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OBJECTIVES
Non-targeted analysis is a powerful tool for identifying
chemicals within environmental samples, although only a
fraction of these chemicals are detectable with a particular
analytical method.
EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT)
showed up to 40% of compounds (out of 1,269 tested) may
be unamenable to LC-MS.
We develop models capable of determining the amenability
of chemical compounds in an LC-MS using electrospray
ionization.

MAIN RESULTS
Upsampling leads to over-fitted models, however
downsampling leads to well-fitted models, albeit with a
smaller descriptor space.
Models showed better performance than those based on
random chance.

APPROACH
LC-MS ESI+/- detected compounds from MassBank of North
America (MoNA) as well as compounds detected/not-
detected from ToxCast library.
Sampling methods were applied to account for large
disparity in amenable vs. unamenable compounds.
Random forest models constructed to predict compound
amenability based on PaDEL molecular descriptors.
Models were validated using an external dataset and a
simulated suspect screening.

IMPACT
Amenability models capable of predicting novel compound
amenability with good accuracy.
Can lead to significant time and resource cost by eliminating
unnecessary testing.
Amenability predictions for DSSTox database and web
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MAIN RESULTS
Model performances for fitting, training, and cross-validated sets for the test and Y-randomized test sets.

Training Set Fivefold CV
Model Size |Balanced Accuracy |Sensitivity |Specificity | Balanced Accuracy |Sensitivity | Specificity
ESI+ Models (Downsampling Applied) | 580 0.78 0.79 0.77 0.77 0.76 0.78
ESI+ Models (Upsampling Applied) 6340 0.99 1.00 0.99 0.99 0.98 1.00
ESI- Models (Downsampling Applied) 550 0.83 0.82 0.84 0.81 0.83 0.79
ESI- Models (Upsampling Applied) 4688 0.99 1.00 0.98 0.98 0.97 1.00
Test Set Y-randomization
Model Size |Balanced Accuracy |Sensitivity |Specificity | Balanced Accuracy |Sensitivity | Specificity
ESI+ Models (Downsampling Applied) |1153 0.81 0.85 0.76 0.48 0.44 0.51
ESI+ Models (Upsampling Applied) 1153 0.58 0.98 0.19 0.55 0.48 0.63
ESI- Models (Downsampling Applied) 871 0.82 0.85 0.80 0.50 0.49 0.51
ESI- Models (Upsampling Applied) 871 0.68 0.99 0.38 0.51 0.46 0.56

 The upsampled models initially appear superior, however the results for the test set show poor accuracy — a result of
overfitting.

 The downsampled models show similar accuracy for both training and test data in the ~0.8 range, much better than those
built based on random chance in the Y-randomization models.
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MAIN RESULTS
Model performances for ESI+ and ESI- downsampled model predictions compared to external validation data.
While accuracy is lower (still acceptable) than observed for the test set taken from the modeling dataset, this dataset strictly

excluded any chemicals from the modeling dataset and is thus biased toward unseen parts of chemical space.
ESI- Downsampled Model
Amenable (Prediction) [Unamenable (Prediction)

Detected (Experiment) 323 502
Not-detected (Experiment) 68 874
Sensitivity 0.83
Specificity 0.64
Balanced Accuracy 0.73

ESI+ Downsampled Model
Amenable (Prediction) [Unamenable (Prediction)

Detected (Experiment) 423 402
Not-detected (Experiment) 103 839
Sensitivity 0.8
Specificity 0.68
Balanced Accuracy 0.74

Combined Models
Amenable (Prediction) [Unamenable (Prediction)

Detected (Experiment) 505 320
Not-detected (Experiment) 129 813
Sensitivity 0.8
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Rank by ESI+ Downsampled Model Prediction
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Frequency counts of candidate compounds found to be a
match for a suspect screening compound ordered by prediction

rank value (with 1 being the highest confidence rank, and 50
the lowest) based on ESI+ LC-MS amenability predictions.

This result shows that ranking candidates based on the

confidence measure from the random forest model can provide
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A plot of prevalent chemotypes in the Tox21 dataset and the
model dataset used in this work, selected based on the absolute
difference of frequency of occurrence between datasets.

This plot provides insight into the portion of chemical space not
currently represented in the models (some of which will never be

represented). Future work will attempt to address these
deficienciec to imbrove 11sefiilnecc for aonalve<ic of environmental
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