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Determining the Predictive Limit of QSAR Models
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Evaluating QSAR Models

QSAR models attempt to predict the population mean



Evaluating QSAR Models

QSAR models attempt to predict the population mean

QSAR models are evaluated by εobserved

This evaluation is flawed however, 
when the experimental value is not overlapping with the population mean;

this difference between them is εtrue

Population means are difficult to measure or are generally unavailable in 
typical QSAR datasets. How can we judge the quality of a QSAR model 

when it is inevitably trained on experimental values which do not represent 
population means?



Evaluating QSAR Models

Population means are difficult to measure or are generally unavailable in 
typical QSAR datasets. How can we judge the quality of a QSAR model 

when it is inevitably trained on experimental values which do not represent 
population means?

Take a QSAR dataset and: 
• Designate the original experimental values as “population means” 
• Add simulated error to these values 
• Predict the original values (population means) 
• Predict the error laden values
• Compare metrics

Research Question

Strategy



Experimental Error in QSAR

Cortes-Ciriano et al. J. Chem. Inf. Model., 2015, 55, 1413 Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

• Uncertainty information from multiple 
measurements is rare in cheminformatics

• Simulated error can elicit different responses from 
different algorithms; certain hyperparameters govern 
these responses



Error in QSAR

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

“It follows that the model’s prediction of the external test set 
will have uncertainty equal to or greater than that contained 

within the training set.”
Wenlock et al. J. Med. Chem., 2012, 55, 5165 

“The experimental uncertainty sets the upper limit of 
performance of in silico models that can be achieved.”

Val1

Val2

Val3

Val4

Val5

TestTrain

• Train is commonly acknowledged to contain error
• It is assumed that Test has no error
• Models are evaluated on their ability to predict error laden data
• So why is it often stated that a model’s prediction accuracy is 

limited by experimental accuracy?



Error in QSAR
This work seeks to directly test the hypothesis

that a model’s prediction uncertainty is limited by the uncertainty in the training data

Datasets:
• Span a range of complexity from quantum mechanical to in vivo toxicological
• Represent endpoints of interest in QSAR
• The series of datasets will have endpoints with increasing levels of experimental uncertainty

Methods:
• Add simulated error to each dataset
• Build models on the error laden data
• Predict the true values
• Predict the error laden values
• Compare model performance



Datasets
Dataset Category Number of Moleculesa Endpoint Range

G298_atom Quantum Mechanical 131,082 ΔGo
at (kcal mol-1) -2,417  ̶ -288

Alpha Quantum Mechanical 131,082 α (Bohr3) 9.0  ̶ 27.8

Lip Physiochemical 4,200 logD -1.5  ̶ 4.5

Solv Physiochemical 642 ΔGo
hyd (kcal mol-1) -25.5  ̶ 3.4

BACE Biochemical 1,513 pIC50 2.5  ̶ 10.5

Tox_102b Toxicological in vitro 971 logAC50 -2.1  ̶ 4.7

Tox_134c Toxicological in vitro 1,347 logAC50 -4.0 – 2.8

LD50 Toxicological in vivo 5,003 logLD50 (mg kg-1) -1.9  ̶ 4.8
a Original size of the dataset. If datasets have more than 1,000 molecules, they were randomly sampled down to a size of 
1,000 before modeling.
b Includes data exclusively from the ATG-PPre-cis assay
c Inclues data exclusively from the ATG-PPARg-trans assay
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Simulating Random Error

𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛 = 𝑌𝑌 + 𝑁𝑁(0,𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑛𝑛𝑛𝑛 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑛𝑛

𝑛𝑛 ∈ 0, … , 14

𝑚𝑚 ∈ (1, … , 5)



Algorithms and Hyperparameters
Algorithm Hyperparameters Searched in Optimization

Ridge Regression (Ridge) PCA n components ∈ (1, 3, … , 59)

α ∈ (1, 2, 3, 4, 5, 10)
k- Nearest Neighbors (kNN) PCA n components ∈ (1, 3, … , 59)

k ∈ (1, 2, … , 20)
Support Vector Regressor (SVR) PCA n components ∈ (1, 3, … , 59)

C ∈ (0.01, 0.1, 1, 10)

kernel: Radial basis function (RBF)
Random Forest (RF) PCA n components ∈ (1, 3, … , 59)

n estimators ∈ (1, 10, … , 200)

max depth ∈ (1, 3, … , 99)

max leaf nodes ∈ (2, 12, … , 92)
Gaussian Process (GP) PCA n components ∈ (1, 3, … , 59)

kernel: RBF, WhiteKernel, Matern, DotProduct, ExpSineSquared, ConstantKernel or 
RationalQuadratic

Normalize y: True



G298_atom Results



Tox134 Results



RMSE Slopes
Dataset Slope Ridge kNN SVR RF µ ± σ

G298_atom
m 0.93 0.79 0.71 0.79 0.81 ± 0.079

mtrue 0.16 0.09 0.08 0.09 0.11 ± 0.032

Alpha m 1.0 0.83 0.87 0.89 0.90 ± 0.063

mtrue 0.14 0.10 0.12 0.12 0.12 ± 0.014

Lip m 0.40 0.36 0.44 0.41 0.40 ± 0.029

mtrue 0.02 0.02 0.06 0.03 0.033 ± 0.016

Solv m 0.75 0.81 0.89 0.72 0.79 ± 0.065

mtrue 0.13 0.27 0.27 0.12 0.20 ± 0.073

Dataset Slope Ridge kNN SVR RF µ ± σ

BACE m 0.52 0.53 0.67 0.54 0.57 ± 0.061

mtrue 0.04 0.05 0.23 0.05 0.093 ± 0.079

Tox_102 m 0.44 0.49 0.44 0.43 0.45 ± 0.023

mtrue 0.01 0.05 0.002 0.01 0.018 ± 0.019

Tox_134 m 0.52 0.57 0.55 0.50 0.53 ± 0.027

mtrue 0.01 0.04 0.01 -0.02 0.01 ± 0.021

LD50 m 0.44 0.43 0.48 0.48 0.46 ± 0.023

mtrue 0.00 0.04 0.08 0.03 0.038 ± 0.029



RMSE Slope Ratios
Dataset/Algorithm Ridge kNN SVR RF µ ± σ

G_298_atom 5.8 8.8 8.9 8.8 8.1 ± 1.3

Alpha 6.9 8.7 7.3 7.8 7.7 ± 0.67

Lip 19 18 6.9 14 14 ± 4.8

Solv 5.8 3.0 3.3 6.1 4.6 ± 1.4

BACE 13 12 2.9 12 10 ± 4.1

Tox_102 44 10 220 43 79 ± 82

Tox_134 52 14 55 - 40 ± 19

LD50 - 11 6.0 16 11 ± 4.1

µ ± σ 21 ± 18 11 ± 4.1 39 ± 70 15 ± 12

µ ± σ a 10 ± 5.2 10 ± 4.5 5.9 ± 2.1 11 ± 3.5
a With Tox102 and Tox134 ratios omitted.



Gaussian Process (GP) Results
Ŷ = ŷ1, ŷ2, … , ŷ𝑛𝑛

𝜎𝜎ŷ = 𝜎𝜎ŷ1,𝜎𝜎ŷ2, … ,𝜎𝜎ŷ𝑛𝑛

𝑀𝑀𝑚𝑚𝑀𝑀𝑛𝑛 𝜎𝜎ŷ =
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2

𝑌𝑌 = 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛

𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦1,𝜎𝜎𝑦𝑦2, … ,𝜎𝜎𝑦𝑦𝑛𝑛

Information about experimental uncertainty



Gaussian Process (GP) Results
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GP Slope ratios
Dataset No σy With σy

G_298_atom 1.9 2.0

Alpha 1.8 9.4a

Solv 1.6 2.5a

BACE 3.8 7.8a

Tox_102 2.8 -b

Tox_134 7.0 -b

LD50 5.4 6.0

µ ± σ 3.5 ± 1.9 5.5 ± 2.9

aSlopes m and mtrue were calculated excluding the first two points due

to a discontinuity in the line.

bThe slope mtrue was negative for these plots, so the slope ratio was

not calculated.



Gaussian Process (GP) Results



Gaussian Process (GP) Results



GP Prediction Uncertainties
No σy No σy With σy With σy

Dataset Mean σy σy 95% CI Mean σy σy 95% CI

G_298_atom 1.0 0.40 0.52 -0.10

Alpha 1.1 0.16 0.44a 0.32a

Solv 0.94 -0.19 0.10 0.10

BACE 0.25 0.38 -0.12 -0.35

Tox_102 0.32 0.028 -0.96 -0.48

Tox_134 0.49 0.53 -0.66 -0.17

LD50 0.66 -0.39 -0.60 0.14

a The first point was omitted in these calculations because of a discontinuity in the

line.



Conclusions
• QSAR models are built on data which typically do not approximate the population means of the measurements

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

Kalliokoski et al. PLoS ONE, 2013, 8, e61007

Kramer et al. J. Med. Chem., 2012, 55, 5165



Conclusions
• QSAR models are evaluated on Test sets which have error

Val1

Val2

Val3

Val4

Val5

TestTrain

This has led to the assumption that a model’s prediction uncertainty is limited by the experimental uncertainty in Train



Conclusions

Methods
• Gaussian error was added to 8 representative QSAR datasets and modeled using 5 algorithms

• The use of Gaussian distributed error represents an ideal but realistic simulation of real-world modeling

Results
• For each dataset and algorithm, the true test set was always predicted more accurately than the error laden test set
• The difference between RMSE and RMSEtrue depends on algorithm, dataset, and the level of added error

• When using an algorithm which directly outputs prediction uncertainty such as Gaussian Process
• Increasing the simulated error increases the prediction uncertainty 
• Providing information about error to the algorithm mitigates these trends



Conclusions

Implications
• QSAR models can predict population means accurately, even when trained on error laden values
• Evaluation of QSAR models on error laden test sets can give flawed interpretations of performance

• A model may be predicting population means but this will be obscured by test set error

• Different models respond differently to error
• RMSE/RMSEtrue is model dependent
• RMSE is observed
• RMSEtrue is unknown

• Determining relative performance between two different models could be tenuous and potentially misleading



Future Work
• Evaluation of new algorithms and new models will be similarly limited by knowledge of the uncertainty 

in validation and test sets

• New methods of inferring uncertainty in datasets and new evaluation methodologies which utilize 
knowledge of uncertainty are needed to give more reliable comparisons of QSAR models

• Our group will focus on sources of error prominent in toxicological modeling, particularly systematic 
error
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