().values.all() == True):
 continue
 for irow in range(0, nrow):
 if (df[list_additives[icol]].iloc[irow] == None):
 continue
 else:
 list_str = df[list_additives[icol]].iloc[irow].split(":")

 # If additive name was not present, throw an exception.
 if (list_str[1] == ''):
 error_message = "Name is missing for additive " + list_additives[icol] + " at row " + irow
 raise ValueError(error_message)

 # list_str[0] = number
 # list_str[1] = name of additive
 # list_str[2] = amount of additive (numeric value)
 # list_str[3] = unit of numeric value

 strvalue = list_str[1].strip().lower() + ' additive_value'
 strunits = list_str[1].strip().lower() + ' additive_unit'

 if (list_str[2] != ''):
 df.loc[irow, strvalue] = float(list_str[2])
 else:
 df.loc[irow, strvalue] = None

 if (list_str[3] != ''):
 df.loc[irow, strunits] = list_str[3]
 else:
 df.loc[irow, strunits] = None

 except ValueError as msg:
 error_message = msg + ", additive = " + list_additives[icol] + ", row = " + irow
 print(error_message)

 # Print message to console indicating completion of this function's task.
 print("Splitting of concatenated additive fields has completed.")

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

