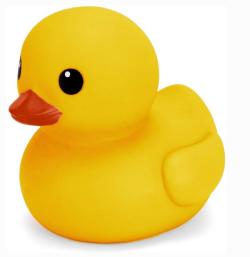


Predicting Compound Amenability with Liquid Chromatography Mass Spectrometry to Improve Non-targeted Analysis

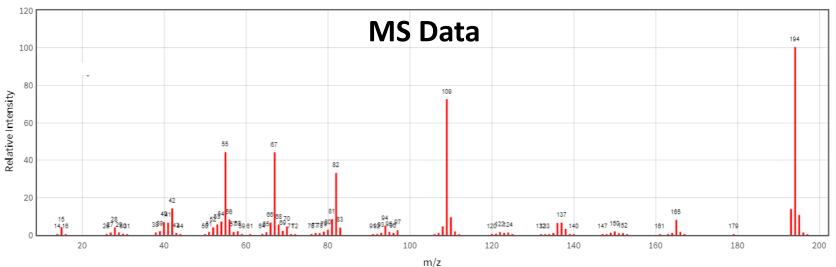
Charles N. Lowe¹, Kristin K. Isaacs¹, Andrew McEachran², Christopher M. Grulke¹, Jon R. Sobus¹, Elin M. Ulrich¹, Ann Richard¹, Alex Chao¹, John Wambaugh¹, and Antony J. Williams¹


Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC
Agilent Technologies, Inc., Santa Clara, CA

Office of Research and Development Center for Computational Toxicology and Exposure

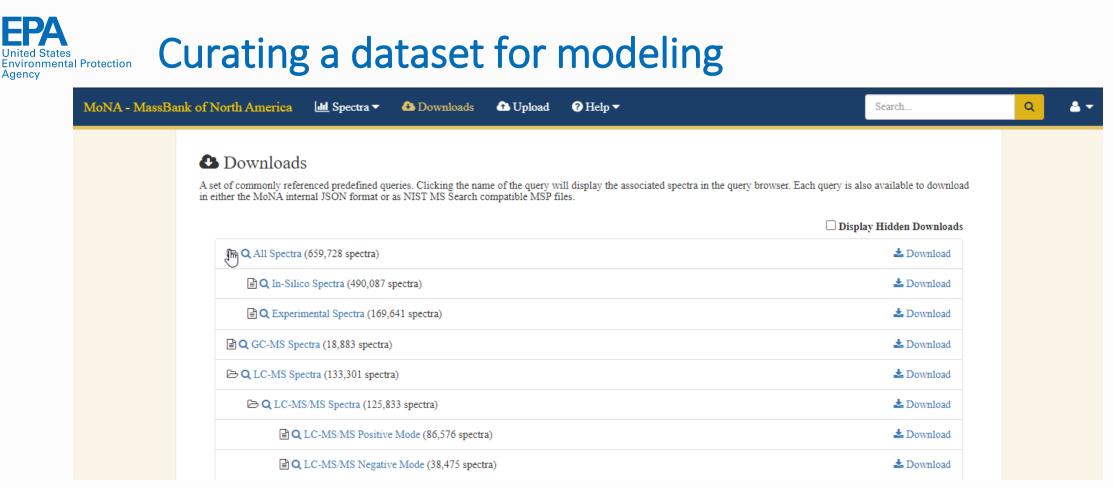
Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Complex samples, NTA, and the modeling problem Environmental Protection


Agency

Media Sample

Extraction, Cleanup & **Sample Preparation**

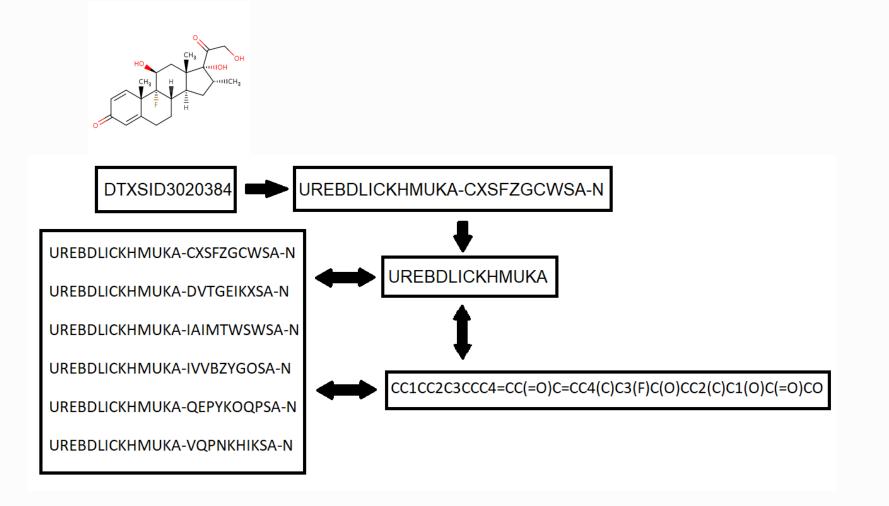

Mass Spectrum

MS Analysis

- 4,103 unique compounds detected in ESI+ LC-MS
- 3,007 unique compounds detected in ESI- LC-MS
- 1,542 unique compounds detected in both modes

- Only amenable compounds identified in MoNA
 - No unamenable compound data
- ToxCast library LC-MS/MS curation
 - Spectra checked individually for quality
 - Provides unamenable compound data
- ESI+ LC-MS/MS
 - 393 amenable; 456 unamenable
- ESI- LC-MS/MS
 - 456 amenable; 402 unamenable

- Only amenable compounds identified in MoNA
 - No unamenable compound data
- ToxCast library LC-MS/MS curation
 - Spectra checked individually for quality
 - Provides unamenable compound data
- ESI+ LC-MS/MS
 - 393 amenable; 456 unamenable
- ESI- LC-MS/MS
 - 456 amenable; 402 unamenable



Overall dataset

- ESI+ LC-MS/MS
 - 4,226 amenable; 387 unamenable
- ESI- LC-MS/MS
 - 3,130 amenable; 360 unamenable

Curating a dataset for modeling

Describing molecular structures

Software News and Update

PaDEL-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints

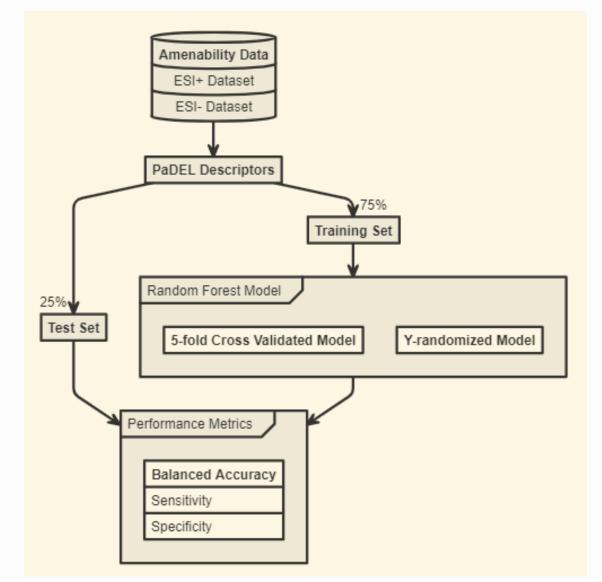
CHUN WEI YAP

Department of Pharmacy, Pharmaceutical Data Exploration Laboratory, National University of Singapore, Singapore

Received 17 May 2010; Revised 22 August 2010; Accepted 12 October 2010 DOI 10.1002/jcc.21707 Published online 17 December 2010 in Wiley Online Library (wileyonlinelibrary.com).

• 1,444 1D & 2D Molecular descriptors from QSAR-ready SMILES. Examples include...

- Electrotopological states weighted by atomic properties
- Molecular linear free energy relationships weighted by atomic properties
- Atom, bond, & ring counts
- LogKow (logP) predictions, etc..


Cleaning and reduction of descriptor space

- Dimension reduction will do two things:
 - improve interpretability of models
 - make model calculations faster
- Remove chemicals missing descriptors*
- Remove any constant descriptors (variance(x) = 0)
- Remove near-constant descriptors (sd(x) < 0.25)
 - 0.25 gives a good balance between reduction and retention
- Calculate pairwise correlations between remaining descriptors
 - Eliminate based on a cutoff = 0.96 correlation
 - descriptor showing largest pair correlation with other descriptors was excluded

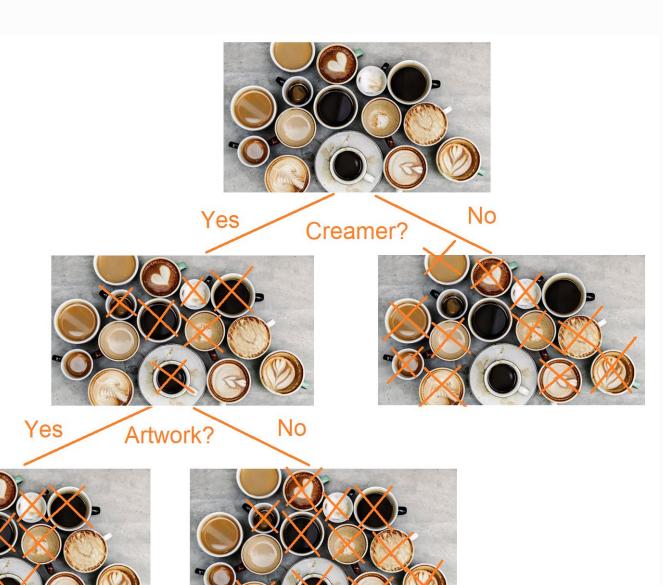
1,444 descriptors → 451 descriptors

Machine learning approach

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

 $balanced \ accuracy = \frac{sensitivity + specificity}{2}$

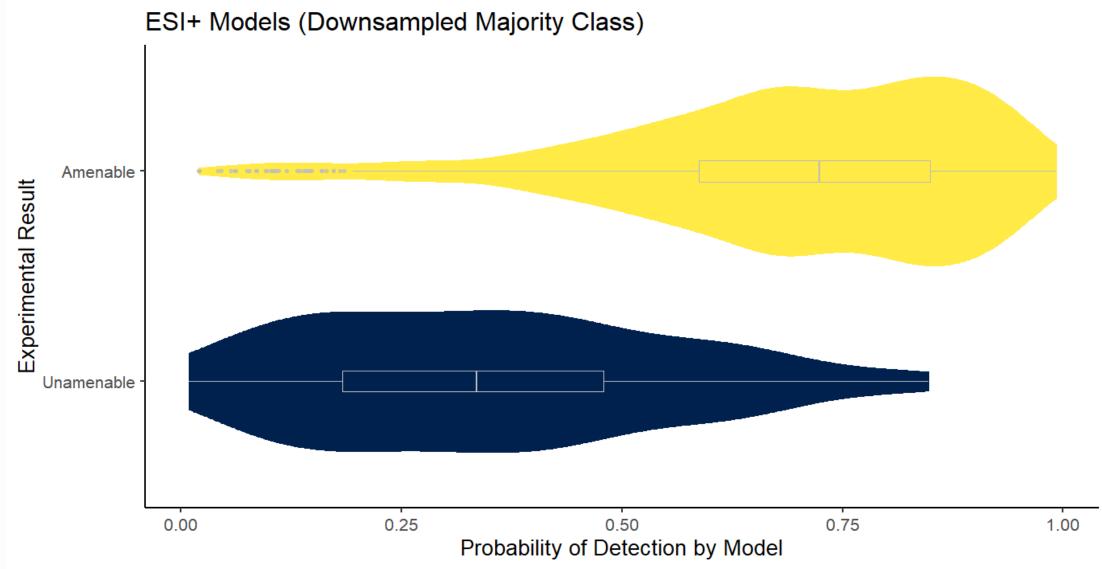

Random Forest Algorithm

Training set $X = x_1 x_2 \dots x_n$ with responses

 $Y = y_1 y_2 \dots y_n$

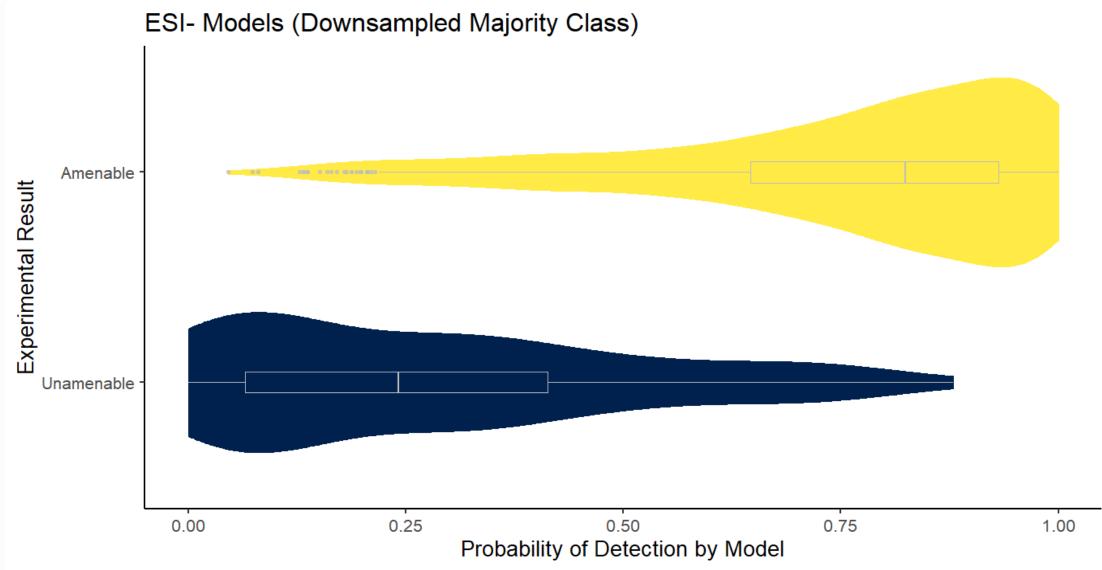
For number of trees, *b* = 1,...,*B*

- 1. Sample, with replacement, *n* training examples from *X*, *Y*; *X*_b, *Y*_b.
- 2. Train a classification tree f_b on X_b , Y_b .
- 3. The majority of all f_b classifies unseen endpoints.

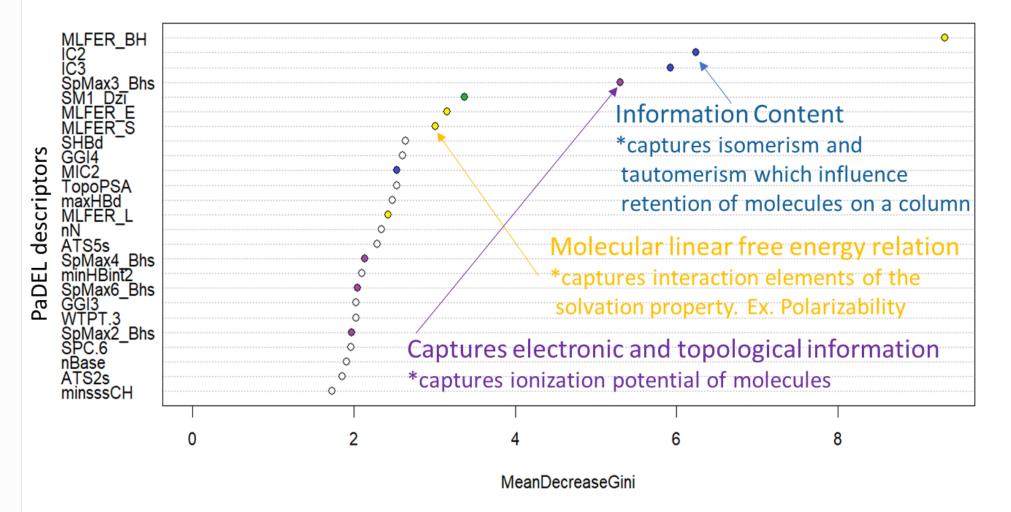


Model performance

	Training Set				Fivefold CV		
Model	Size	Balanced Accuracy	Sensitivity	Specificity	Balanced Accuracy	Sensitivity	Specificity
ESI+ Models	0126	Accuracy	Sensitivity	opecificity	Accuracy	Sensitivity	opecificity
(Downsampling Applied)	580	0.78	0.79	0.77	0.77	0.76	0.78
ESI+ Models							
(Upsampling Applied)	6340	0.99	1.00	0.99	0.99	0.98	1.00
ESI- Models							
(Downsampling Applied)	550	0.83	0.82	0.84	0.81	0.83	0.79
ESI- Models							
(Upsampling Applied)	4688	0.99	1.00	0.98	0.98	0.97	1.00
	Test Set			Y-randomization			
		Balanced			Balanced		
Model	Size	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
Model ESI+ Models	Size	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
	Size 1153	Accuracy 0.81	Sensitivity 0.85	Specificity 0.76	Accuracy 0.48	Sensitivity 0.44	Specificity 0.51
ESI+ Models							
ESI+ Models (Downsampling Applied)							
ESI+ Models (Downsampling Applied) ESI+ Models	1153	0.81	0.85	0.76	0.48	0.44	0.51
ESI+ Models (Downsampling Applied) ESI+ Models (Upsampling Applied)	1153	0.81	0.85	0.76	0.48	0.44	0.51
ESI+ Models (Downsampling Applied) ESI+ Models (Upsampling Applied) ESI- Models	1153 1153	0.81	0.85	0.76	0.48	0.44	0.51


Model performance

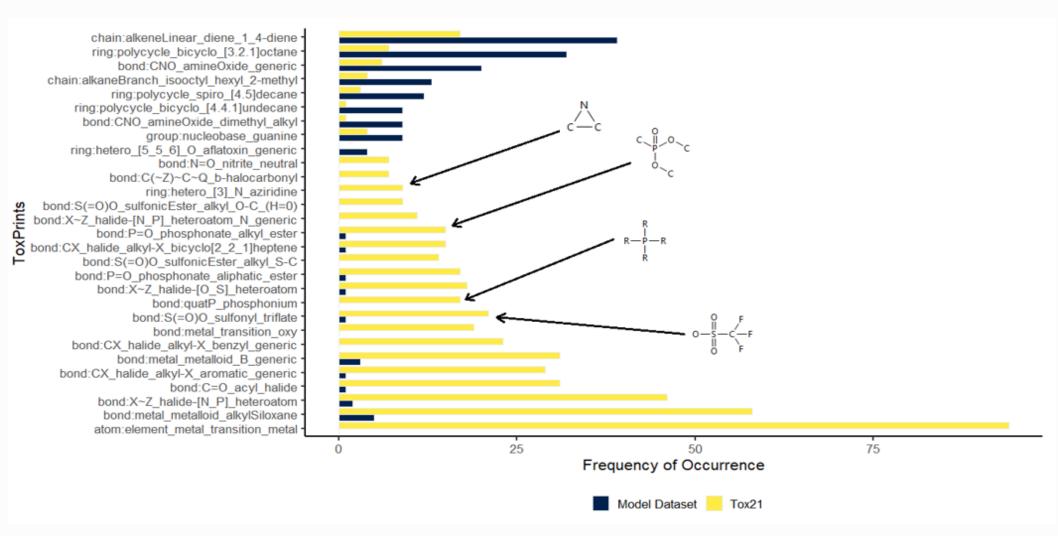
13 Office of Research and Development Center for Computational Toxicology and Exposure



Model performance

Mechanistic Interpretation

ESI+ Models (Downsampled Majority Class)



- 1,768 chemical compounds analyzed for LC-MS amenability as part of ToxCast program
 - All compounds exclusive of modeling dataset

ESI- Downsampled Model						
	Amenable (Prediction)	Unamenable (Prediction)				
Detected (Experiment)	323	502				
Not-detected (Experiment)	68	874				
Sensitivity	0.83					
Specificity	0.64					
Balanced Accuracy	0.73					
ESI+ Downsampled Model						
	Amenable (Prediction)	Unamenable (Prediction)				
Detected (Experiment)	423	402				
Not-detected (Experiment)	103	839				
Sensitivity	0.80					
Specificity	0.68					
Balanced Accuracy	0.74					
	Combined Models					
	Amenable (Prediction)	Unamenable (Prediction)				
Detected (Experiment)	505	320				
Not-detected (Experiment)	129	813				
Sensitivity	0.80					
Specificity	0.72					
Balanced Accuracy	0.76					

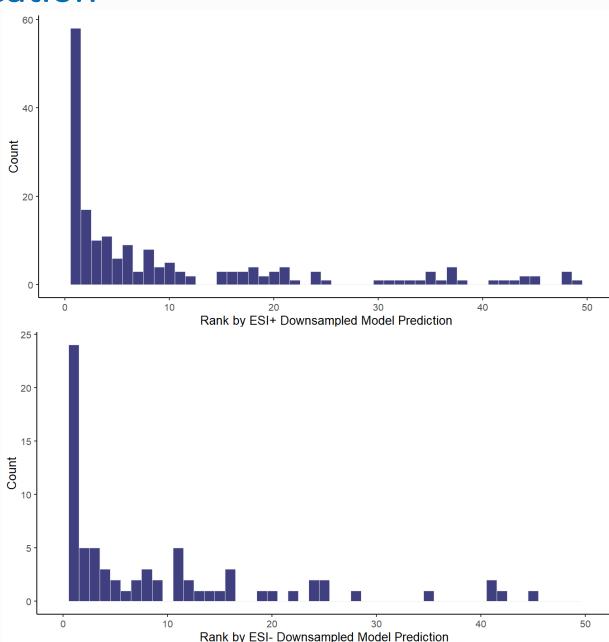
Model Applicability to ToxCast

Comparison of prevalent ToxPrint chemotypes in

Office of Research and Development Center for Computational Toxicology and Exposure amenability dataset against the ToxCast dataset

Model Comparison with Expert Intuition

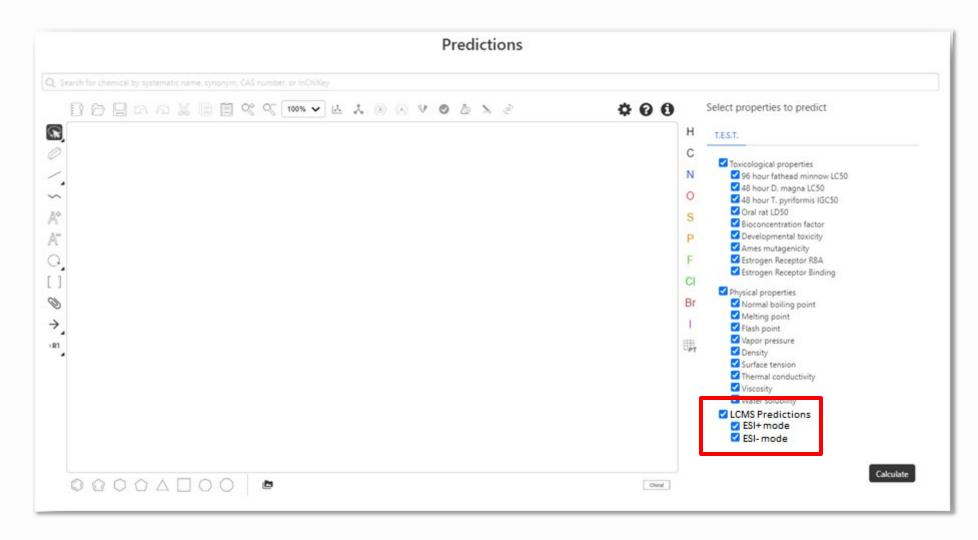
• A small molecule containing a carboxylic acid functional group *should* be amenable to ESI- LC-MS


 773 compounds contained the ToxPrint "bond:C(=O)O_carboxylicAcid_generic" in amenability dataset

ESI- Downsampled Model							
	Amenable (Prediction)	Unamenable (Prediction)					
Detected (Experiment)	728	4					
Not-detected (Experiment)	37	9					
Sensitivity	0.95						
Specificity	0.69						
Balanced Accuracy	0.82						

Suspect-screening application

- List of ENTACT compounds identified in ESI+ & ESI- LC-MS
 - -228 in ESI+
 - -108 in ESI-
- Retrieved candidates for each molecular formula via Dashboard
 - -13,325 candidates for ESI+
 - -7,079 candidates for ESI-
- Generated amenability predictions for candidate structures
- Rank ordered candidates by amenability probability



- Manuscript is currently undergoing peer review
- Comparison of model results to Analytical QC data for ToxCast library
 - Good examples no signal in LC-MS ESI+, ESI- or in GC-MS BUT present and high purity by NMR
- Working with collaborators to gather additional data, particularly unamenable compounds
 - Additional collaborators would be appreciated!
- Future plans
 - Predictions for entire DSSTox database
 - Application for on-the-fly predictions based on a drawn structure


CompTox Chemicals Dashboard mockup - Predictions

Contributing researchers

EPA ORD

Hussein Al-Ghoul* Alex Chao* Louis Groff* Jarod Grossman* Kristin Isaacs Sarah Laughlin* Hannah Liberatore James McCord Kelsey Miller Jeff Minucci Seth Newton Katherine Phillips Allison Phillips* Tom Purucker Randolph Singh* Jon Sobus Mark Strynar Elin Ulrich **Nelson Yeung***

EPA ORD (cont.)

Kathie Dionisio Chris Grulke Kamel Mansouri* Andrew McEachran* Ann Richard Adam Swank John Wambaugh Antony Williams

Agilent

Jarod Grossman Andrew McEachran

<u>GDIT</u>

llya Balabin Tom Transue Tommy Cathey

* = ORISE/ORAU

Office of Research and Development Center for Computational Toxicology and Exposure

Thank you for Listening!