

State of Non-Targeted Analysis Science & Future Perspectives for Agrochemicals

Elin M. Ulrich (she/her)

U.S. Environmental Protection Agency Center for Computational Toxicology and Exposure Research Triangle Park, NC USA

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development

EPA NTA Research Contributors

- ORD: Angela Batt, Alex Chao, Scott Clifton, Kathy Coutros, Chris Grulke, Chris Fuller, Kristin Isaacs, Hannah Liberatore, Charles Lowe, James McCord, Kelsey Miller, Jeff Minucci, Seth Newton, Katherine Phillips, Tom Purucker, Ann Richard, Charlita Rosal, Jon Sobus, Mark Strynar, Adam Swank, Elin Ulrich, Ariel Wallace, John Wambaugh, John Washington, Antony Williams
- ORAU/ORISE/ASPPH: Hussein Al-Ghoul, Andrew Eicher, Louis Groff, Jarod Grossman, Johnsie Lang, Sarah Laughlin-Toth, Jeremy Leonard, Kamel Mansouri, Aurelie Marcotte, Andrew McEachran, Dawn Mills, Alli Phillips, Marie Russell, Randolph Singh, Nelson Yeung
- Contracts: EvoTec, General Dynamics Information Technology

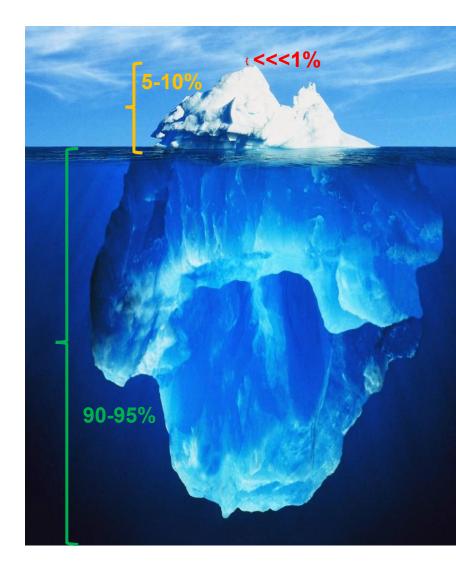
ENTACT was supported by EPA Stage 1-3 Pathfinder Innovation Project "Building a Network to Measure the Totality of Chemical Exposures."

Outline

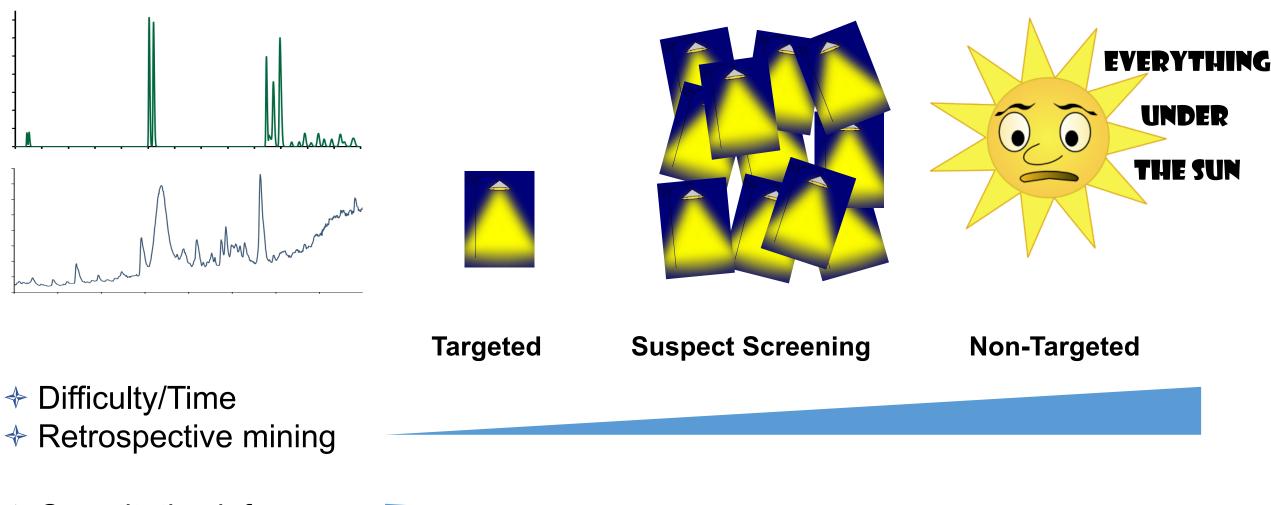
- Non-Targeted Analysis (NTA) Basics
- EPA's Non-Targeted Analysis Collaborative Trial (ENTACT)
 - + About ENTACT
 - + Results to date
- Benchmarking and Publications for Non-Targeted Analysis
- NTA Research for Agrochemicals
- Quantitative NTA (qNTA)

What is Non-Targeted Analysis?

Targeted Analysis


"known knowns" Standards, calibration curves

Suspect Screening Analysis (SSA)


"known unknowns" Lists of compounds

Non-Targeted Analysis (NTA)

"unknown unknowns" MS first principles

Targeted vs. Non-Targeted Analysis

- ✤ Quantitative info
- Structure confidence

Benefits of Using Non-Targeted Analysis

Ability to detect many more compounds

- + Includes unknowns, things not in databases (like metabolites)
- + Broad range of chemical space covered (Define!)
- Rapidly screen for knowns
 - + Virtually unlimited in number
- Data is collected in a way to allow retrospective analysis

+ When did this compound start showing up?

NTA Critical Needs Identified

- Tightly-defined ring trials to evaluate NTA method performance
- Availability of custom-made spiked samples for ring trials
- Exchange of comprehensive suspect lists to enable interoperability
- Retrospective analysis of data

Resources Provided

- SOPs for sample handling, analysis, data return
- Procedures used for exposure matrix samples
- 4 16 samples provided; ToxCast/ENTACT well plates and maps
- MS-Ready DSSTox and ToxCast chemical lists; Dashboard; .mol files
- Method and Data templates; FTP site, accounts, instructions
- Mixture/Spike contents after submission of blinded analysis data

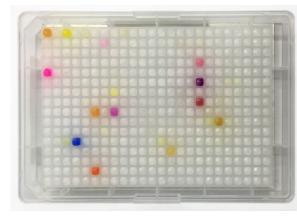
ENTACT Sample Overview

Part 1. Ten ToxCast mixtures

95, 185 or 365 substances/mixture

Part 2. Three standard exposure relevant extracts

Unaltered

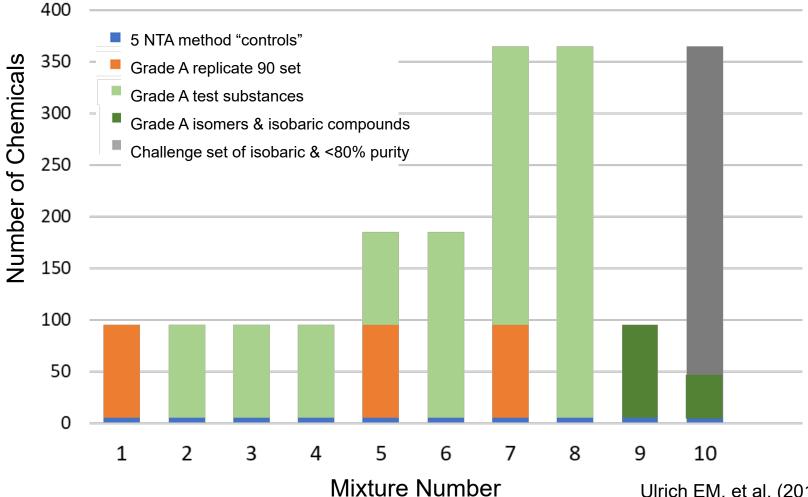

Fortified

NIST SRM 1957-Organic Contaminants in Non-fortified Human Serum

Part 3. Individual ToxCast standards

1,269 ENTACT; 4,685 ToxCast all

.95

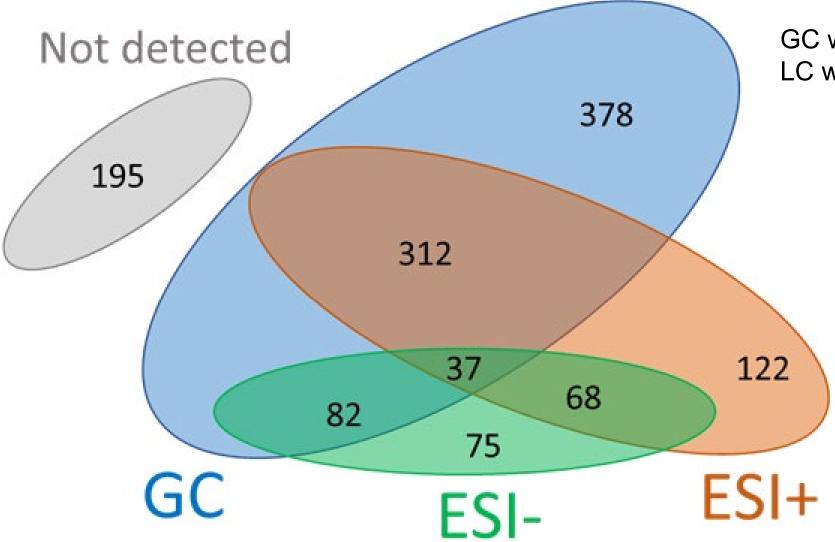

Oregon State University-Outdoor air exposed silicone wrist-bands

NIST SRM 2585-Organic Contaminants in House Dust

ENTACT Mixture Details

10 Prepared Mixtures:

1,939 total spiked substances 1,269 unique substances:

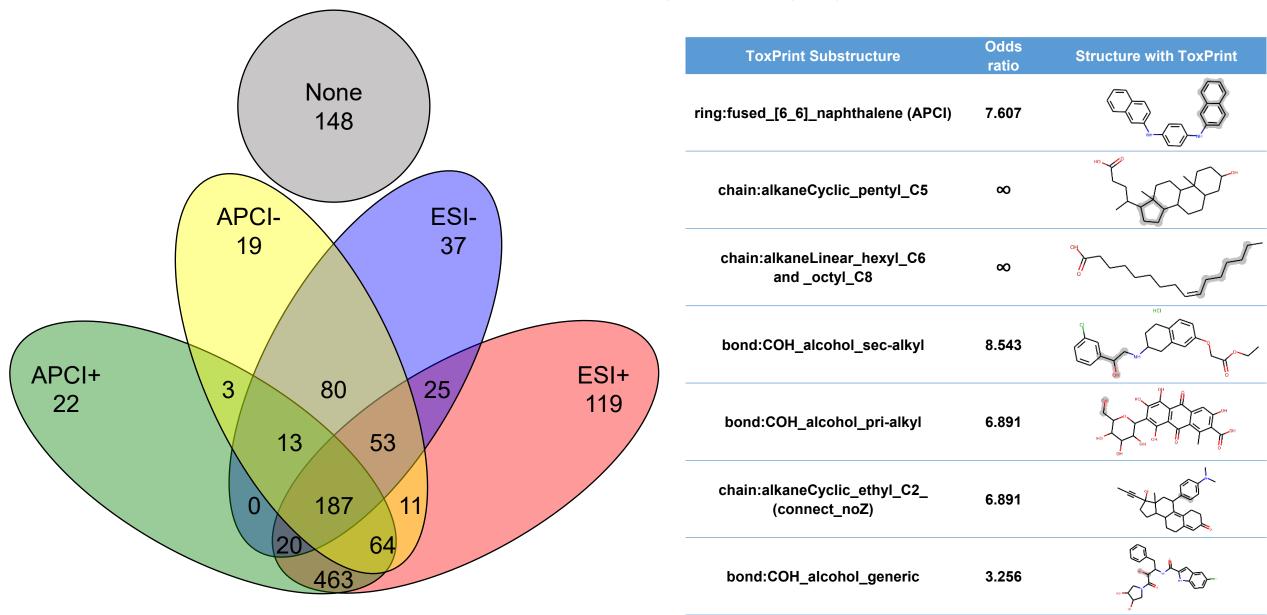

- $1 \rightarrow$ spiked 11 times
- $4 \rightarrow$ spiked 10 times
- 57 \rightarrow spiked 4 times
- $33 \rightarrow$ spiked 3 times
- 388 \rightarrow spiked 2 times
- 786 \rightarrow spiked 1 time

Ulrich EM, et al. (2019) ABC 411:853-866. doi:10.1007/s00216-018-1435-6

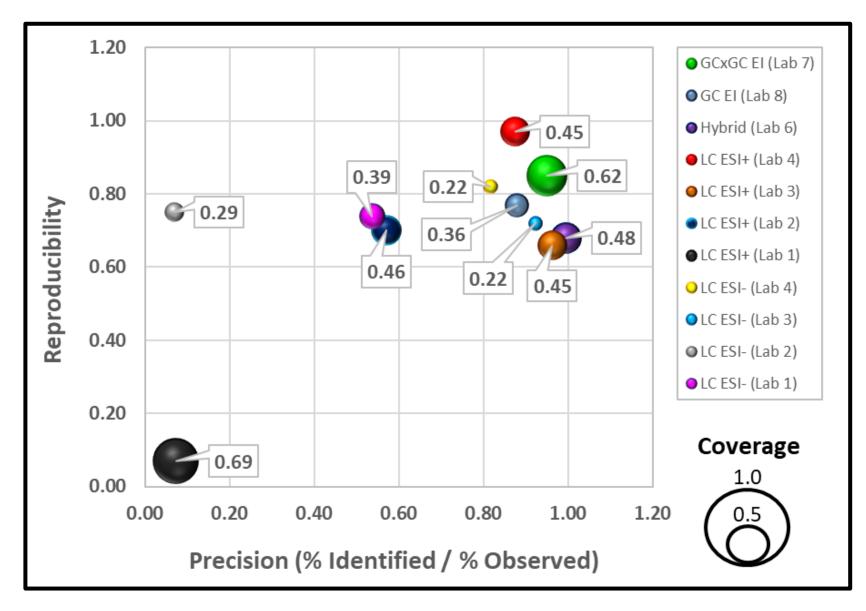
ENTACT Initial Results: Mixtures

		499 Mix 1	500 Mix 2	501 Mix 3	502 Mix 4	503 Mix 5	504 Mix 6	505 Mix 7	506 Mix 8	507 Mix 9	508 Mix 10
	Actual	95	95	95	95	185	185	365	365	95	365
	1	128	148	166	187	292	269	318	470	177	410
	2	142	154	102	129	250	242	401			452
Reported	3	48	40	48	59	110	101	97	130	37	109
vs Actual	4	72	71	63	70	136	125	273	313	49	265
<75%	5	301	130	375	341	408	404	719	687	198	327
>75 to <125%	6	65	66	74	72	105	118	193	215	54	162
	7	587	552	596	554	798	846	1327	1274	509	1176
>125%	8	93		116	106	182	201	360	374	73	330
	9	337	372	303	365	321	363	466	505	510	463
59/180	10	135	130	125	154	188	195	284	295	100	153
34/180	11	70	57	64	66	105	115	176	125	35	159
	12a	595	486	571	630	746	669	899	910	588	792
87/180	12b	66	170	51	41	272	116	214	101	163	404
	13	51	37	35	39	74	59	124	109	42	105
	14	137	65	45	74	68	234	413	408	120	317
	15	215	249	212	249	207	275	245	254	140	253
	16	1298	1258	1304	1209	1651	1641	2520	2538	1202	2193
	17	153	217	221	199	254	321	523	651	496	396

ENTACT Initial Results: Method Coverage



GC with electron impact LC with electrospray +/-


Ulrich EM, et al. (2019) ABC 411:853-866. doi:10.1007/s00216-018-1435-6

ENTACT LC Ionization Comparison

Singh, R.R. et al., (2020) ABC 412: 4931. doi:10.1007/s00216-020-02716-3

ENTACT Cross-Lab Comparison

Metrics (all %):

 $\frac{X-Axis}{How often correct?}$ Range = 7% to 99%

<u>Y-Axis</u> \rightarrow How consistent? Range = 7% to 97%

Bubble Size → How much coverage? Range = 22% to 69%

Content from J. Sobus

EPA QA/QC Used in NTA

Name	Example	Purpose
Tracers	Isotopically labeled standards: ${}^{13}C_3$ -Atrazine, D ₃ -Thiamethoxam, ${}^{13}C_4$, ${}^{15}N_2$ -Fipronil	Allows tracking of chromatographic performance and mass accuracy, ISTD for abundance/quant
Replication	Triplicate injections of same sample vial	Removes risk of "one hit wonder"
Run order randomization	8, 3, 7, 4, 2, 1, 10, 5, 8, 6, 9, 2, 5, 4, 1, 9, 4, 7, 3, 8, 1, 6, 10, 9, 6, 7, 5, 3, 2, 10	Minimizes/averages out batch or sample order effects (e.g., carryover, temp & instrument drift)
Pooled QC sample	Combine 5 mg/ μ L from each of 10 samples (total 50 mg/ μ L) prior to extract to create pooled QC	Separate confirmation of presence with different matrix, MS2 IDs
Blanks	Solvent, method, matrix, double blanks	Allows identification/subtraction/deletion of interferences introduced in lab processes
Multiple lines of evidence for ID	Retention time prediction/matching, Spectral library/prediction matching, Data source ranking, Functional/product uses, Media occurrence	Improves confidence in identification when chemicals standards are unavailable

ENTACT Summary and Future Work

features in mixtures >> intentionally added substances

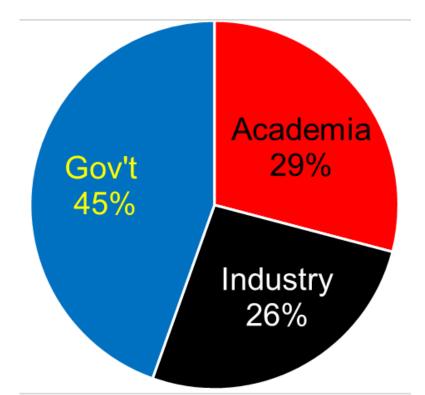
- ✤ 195 substances not detected by GC or LC-ESI methods, 37 detected by all
- 148 substances not detected by LC- ESI or APCI
- ToxPrints help predict ionization mode success

- Added GC-Orbitrap and GC-QTOF to cover more volatile chemical space
- Cross laboratory comparison underway
 - + Precision: 7 99%; Reproducibility: 7 97%; Coverage: 22 69%
- Extraordinary data mining possibilities

 ~110 international members
 Leads Christine Fisher (FDA) and Ruth Marfil-Vega (Shimadzu)

Interested? Contact us!

Christine.ODonnell@fda.hhs.gov


rmmarfilvega@shimadzu.com

Membership based on interest in NTA

- + Experience with NTA varies from beginners to experts
- Wide range of applications: metabolomics, exposure, food, biological, medical devices, environmental

Membership

BP4NTA Objectives

Overarching goals and needs:

- Harmonize/standardize approaches and reporting practices, as possible
- Improve determination, calculation, and communication of performance metrics
- Share best practices (including QA/QC) within the NTA community
- Improve the transparency and reproducibility of peer reviewed NTA studies

Long-term goals:

- + Address gaps in data, methods, and computational tools within the community
- Moving the NTA field toward measurable standards for proficiency testing
- Build and maintain coalitions and communications with other groups

Short-term Goals and Products

BP4NTA Study Reporting Tool

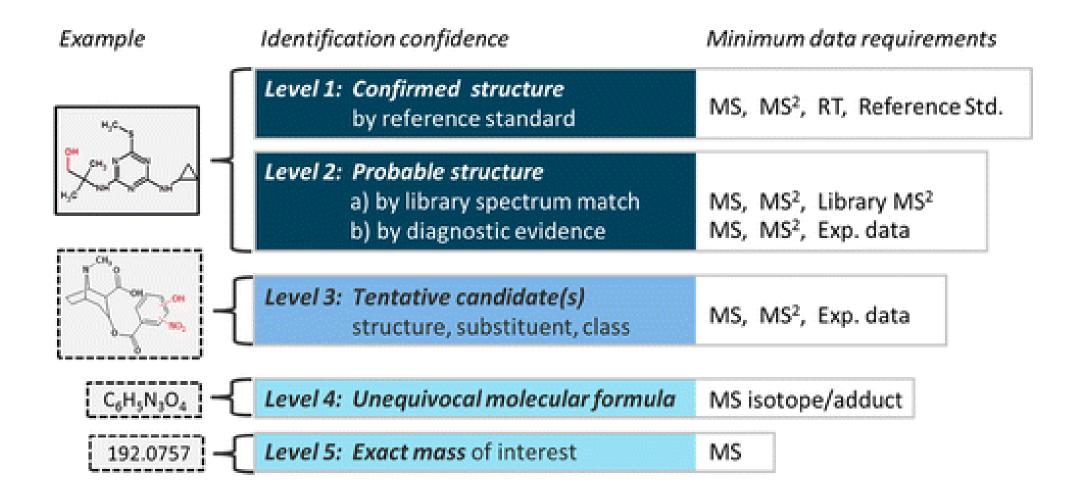
Short-term goals:

- Publish NTA terms, concepts, and performance calculations, with consensus definitions https://nontargetedanalysis.org/
- Design/release study reporting tool to aid the design of NTA studies and the review of research proposals and manuscripts

Submitted to Analytical Chemistry

 Collate resources for new NTA researchers traversing the learning curve

https://nontargetedanalysis.org/additionalresources/


Section	Category	Sub-Category	Score	Rationale	
	Study Design	Objectives & Scope			
		Sample Info & Prep		Space for reviewer to explain assigned score in each sub- category	
		QC Spike & Samples			
Methods	Data Acquisition	Analytical Sequence	Scores		
		Chromatography	selected		
	/ toquionion	Mass Spectrometry	from drop -down		
	Data Processing & Analysis	Data Processing	-aown menus		
		Statistical & Chemometric Analysis	for each sub- category		
		Annotation & Identification	NA		
Results	Data Outputs	Statistical & Chemometric Outputs	0 1 2		
		Identification & Confidence Levels	3		
	QA/QC	Data Acquisition QA/QC			
	Metrics	Data Processing & Analysis QA/QC			

NTA Research for Agrochemicals

- **+ Authentication-** Does this sample/product meet quality criteria?
- **Forensics-** What are chemical signatures of exposure sources?
- + Chemical prioritization- What are relevant chemicals & mixtures?
- + Surveillance- What chemicals are in food, water, products, soil, blood, etc.?
- + Fate and Transport- Which chemicals are degraded? To what? How fast? Where do they go?

NTA Study Objective	Example Applications	Stakeholders
Sample Classification	Classify locations impacted by point-source emitters Classify locations impacted by inadvertent environmental releases Classify food items not meeting criteria for product certification	- EPA, USGS - FEMA, EPA - FDA, NIST
Chemical Identification	Identify chemicals associated with product-related illness Identify chemicals associated with industrial manufacturing emissions Identify chemicals released in emergency response scenarios	- CPSC, FDA - EPA, States - FEMA, EPA
Chemical Quantitation	Assess consumer health risks from exposure to household products Assess ecological health risks from exposure to urban wastewater Assess maternal and infant health risk from exposure during pregnancy	- CPSC, EPA - USGS, EPA - NIEHS, EPA

Confidence of Identification

Schymanski E. L. et al., (2014) ES&T 48(4): 2097. doi:10.1021/es5002105

Performance Metrics

For identification/classification

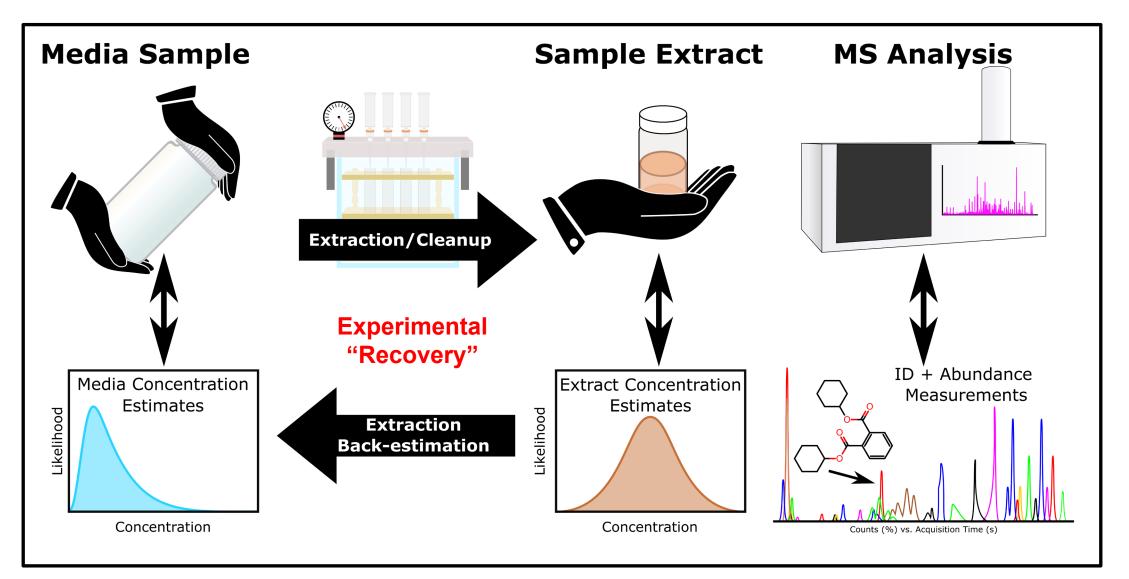
Measured/Observed

		Present	Absent
Actual / Truth	Present	True Positive	False Negative
	Absent	False Positive	True Negative

For quantification

Performance measures will depend on purpose!

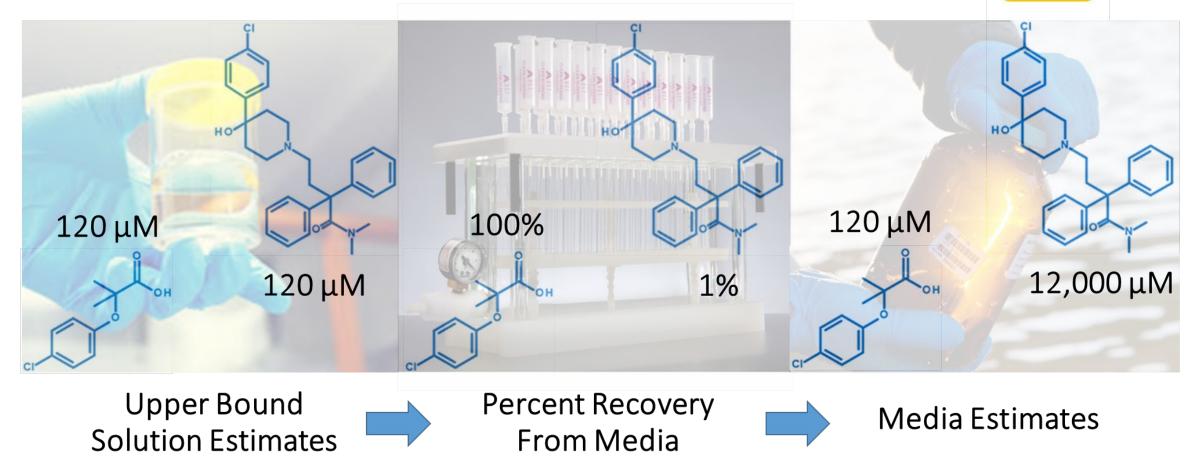
- + Higher/Lower could be enough if comparing case/control samples (upstream/downstream)
- + How large is the margin between concentration found and regulatory limits? Triage for targeted work.
- + NTA will never match targeted methods for performance.


Assuming you have a sample and know what's been added (like ENTACT):

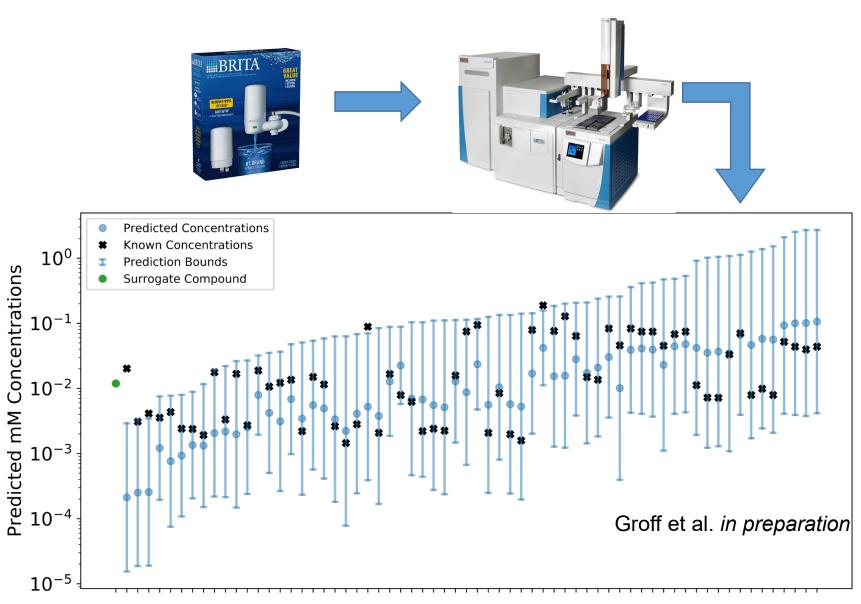
- How can you be sure something you detected but didn't add wasn't truly in the sample? Is a FP actually a TP?
- How can you be sure something you didn't detect was not present in the sample? Is a FN actually a TN?

What identification level is needed to be "observed"?

The confusion matrix is a useful tool, but application is difficult in non-targeted analysis!


qNTA for Environmental Monitoring

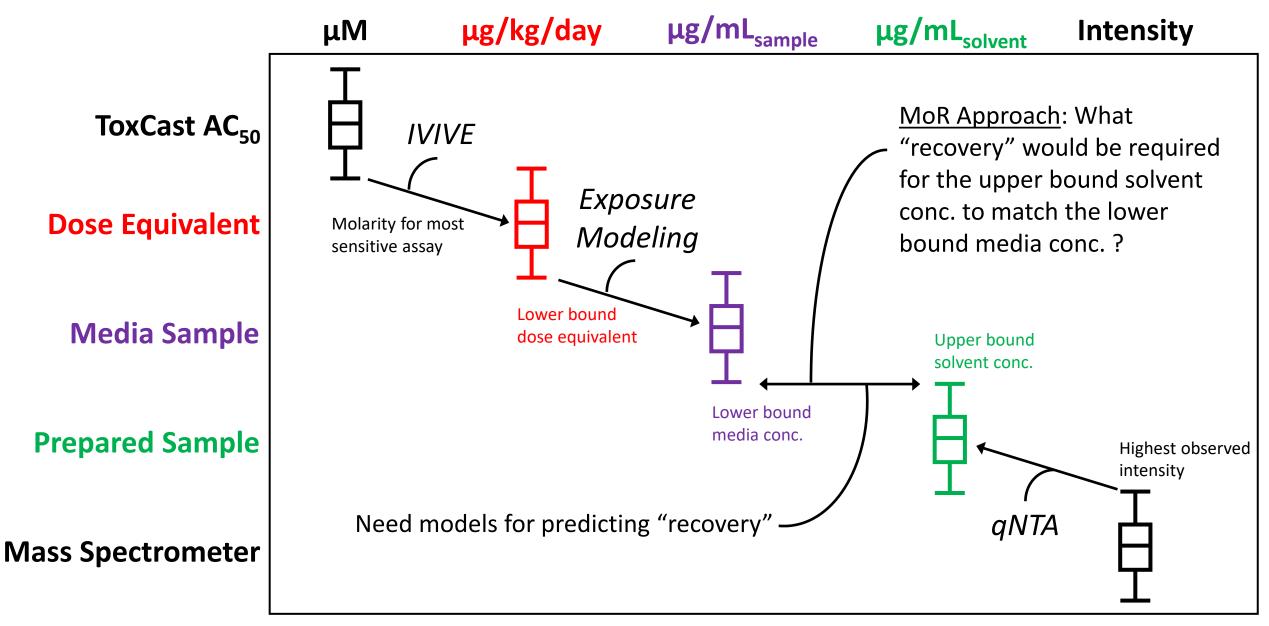
McCord et al. in preparation


Recovery: Critical Parameter for Quantitation

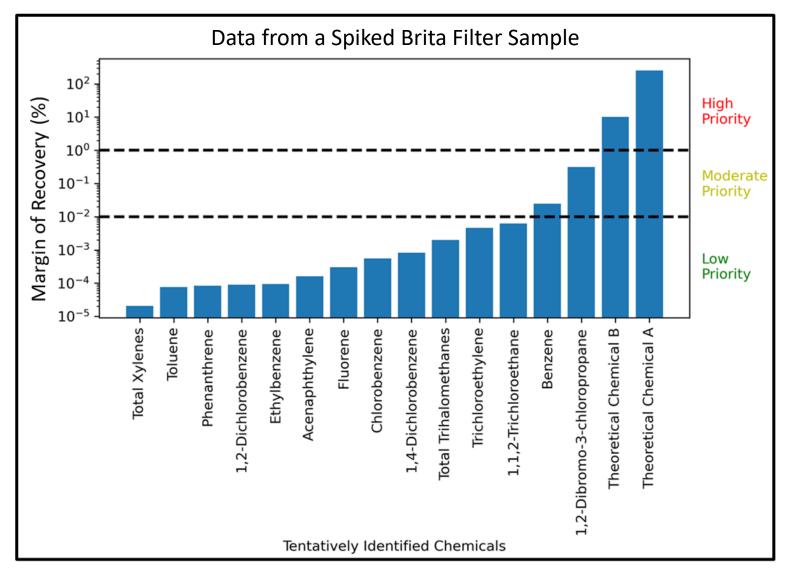
Max. Percent Recovery = $100\% \rightarrow \text{known}$ lower bound on media conc. Min. Percent Recovery = $?\% \rightarrow \text{no upper bound on media conc.}$

Content from L. Groff

qNTA Proof-of-Concept



Analysis of Brita filter extracts via GC-HRMS


- Concentration estimates can be above/below true value
- Prediction intervals bound conc estimates
- ♦95% prediction intervals shown (Can use 99%, etc.)
- Tentatively ID'd compounds ranked by upper-bound estimates
- Upper-bound estimates compared to a level-ofinterest to set priorities

Tentatively Identified Chemicals

Conceptual Model for Rapid Risk Evaluation

Example Risk-Based Prioritization

For "High Priority" chemicals, a 1-100% experimental recovery would be needed for the upper bound qNTA estimate to match a drinking water concentration associated with bioactivity/toxicity

Recoveries < 1% and > 0.01% are considered somewhat unlikely; chemicals in this range are considered "Moderate Priority"

Recoveries < 0.01% are considered highly unlikely; chemicals in this range are considered "Low Priority"

The Future of NTA

- Standardized QA/QC, terminology, review, reporting
 As possible, standardize methods
- Benchmarking, performance metrics
 True/False Positives/Negative, chemical space coverage
- Learning from related fields (e.g., metabolomics)
- Reducing uncertainty in qNTA
- Regulatory uses
- * "Make non-targeted the new targeted" Thomas Burke

References

BP4NTA website- https://nontargetedanalysis.org/

CompTox Chemicals Dashboard- https://comptox.epa.gov/dashboard/

SETAC FTM "Nontarget Analysis for Environmental Risk Assessment" (May 22-26, 2022)- https://nta.setac.org/

Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA https://www.nature.com/articles/s41370-017-0012-y

EPA's non-targeted analysis collaborative trial (ENTACT): Genesis, design, and initial findings https://link.springer.com/article/10.1007/s00216-018-1435-6

Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance https://link.springer.com/article/10.1007%2Fs00216-018-1526-4

Examining NTA performance and potential using fortified and reference house dust as part of ENTACT https://link.springer.com/article/10.1007%2Fs00216-020-02658-w

Questions? ulrich.elin@epa.gov