Revisiting and updating chemical categorizations using chemical fingerprint and high-throughput screening data

\$EPA

Kellie A. Fay¹, Kamel Mansouri², John Prindiville³, Grace Y. Patlewicz⁴, Mark Lewis⁵, Ann Richard⁴, Mahmoud Shobair⁴, Ellery Saluck⁶, Daniel T. Chang⁴

¹USEPA OCSPP/OPPT, Washington, DC, USA. ²NIEHS NTP, Durham, NC, USA. ³Environment and Climate Change Canada, Ottawa, ON, Canada. ⁴USEPA ORD/CCTE, Durham, NC, USA. ⁵Health Canada, Ottawa, ON, Canada. ⁶Student Intern, USEPA OCSPP/OPPT, Washington, DC, USA

BACKGROUND & OBJECTIVES

- Traditional approaches to chemical categorization are based on accumulated data and past decisional precedents.
- Many new chemicals across various regulatory jurisdictions cannot be categorized using existing in silico models and methods.
- How do we incorporate new approach methodologies (NAMs) and cheminformatic approaches to assist in identifying new chemical categories (or classes), and to create more robust models at predicting chemical toxicity?
- Primary focus of this work: Identification of narcotic (N) and specific-acting (S) chemicals for aquatic (fish) toxicity using a consensus Mode-of-Action (cMOA) classification dataset.

RESULTS

- Development of a robust N/S classification model for aquatic toxicity.
- Known limitations regarding unclassified cMOA chemicals were identified.
- Chemotype enrichment suggests targeted use of NAM information suggested use of specific assay data.

APPROACH

- Classify narcotic and specific-acting mechanisms for a set of ~7000 ToxCast chemicals based on a consensus Mode-of-Action (cMOA) methodology⁴ developed by Kienzler et al., 2019.
- Use classified cMOA data to develop predictive models based on ToxPrint (TxP) chemotypes.
- Identify and use targeted dichotomized NAM bioassays hit calls to improve characterization and comparisons with existing Envirotox database aquatic toxicity data.

SUMMARY/IMPACTS

- Increase the available chemical space of EnviroTox w/ cMOA classifications.
- Develop a robust N/S classification structural ToxPrint based model.
- Identify challenges in unclassified cMOA chemicals i.e., metal & metalloids, as well as amino acids and polydentate ligands.
- Using chemotype enrichments to identify potential bioassays with bioactivity to provide support of NAM data in category development.

For more information, contact: Daniel T Chang, (chang.daniel@epa.gov)

This work does not reflect EPA policy.

Acknowledgments: ILS (contractor support) and Kristan Markey (USEPA)

Revisiting and updating chemical categorizations using chemical SEPA fingerprint and high-throughput screening data

BACKGROUND & OBJECTIVES

Primary focus of this work: Identification of narcotic (N) and specific-acting (S) chemicals for aquatic (fish) toxicity using a classified consensus Mode-of-Action (cMOA) dataset.

"A chemical category is a group of chemicals whose physicochemical and human health and/or ecotoxicological properties and/or environmental fate properties are likely to be similar or follow a regular pattern, usually as a result of structural similarity." - OECD

Applications of chemical categorization include first tier assessment efforts and read across from structurally similar analogs – ECOSAR¹

US EPA ECOSAR chemical classifications

- Class-based SAR to predict aquatic toxicity
- Classification scheme identifies excess toxicity
- Estimates acute and chronic toxicity based on accumulated data and past decisional precedents

Acute Effects: Chronic Effects: Fish 96-hr LC₅₀ Fish ChV Daphnid 48-hr EC₅₀ Daphnid ChV Algae 72/96-hr EC₅₀ Algae ChV

Profiler in OECD QSAR Toolbox

Regulators consider MOA information to determine the size of assessment factors

Revisiting and updating chemical categorizations using chemical FEPA fingerprint and high-throughput screening data

APPROACH – Datasets, Classification and Fingerprints

- Current NAM datasets: ToxCast/Tox21 Inventory²
 - All ToxCast/Tox21 chemical data is publicly available
 - ToxCast has data on over 4500 chemicals from a broad range of sources
 - Tox21 has screened over 8500 chemicals on over 80 assays
- Aquatic toxicity In vivo datasets: EnviroTox database³
 - Establish confidence in applying Threshold of Toxicological Concern (TTC) concepts in an eco (multispecies) concept.
 - >91k aguatic toxicity records, >4k chemicals, >1500 species
 - Includes data from ECHA (REACH), USEPA ECOTOX & Pesticide, METI, FET, AiiDA
- Classify data: Consensus Mode-of-Action (cMOA)⁴
 - Establish confidence/performance of several MOA models through a consensus approach: TEST, OASIS, ASTER and Verhaar
 - Towards a more harmonized approach to MOA classification models
 - Differences exist across the classification models used
- Fingerprint/feature set: ToxPrints⁵
 - 729 chemical features
 - Chemically interpretable
 - Coverage of diverse chemistry includes scaffolds, functional groups, chains, rings, bonding patterns and atom-types
 - Survey of ToxPrint chemotypes across ToxCast chemical space⁵ (Richard et al., 2016)
 - Provides a link to the High-Throughput Screening (HTS) assay through chemical structure archetypes

Revisiting and updating chemical categorizations using chemical EFA fingerprint and high-throughput screening data

APPROACH – Model development

 Additional 6215 chemicals with NAM data and cMOA calls (compared to Envirotox db: Unclassified, Specific-acting, Narcotic)

- Consensus MOA
- Random Forest (Boosted Gradient Method) provided the best model results:
 - Split data into 80% training and 20% hold out (test) sets
 - Hyperparameter tuning with 5-fold cross validation, square-root sampling, etc.
 - Training set: "balanced" down-sampled subset
 (2104 chemicals w/ cMOA = Narcotic or Specific-acting)

Revisiting and updating chemical categorizations using chemical EPA fingerprint and high-throughput screening data

MAIN RESULTS

- High accuracy in both training and test sets training = 99.7%; test = 95.8%)
- Total Accuracy on all N + S data set = 97.6% (4356 cMOA = N or S)
- Across all N + S chemicals -> 105 chemicals misclassified:
 - 24 F_{pos}{predicted S}
 - 81 F_{neg}{predicted N}
- Lower prediction confidence in N/S classification of the U set may be attributable to applicability domain issues

Training Set Median: 0.999, 0.993 0.982

Test Set Median: 0.996, 0.989 Mean: 0.970 0.962

Unclassified Set Median: 0.958, 0.941 Mean: 0.892, 0.877

- Good overlap of existing ToxPrint (TxP) features between all 3 cMOA classes: Unclassified, Specific-acting, Narcotic
- Potential applicability domain issues for Unclassifed cMOA
 - ~7x more unique features in U (than in N or S)
 - Potential for additional categories based on structure:
 - 2 atom TxPs (metal group III)
 - 38 bond TxPs (metalloid: silane and siloxanes...)
 - 8 chain TxPs (ethyleneoxide alkanes C10 C20)
 - 19 group TxPs (amino acids, polydentate ligands)
 - 8 ring TxPs

Revisiting and updating chemical categorizations using chemical EPA fingerprint and high-throughput screening data

- Chemotype enrichment workflow identified ToxPrint (TxP) features that might be useful For refining chemical categories and Potential NAM assays
- Example S(=O)_sulfonyl ToxPrint is enriched in the specific-acting MOA space and 47 assays

Potential to use the specific assay platfoms to
Improve existing classification of unclassified cMOA chemicals

MAIN RESULTS

Revisiting and updating chemical categorizations using chemical EFA fingerprint and high-throughput screening data

IMPACT/SIGNIFICANCE

- Increased the available chemical space of EnviroTox w/ cMOA classifications
- Developed a robust structural TxP model
 - Robust N/S classification
 - Challenges in unclassified chemistries
- Investigated model predictions to inform ECOSAR preliminary set of unclassified chemicals
 - Majority of unclassified chemicals predicted to have a specific acting MOA
 - Identified primary chemotypes for specific-acting MOAs
- Continued work to explore methods to fold in NAM data streams
 - Using chemotype enrichments to identify potential bioassays with bioactivity to provide support of NAM data in category development

REFERENCES

- ¹ The Ecological Structure Activity Relationship (ECOSAR) Class Program, Version 2.0 Available: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model
- ² ToxCast and Tox21 data available through invitroDBv3.2 https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
- ³ Health and Environmental Sciences Institute (HESI). 2019. EnviroTox Database & Tools. Version 1.1.0
- Available: http://www.envirotoxdatabase.org/
- ⁴ Kienzler *et al.*. Environ Toxicol and Chem. 2019, 38(10) 2294-2304
- ⁵ Richard *et al.*, Chem. Res. Toxicol. 2016, 29(8) 1225 1251; Strickland *et al.*, Arch Toxicol. 2018 92(1) 487 500; Wang *et al.*, Environment International 2019, 126 377 386