<u>Ann Richard¹</u>, Ryan Lougee², Grace Patlewicz¹, Chris Grulke¹, Antony Williams¹, Chihae Yang³, James Rathman⁴, Tomasz Magdziarz³ ¹Ctr. for Comput. Toxicol. & Exposure, ORD, U.S. EPA; ² ORISE, Oak , TN; ³MN-AM, Nuremberg, Germany, ⁴MN-AM, Columbus, OH

Abstract #263

EPA

Approach: Building & Validating the PFAS ToxPrint Feature Set

Publicly available molecular fingerprinting methods:

<u>File Edit View Selection Find Packages H</u>elp

Can be extended to include atom and bond

Advantages of ToxPrints (coded in open CSRML)

- 729 structural features spanning diverse chemical space
- Chemically informative and intuitive names
- Good coverage of functional groups, includes some PFAS substructures
- Can visualize and export from publicly available Chemotyper
- → **BUT,** ToxPrints are missing many important PFAS concepts

Create CSRML-based TxP_PFAS set

- ✓ PFAS Terminology paper expert categories (*Buck et al., 2011; Cousins et al., 2020*)
- ✓ Collected structures related to toxicity & adverse outcomes
- ✓ Searched literature for interesting byproducts and structures
- ✓ Incorporated OECD PFAS Global list categories & structures (*Wang, 2018*) as well as missing categories (*Sha et al., 2019*)
- ✓ Incorporated/modified functional groups from public ToxPrint CSRML file (*Yang et al., 2015*)
- ✓ Created new PFAS CSRML features, validated in Chemotyper with structures from PFASSTRUCT and PFASOECD lists (<u>https://comptox.epa.gov/dashboard/chemical_lists</u>)
- ✓ Added PFAS-defining features (i.e., bounded PFAS space of PFASSTRUCT) and generic features to capture broader category concepts

Features defining the PFASSTRUCT space: must be present for chemical to be defined as PFAS

"excl"exclusive chain length (e.g., only C6 chain length)
"plus"includes all higher chain lengths (e.g., C9 and above)
"cap"terminal group
"nocap"...open ended terminal group
"polyF" ...incomplete fluorination (i.e., some C-H bonds)

PFASSTRUCT (8150) Sample "Category Totals"

- 1886 perfluoro ≥ C6 substances
 - > 974 ≥ C8 perfluoro
 - > 474 fluorotelomer-type
 - 95 sulfonyl-containing (acid, ester, sulfonamide)
- 421 uncapped perfluoro \geq C6 substances
- 338 perfluoro rings \geq C6
- 1862 branched perfluoro (C1-C2)
 - > 269 branched + perfluoro ≥ C6 substances

TxP_PFAS features alone or in combinations provide flexible means for constructing structure-based PFAS category definitions.

Do fluorotelomer-type TxP_PFAS features identify expert-assigned fluorotelomer-named compounds?

PFASSTRUC	8150	122 FT
	structures	names
TxP_PFAS_C1_alkane_chain_excl	951	10
TxP_PFAS_C2_alkane_chain_excl	725	96
TxP_PFAS_C3_alkane_chain_excl	90	5
TxP_PFAS_C4_alkane_chain_plus	191	4
Structure contains Fluorotelomer-type TxP	1957	115

- Fluorotelomers (FTs) that contain PFOA precursors can be metabolized into, and degrade to, PFOA
- PFOA is also formed as byproduct in production of FTs, and is found in goods treated with fluorotelomers, including food contact substances.

"fluorotelomer

" in name

- Name-based FT category is PFAS domain-specific, requires chemical expertise, and FT names are not consistently applied nor universally understood
- TxP_PFAS FT-type features support a clear, reproducible, easy to apply, structure-based category representation

Application: PFAS Inventory Profiling & EPA_147 PFAS screening

EPA_147 is set of 147 PFAS chemicals undergoing Tier 1 screening within EPA's ToxCast program

- Subset of 34 TxP_PFAS were used to categorize EPA's inventory for chemical selection, read-across and assay data analysis (*Patlewicz et al., 2019*)
- > 88 total TxP_PFAS represented in 147 set

Summary

TxP_PFAS CSRML:

- Captures chemically relevant features characterizing known, structurally diverse PFAS inventory
- Enables consistent, reproducible, structure-based profiling and grouping of PFAS chemicals
- Can be imported into public Chemotyper (<u>https://chemotyper.org</u>) to visualize and group PFAS structures with features
- Will enable standardized exchange of PFAS information based on structure

Future Plans

- Make TxP_PFAS CSRML file publicly available on the ToxPrint website, <u>https://toxprint.org/</u> and TxP_PFAS fingerprint file for PFASSTRUCT on <u>https://figshare.com/</u>
- Apply TxP_PFAS to modeling and read-across of assay data to identify features associated with bioactivity
- Establish TxP_PFAS feature correspondence with widely used PFAS category concepts (alone or in combination with other features)
- Add new TxP_PFAS features/properties as needed to capture evolving understanding of PFAS category patterns in relation to bioactivity and environmental fate & transport

References

- 1. Lau, C., et al., Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci, 2007. 99(2): p. 366-94.
- 2. Buck, R.C., et al., Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag, 2011. 7(4): p. 513-41.
- 3. Cousins, I.T., et al., Strategies for grouping per-and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ Sci: Processes & Impacts, 2020.
- 4. Wang, Z., S25 | OECDPFAS | List of PFAS from the OECD. Zenodo Dataset, 2018, DOI 10.5281/zenado.2648776.
- 5. Sha, B., et al., Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environ Sci Process Impacts, 2019. 21(11): p. 1835-1851.
- 6. Yang, C., et al., New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J Chem Inf Model, 2015. 55(3): p. 510-28.
- 7. Patlewicz, G., et al., A chemical category-based prioritization approach for selecting 75 per-and polyfluoroalkyl substances (PFAS) for tiered toxicity and toxicokinetic testing. Environ Health Perspec, 2019, 127(01), 014501.

This poster does not necessarily reflect FPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.