

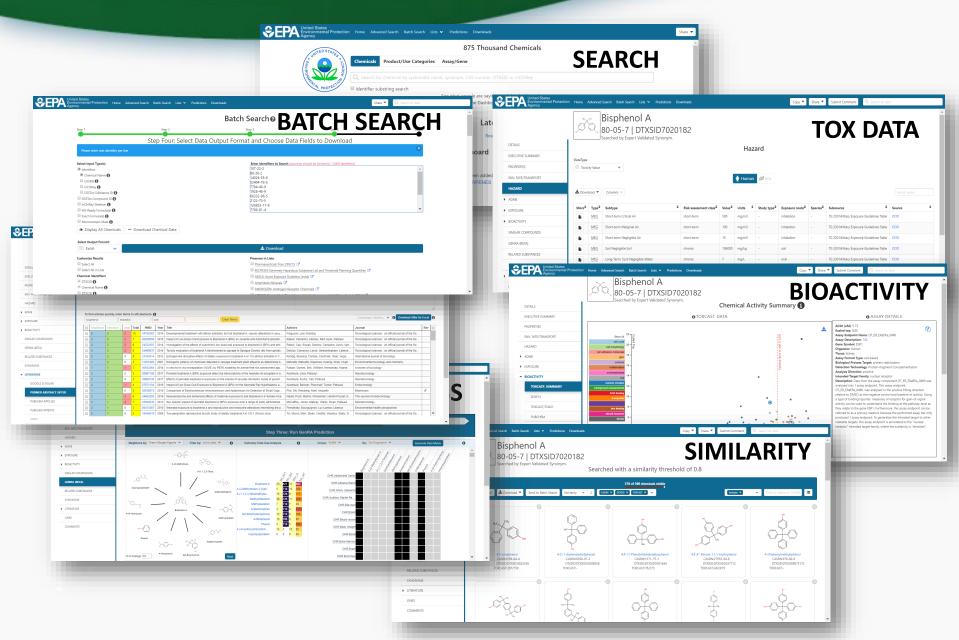
Structure identification approaches using the EPA CompTox Chemicals Dashboard to support mass spectrometry analyses

Antony Williams, Charles Lowe, Alex Chao, Elin Ulrich and Jon Sobus Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

August 2021 ACS Fall Meeting, Atlanta

EPA's CompTox Chemicals Dashboard



A publicly accessible website delivering:

- ~883,000 chemicals with related property data
- Experimental and predicted physicochemical property data
- Integration to "biological assay data" for 1000's of chemicals
- Information regarding consumer products containing chemicals
- Links to other agency websites and public data resources
- "Literature" searches for chemicals using public resources
- "Batch searching" for thousands of chemicals
- Downloadable Open Data for reuse and repurposing

A single app integrating...

•	ADME	ӉӡҀͺСӉ	bisphenols, with two hydroxyphenyl groups. It is a coloriess solid that is soluble in organic solvents, but poorly soluble in water (0.344 wt % at 83 *C). BPA is a starting material for the synthesis of plastics, primarily certain polycarbonates 	
Þ	EXPOSURE		Read more Intrinsic Properties	•
Þ	BIOACTIVITY		Molecular Formula: C ₁₅ H ₁₆ O ₂ Mol File Q, Find All Chemicals	
	SIMILAR COMPOUNDS	но он	Monoisotopic Mass: 228.11503 g/mol	
	GENRA (BETA)		Structural Identifiers	4
			Linked Substances	•
	RELATED SUBSTANCES		Presence in Lists	•
	SYNONYMS		Record Information	4
Þ	LITERATURE		Quality Control Notes	4
	LINKS			
	COMMENTS			

Wikipedia

Detailed Chemical Pages

OF

Advanced Search Batch Search Lists v Predictions Downloads

80-05-7 | DTXSID7020182

Bisphenol A

Searched by DSSTox Substance Id.

DETAILS

PROPERTIES

HAZARD

ADME

EXECUTIVE SUMMARY

ENV. FATE/TRANSPORT

•

Copy 🔻 Share 💌 Submit Comment

Bisphenol A (BPA) is an organic synthetic compound with the chemical formula (CH₃)₂C(C₆H₄OH)₂ belonging to the group of diphenylmethane derivatives and

Q Search all data

Sources of Exposure to Chemicals

United States Environmental Protection Agency	Home Advanced S	earch Batch Search Lists 🗸 Predictions Downloads		Copy Share Submit Comment Submit Comment Submit Comment Submit Comment Submit Comment Comment Submit Comment
	80-05-7	IENOLA 7 DTXSID7020182 9 DSSTox Substance Id.		
DETAILS EXECUTIVE SUMMARY			uct and Use Categ	gories (PUCs) 🚺
PROPERTIES	Columns ~			Search query
ENV. FATE/TRANSPORT	Product or Us	e Categorization	Categorization type	Number of Unique Products
HAZARD	manufacturing	, metals	CPCat Cassette	17
			CPCat Cassette	17
EXPOSURE			CPCat Cassette	16
		nachines	CPCat Cassette	12
PRODUCT & USE C	ATEGORIES	plastics	CPCat Cassette	11
		, flooring	CPCat Cassette	8
CHEMICAL WEIGH	T FRACTION	ıt, metals	CPCat Cassette	8
			CPCat Cassette	8
CHEMICAL FUNCTI	ONAL USE		CPCat Cassette	7
SHEMIONET UNUT		:hemical	CPCat Cassette	6
TOXICS RELEASE	INVENTORY	First << <	1 2 3 4 5 6	7 8 9 10 > >> Last
MONITORING DATA	Ą		_	
EXPOSURE PREDI	CTIONS			

Physicochemical properties and environmental fate and transport

" BI Q	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.
E Summary	►
La Download ▼	Columns ~

Property 🗘	Experimental average 🗧 🗘	Predicted average 🗘 I
LogP: Octanol-Water	3.32 (1)	3.29
Melting Point	155 (7)	139
Boiling Point	200 (1)	363
Water Solubility	5.26e-4 (1)	9.62e-4
Vapor Pressure	-	8.37e-7
Flash Point	-	190

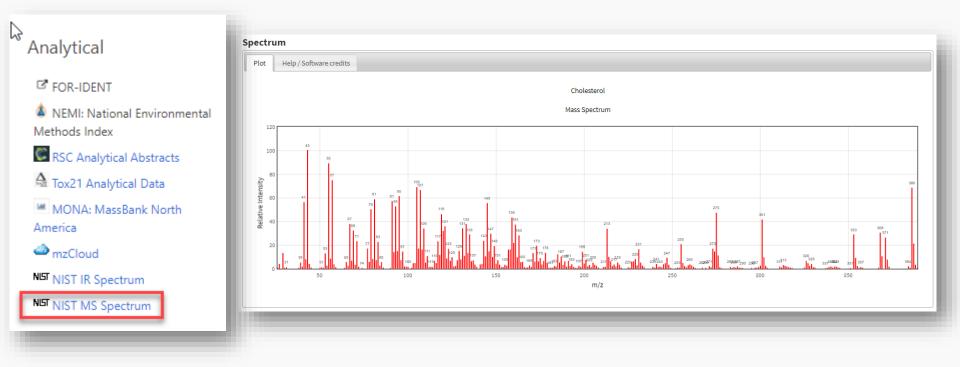
Link farm to public resources

ECHA Brief Profile

Bisphenol A 80-05-7 | DTXSID7020182

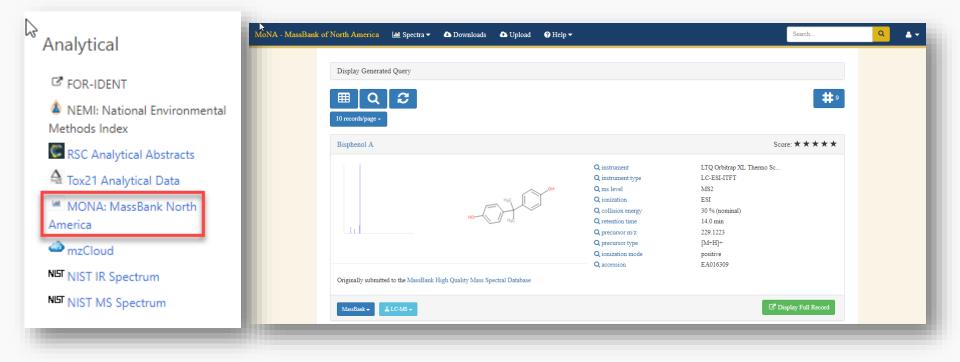
	Searched by Approved	Name.			
DETAILS	General	Toxicology	Publications	Analytical	Prediction
EXECUTIVE SUMMARY	EPA Substance Registry Service	ACTOR	Toxline	I [™] FOR-IDENT	3 2D NMR HSQC/HMBC Prediction
PROPERTIES	K Household Products Database	оң DrugPortal	Environmental Health Perspectives	🌢 NEMI: National Environmental Methods Index	Carbon-13 NMR Prediction
PROPERTIES	Chemical Entities of Biological Interest	CCRIS	NIEHS	RSC Analytical Abstracts	Proton NMR Prediction
ENV. FATE/TRANSPORT	(ChEBI)	ChemView	National Toxicology Program	🐴 Tox21 Analytical Data	ChemRTP Predictor
	PubChem	O CTD	G Google Books	MONA: MassBank North America	LSERD
HAZARD	Chemspider	SechemPortal	Google Scholar	area mzCloud	
▶ ADME	CPCat	📅 Gene-Tox	G Google Patents	NST NIST IR Spectrum	
	🥔 DrugBank	HSDB	PPRTVWEB	NIST MS Spectrum	
EXPOSURE	Amp HMDB	ToxCast Dashboard 2	PubMed		
BIOACTIVITY	W Wikipedia	LactMed	IRIS Assessments		
	Q MSDS Lookup	International Toxicity Estimates for Risk	EPA HERO		
SIMILAR COMPOUNDS	ChEMBL	ATSDR Toxic Substances Portal	🚾 NIOSH Skin Notation Profiles		
GENRA (BETA)	Q Chemical Vendors	Superfund Chemical Data matrix	🚾 NIOSH Pocket Guide		
	CalEPA Office of Environmental Health Hazard Assessment	W NIOSH IDLH Values	RSC Publications		
RELATED SUBSTANCES	NIOSH Chemical Safety Cards	ACToR PDF Report			
SYNONYMS	ToxPlanet	Toxics Release Inventory	2 Springer Materials		
	ACS Reagent Chemicals	(MUT CREST	Federal Register		
LITERATURE	W Wikidata	National Air Toxics Assessment	Regulations.gov		
LINKS	ChemHat: Hazards and Alternatives Toolbox		Bielefeld Academic Search Engine		
COMMENTS	🌞 Wolfram Alpha		CORE Literature Search		
COMMENTS	ScrubChem				

Mass Spec Links



Analytical

RSC Analytical Abstracts A Tox21 Analytical Data MONA: MassBank North America anzCloud NIST IR Spectrum NIST MS Spectrum 🚚 MassBank A NEMI: National Environmental Methods Index NIST Antoine Constants IR Spectra on PubChem NIST Kovats Index values


NIST WebBook https://webbook.nist.gov/chemistry/

MassBank of North America https://mona.fiehnlab.ucdavis.edu

Chemical lists

>300 Chemical Lists (and growing)

Copy Filtered Lists URL

mass

Agriculture and Agri-Food Canada, Government of Canada

Home Advanced Search Batch Search Lists 👻 Predictions Downloads Lists of Chemicals _Ռո List of Assays

📩 Download 🔻

Columns ~

List Acronym 🗘	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description \$
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from

"Volatilome" Human Breath

-

LIST: VOLATILOME: Human Breath

Q Search VOLATILOME Chemical

Identifier substring search

List Details

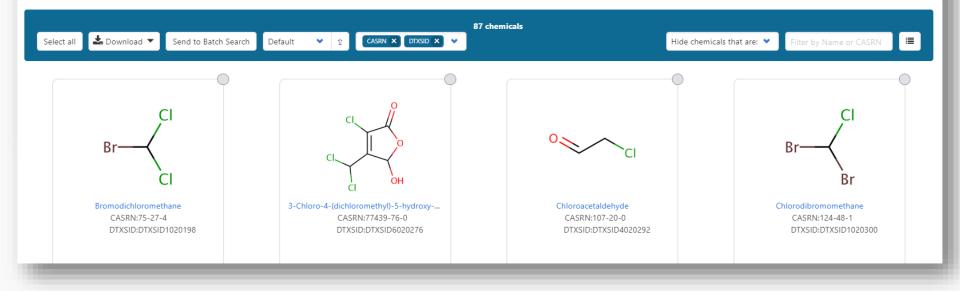
Description: This list is a subset of compounds detected in human breath and reported in the peer-reviewed literature and identified in experimental work at US-EPA. The bulk of the collection is extracted from the article "The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva" by de Lacy Costello et al in J. Breath Res. 8 (2014) 034001 (DDI:10.1088/1752-7155/8/3/034001), from the article "On-line analysis of exhaled breath", by Bruderer et al in Chemical Reviews (DDI:10.1021/acs.chemrev.9b00005) as well as an increasing number of chemicals identified in our own laboratory studies.

Select all 🛃 Download 🔻 Send to Batch Search	Default V 12 CASRN X DTXSID X V	chemicals Hide cher	nicals that are: 👻 Filter by Name or CASRN 🗮
		•	0
H ₂ N-CH ₃	N CH ₃	H ₂ C	H ₂ C
Acetamide CASRN:60-35-5 DTXSID:DTXSID7020005	Acetonitrile CASRN:75-05-8 DTXSID:DTXSID7020009	Acrolein CASRN:107-02-8 DTXSID:DTXSID5020023	Acrylonitrile CASRN:107-13-1 DTXSID:DTXSID5020029

"Volatilome" Saliva

	LIST: VOLATILO	ME: Saliva	
Q Search VOL	ATILSALIVA Chemicals		
Identifier subs	ring search		
Details			•
scription. This list is a subset of compounds detected in s	aliva and reported in the peer-reviewed literature and identified i	n experimental work at US-EPA. The collection is extracted	from the article "The human volatilome; volatile
	ns, urine, feces and saliva" by de Lacy Costello et al in J. Breath Re		non die andle The numan volatione, volatie
answer of enerthedis, 507			
ect all 📩 Download 🔻 Send to Batch Search	307 che Name ♥ ① CASRN X DTXSID X ♥		cals that are: 👻 Filter by Name or CASRN 🔳
			0
н.с., сн.		H ₃ C CH ₃	H ₃ C CH ₃
		H ₃ C CH ₃	H ₃ C CH ₃
H ₃ C	H ₃ C-CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
H ₃ C	H ₃ C-CH ₃	H ₃ C CH ₃	H ₃ C H ₃ C H ₃ C CH ₂
H ₃ C H ₃ C H ₃ C Santolina triene	H ₃ C-CH ₃	p-Menth-2-ene	p-lsopropyl-alpha-methylstyrene
	P-Xylene CASRN:106-42-3 DTXSID:DTXSID2021868	CH ₃	H ₃ C CH ₂

Disinfection By-Products


LIST: Disinfection By-Products

Identifier substring search

List Details

Description: Disinfection by-products (DBPs) result from chemical reactions between organic and inorganic matter in water with chemical treatment agents during the water disinfection process. DBPs are present in most drinking water supplies that have been subject to chlorination, chloramination, ozonation, or treatment with chlorine dioxide.

Number of Chemicals: 87

Tire Crumb Rubber (298)

Related Topics:	Safer	Chemica	ls Research
------------------------	-------	---------	-------------

CONTACT US SHARE

July 2019 Report: Tire Crumb Rubber Characterization

Key Takeaways:

- EPA is releasing a new report that addresses exposure (that is, chemicals and how people come in contact with these) to tire crumb rubber on synthetic turf fields. This report is not a risk assessment, nor can the information be used to identify a level above which health effects could occu. Tire Crumb Rubber
- In general, the findings findings findings findings findings

• Only Part 1 is being relea assessment.

List Details

- Part 1 of this report pres
- The scope of this study v

Q	Search T		/IB Cher	micals	
🔲 Id	entifier s	ubstring	search		

Description: This chemical list is based on data contained within the <u>Federal Research Action Plan (FRAP) on Recycled Tire Crumb Used on Playing Fields and Playgrounds</u>. The chemical list is obtained from the <u>Toxicity reference information</u> <u>spreadsheet</u> compiled for the potential tire rrumb rubber chemical constituents identified in the State-of-Science Literature Review/Gaps Analysis. White Paper Summary of Results. Eleven sources of publicly available toxicity reference information were searched. It is important to recognize that not all potential chemical constituents identified through the literature search were confirmed through measurements made under the Federal Research Action Plan. Number of Chemicals: 298

Select all 🕹 Download 🔻 Send to Batch Search D	fault V I CASRN X DTXSID X V	chemicals Hide chem	icals that are: Filter by Name or CASRN
N CH ₃	H ₂ C	Aniline CASRN:62-53-3 DTXSID6020090	Azobenzene CASRN:103-33-3 DTXSID:07XSID:0020123

Hydraulic Fracturing (1640)

Contact Us

EPA's Study of Hydraulic Fracturing and Its Potential Impact on Drinking Water Resources

Hydraulic Fracturing Study Home

Final Assessment

EPA Published Research

Fact Sheets

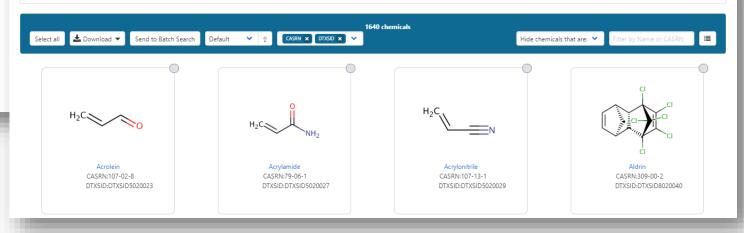
Questions & Answers about the final assessment

Multi-agency collaboration on unconventional oil and gas research

EPA Hydraulic Fracturing -Agency Main Page

Hydraulic Fracturing For Oil And Gas: Impacts From The Hydraulic

WATER|EPA; Chemicals associated with hydraulic fracturing


Q Search EPAHFR Chemicals

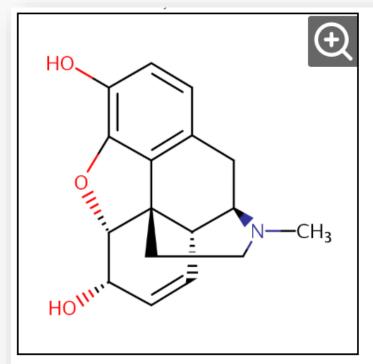
Identifier substring search

List Details

Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. https://www.epa.gov/hfstudy

*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing. Number of Chemicals: 1640

PFAS Lists


United States Environmental Protection Home Advanced Search E Agency	atch Search Lists 🗸 Predictions Downloads	Share Q Search all data
	PFAS EPA: PFAS structures in DSSTox (ι	ıpdate August 2020)
	SSTRUCTV3 Chemicals	
Identifier sub	string search	
List Details		
	ure assigned, and using a set of substructural filters based on community inpu naving sufficient levels of fluorination to potentially impart PFAS-type propertie	t. The substructural filters (<u>visible here</u>) are designed to be simple, reproducible and transparent, yet is.
	3500 of 8163 chemicals load	
Select all 🛓 Download 🔻 Send to Batch Search	Default 🗸 🖞 DTXSID X CASRN X TOXCAST X 🗸	Hide chemicals that are: Filter by Name or CASRN
		•
F F I N F	F,	F F F
F O CI	F Analytical and Bioanalytical Chemi	
F	F https://doi.org/10.1007/s00216-02	
Enflurane DTXSID:DTXSID1020562	1.1.1.2-Tetrafluoro DTXSID:DTXSI	
CASRN:13838-16-9 TOXCAST:0/235	CASRN:811-9 TOXCAST:-	
		-making automated and comprehensive
	non-targeted PFA	S annotation a reality
		Stelben ¹ • Carrie A. McDonough ² • David A. Dukes ² • Juan J. Aristizabal-He • Sandi Sternberg ⁶ • Elizabeth Lin ¹ • Manfred Beckmann ⁷ • Antony J. Williar
	John Draper ⁷ • Jasen P. Fi Krystal J. Godri Pollitt ¹	$hch^7 \cdot Jens K. Munk^9 \cdot Chris Deigl10 \cdot Emma E Rennie11 \cdot John A. Bowden3$
	Received: 5 February 2021 / Revise © Springer-Verlag GmbH German	d: 16 April 2021 / Accepted: 4 May 2021

Related Searches to Support Mass Spectrometry

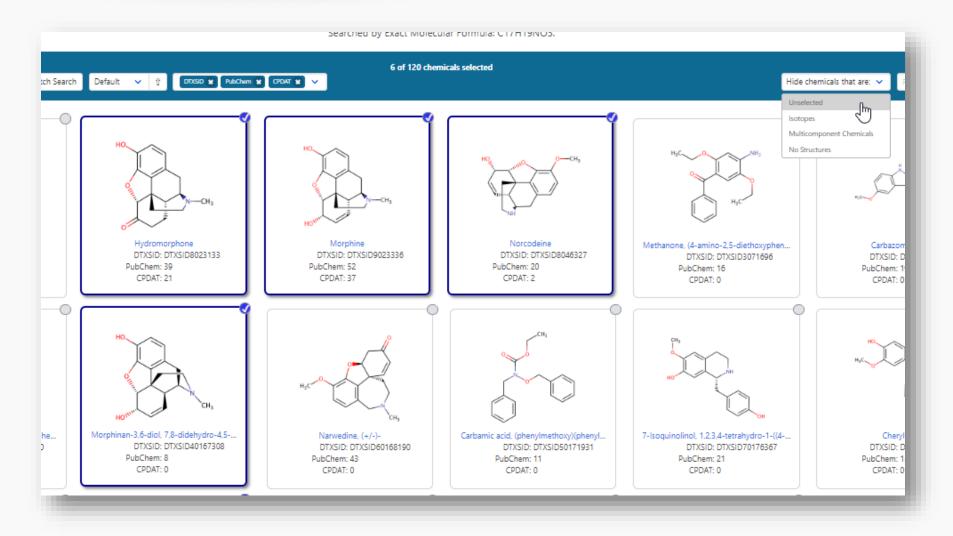
Find me "related structures" Formula-Based Search

Wikipedia

Morphine is a pain medication of the opiate family which is found naturally in a number of plants and animals. It acts directly on the central nervous system (CNS) to decrease the feeling of pain. It can be taken for both acute pain and chronic pain. It is frequently used for pain from myocardial infarction and during labor. It can be given by mouth, by injection into a muscle, by injection under the skin, intravenously, injection into the space around the

Read more

Intrinsic Properties Molecular Formula: C₁₇H₁₉NO₃ & Mol File Q Find All Chemicals Average Mass: 285.343 g/mol Isotope Mass Distribution Monoisotopic Mass: 285.136493 g/mol

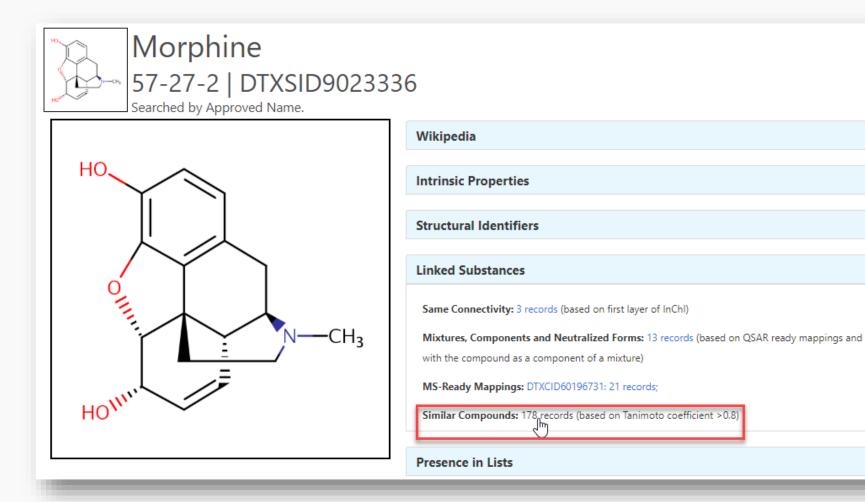

Structural Identifiers

19

4

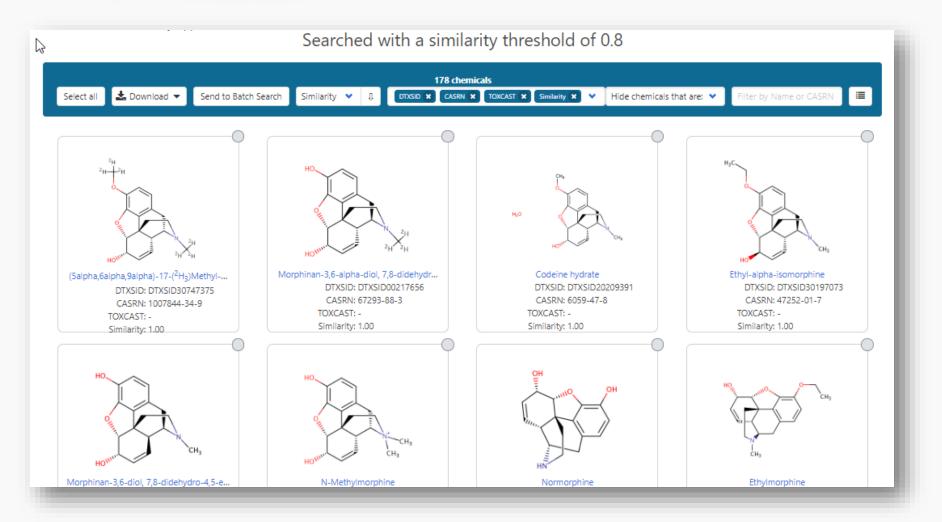
Select Chemicals of Interest

Find me "related structures" Based on Structure Similarity

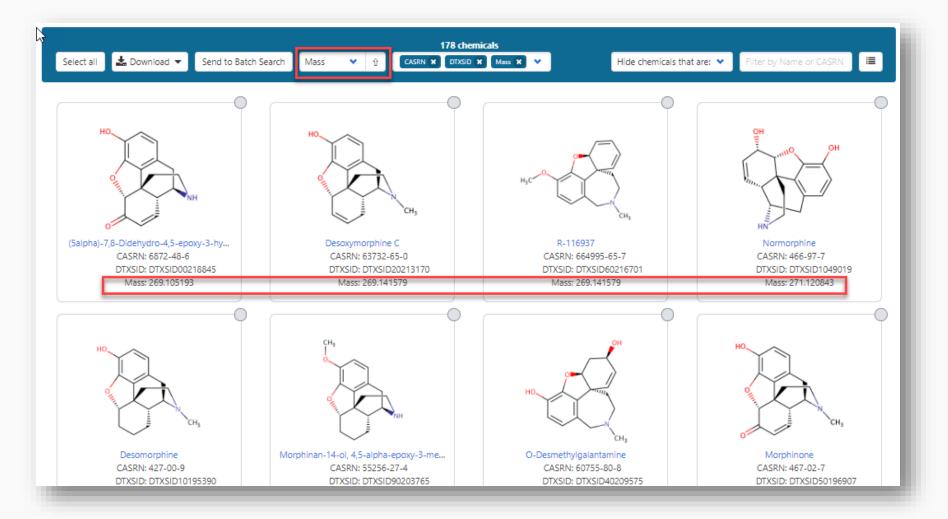


•

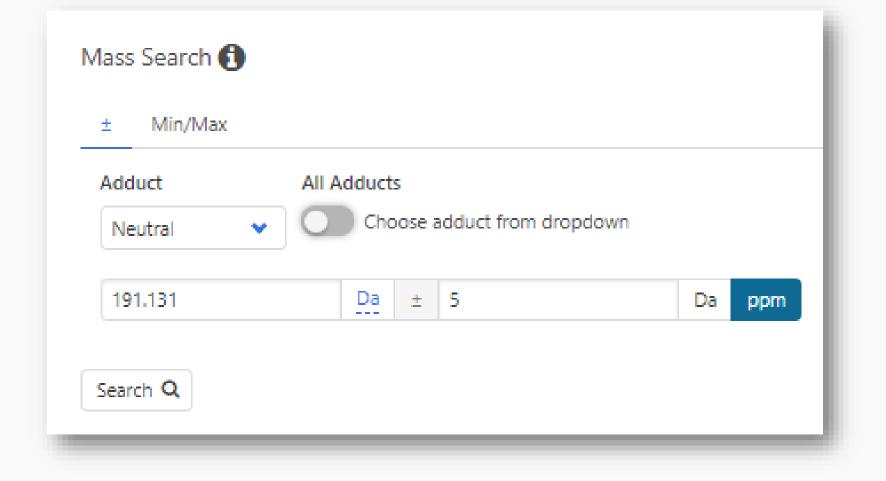
•


•

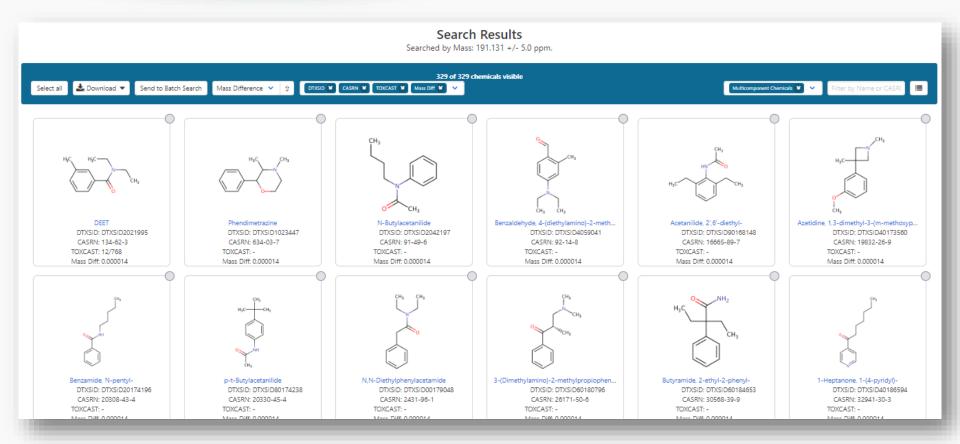
-


Find me "related structures" Based on Structure Similarity

Find me "related structures" Structure Similarity – sort on mass



Mass & Formula Searching


Advanced Searches Mass Search

Advanced Searches Mass Search

MS-Ready Structures for **Formula Search**

Molecular Formula Search 🚯

💿 MS Ready Formula 🚯 🔿 Exact Formula 🚯

Formula

Please use the format of the following example: C6H8O2 or C6H(8-10)O(0-2)

Search Q

"MS-Ready Structures" https://doi.org/10.1186/s13321-018-0299-2

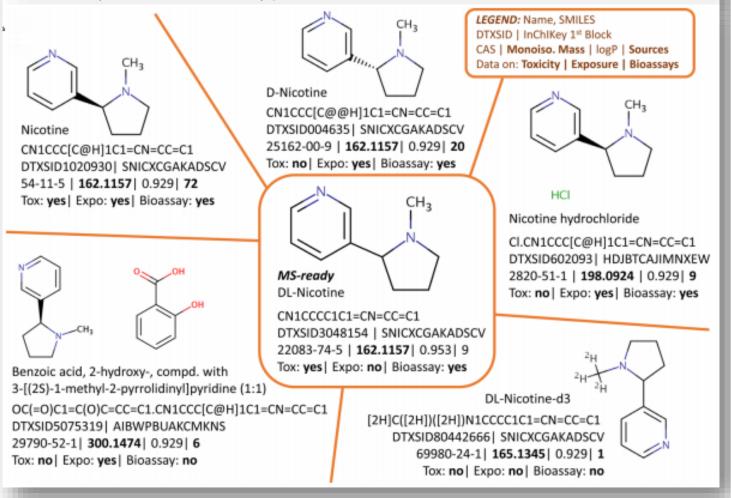
McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

METHODOLOGY

Open Access

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

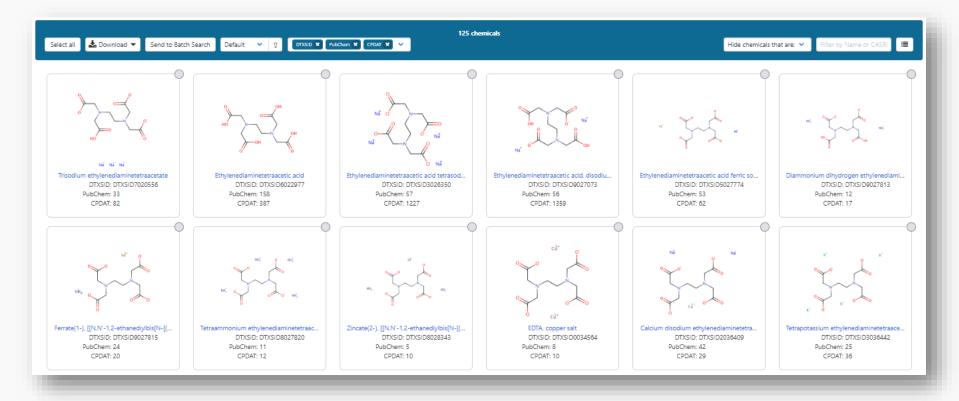


pubs.acs.org/est

Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*^{,†}[©] and Antony J. Williams^{*,‡}[©]

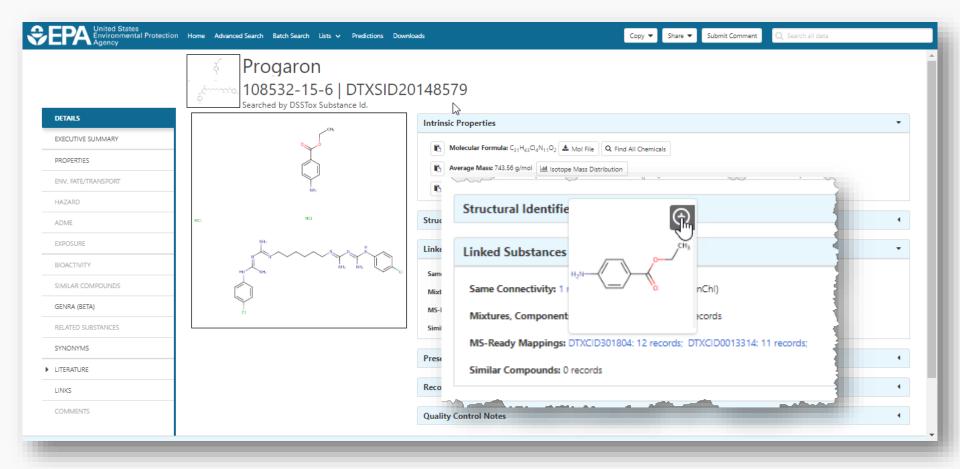
MS-Ready Mappings


• EXACT Formula: C10H16N2O8: 3 Hits

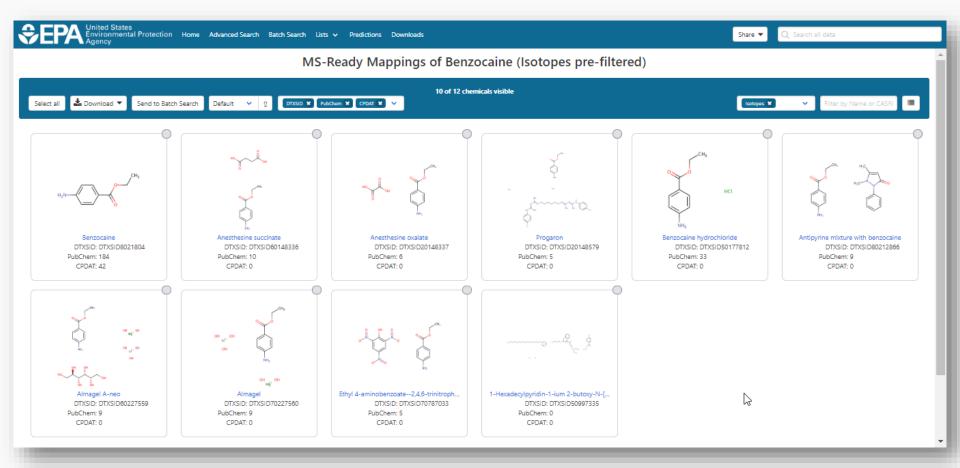
	O MS R Formula C10H16	eady Formula 🚯 🧿 Exact Form	ula 🚯
v	Select all 🛃 Download 🔻 Send to Ba	atch Search Default 👻 🕆 DTXSID 🗙	3 of 3 chemi
	$ \begin{array}{c} & \stackrel{\mathbf{O}}{\underset{H}{\overset{O}} \leftarrow & \stackrel{\mathbf{O}}{\underset{H}{\overset{H}{\overset{O}}} \leftarrow & \stackrel{O}{\underset{H}{\overset{H}{\overset{O}}} \leftarrow & \stackrel{O}{\underset{H}{\overset{H}{\overset{O}}} \leftarrow & \stackrel{O}{\underset{H}{\overset{H}{\overset{O}}} \\ \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\$	$\begin{array}{c} & \stackrel{\circ}{ } \stackrel{\circ}{ } \stackrel{\circ}{ } \stackrel{+}{ $	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$

MS-Ready Mappings

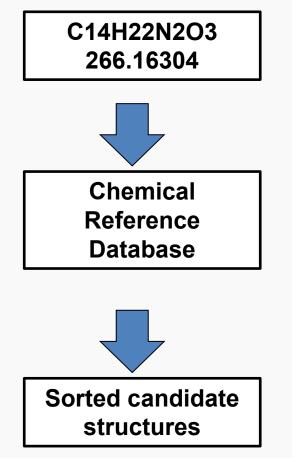
- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals



- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged


MS-Ready Mappings

MS-Ready Mappings Set

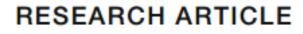


Candidate ranking

Data Source Ranking of "known unknowns"

- Mass and/or formula is for an unknown chemical but contained within a reference database
- Most likely candidate chemicals have the most associated data sources, most associated lit. articles or both

antal Preseries


Is a bigger database better?

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185 DOI: 10.1007/s13361-011-0265-y

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

- ChemSpider was 26 million chemicals then
- Much BIGGER today
- Is bigger better??

Using Metadata for Ranking

- Use available metadata to rank candidates
 - Associated data sources
 - Associated lists in the underlying database
 - Associated data sources in PubChem
 - Specific types (e.g. water, surfactants, pesticides etc.)
 - Number of associated literature articles (Pubmed)
 - Chemicals in the environment the number of products/categories containing the chemical is a very important source of data

Comparing Search Performance

CrossMark

Ånal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran¹ · Jon R. Sobus² · Antony J. Williams³

- Dashboard content was 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

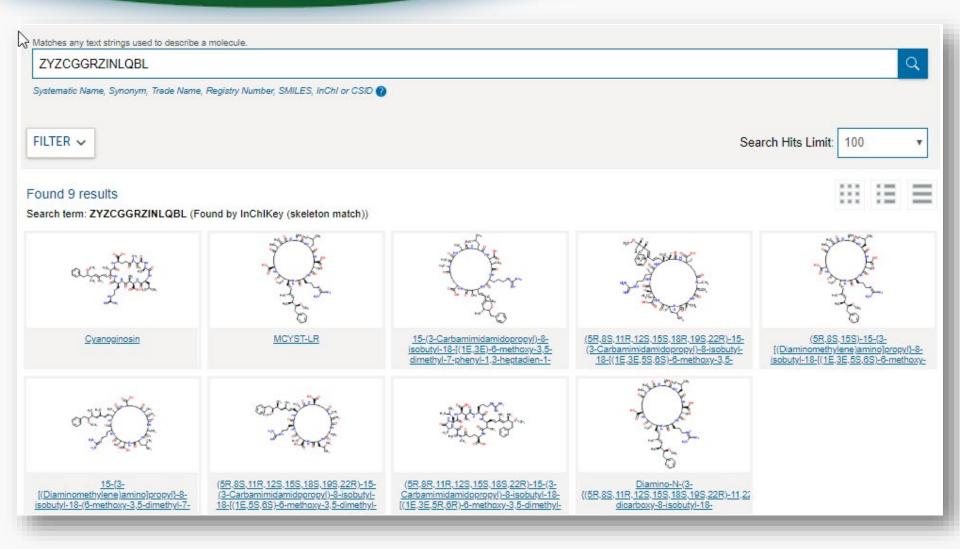
Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Steroid hormones	7	1.0	7				
Perfluorochemicals	6	1.2	5	1			
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 ^a	1.3	2	1			

How did performance compare?

	Mass-based searching		Formula-based searching		
	Dashboard	ChemSpider	Dashboard	ChemSpider	
Average rank position Percent in #1 position	1.3 85%	2.2 ^a 70%	1.2 88%	1.4 80%	

^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

For the same 162 chemicals, Dashboard outperforms ChemSpider

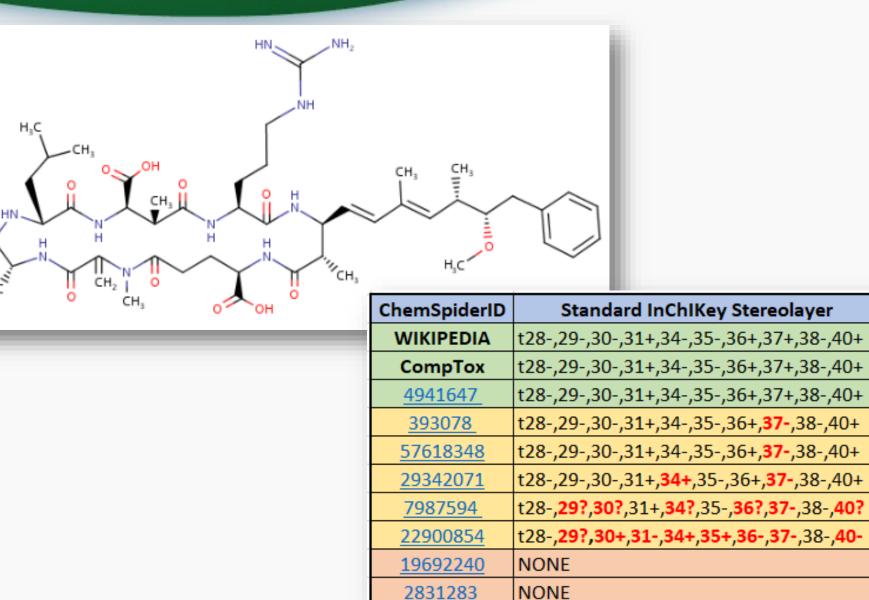


Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average rank	Numb	er in ea	ch positi	ion rank	-ordered
		(±SD)	#1	#2	#3	#4	#5+
Mass-based	Dashboard	1.2 ± 0.7	77 ^a	5	3	3	
	ChemSpider	2.2 ± 6.1^{b}	68	8	7	1	5
Formula-based	Dashboard	1.1 ± 0.4	78 ^a	8	2		
	ChemSpider	1.3 ± 1.0	77	8	2	1	2

^aOne chemical (tephrosin) not present in the Dashboard

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search



evironmental Protection

neney

Comparing ChemSpider Structures

2

SEPA United States Environmental Protection Appendix

Comparing ChemSpider Structures

ChemSpiderID	InChIKey	# Stereocenters	# Different
WIKIPEDIA	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
CompTox	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>4941647</u>	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>393078</u>	ZYZCGGRZINLQBL-GWRQVWKTSA-N	10/10	1
<u>57618348</u>	ZYZCGGRZINLQBL-UPPCHHEJSA-N	10/10	1
<u>29342071</u>	ZYZCGGRZINLQBL-IIJTUTQBSA-N	10/10	2
<u>7987594</u>	ZYZCGGRZINLQBL-BESLYTPASA-N	5/10	6
<u>22900854</u>	ZYZCGGRZINLQBL-QAXSDTKVSA-N	9/10	8
<u>19692240</u>	ZYZCGGRZINLQBL-ORZJCNCZSA-N	0/10	10
<u>2831283</u>	ZYZCGGRZINLQBL-UHFFFAOYSA-N	0/10	10

Other Searches

UniChem

About Compounds (17)

Shov	v All v entries			
	CMR. Query InChl	src_id	Source	src_compound_id
	matches	1	ChEMBL	CHEMBL444092
	matches	4	Guide to Pharmacology	<u>4735</u>
	matches	6	KEGG Ligand	<u>C05371</u>
	matches	7	ChEBI	<u>6925</u>
	matches	9	ZINC	ZINC000169715525
	matches	9	ZINC	ZINC000255288110
	matches	9	ZINC	ZINC000255288111
	matches	9	ZINC	ZINC000255288112
	matches	9	ZINC	ZINC000255288113
	matches	9	ZINC	ZINC000255288114
	matches	9	ZINC	ZINC000255288115
	matches	9	ZINC	ZINC000583653042
	matches	9	ZINC	ZINC000669680403
	matches	10	eMolecules	<u>26754757</u>
	matches	10	eMolecules	<u>31239828</u>
	matches	11	IBM Patent System	DA3C2F25F29692734272194ED0E2C009
	matches	14	FDA SRS	EQ8332842Y
			DubOham	

Batch Searches

List of Opioids – Presence in Lists?

Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

TrEAC

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas ª, Imma Ferrer ^b ペ ⋈, E.Michael Thurman ^b, Ana Agüera ª

Show more

https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Step 1	Step 2	Step 3	Step 4	Step 5	Step
	Ste	ep Five: Choos	se Data Fields to Do	wnload	•
Please enter one i	identifier per line				×
Select Input Type(s) Identifiers Chemical Name CASRN CASRN DinChIKey DSSTox Substan DSSTox Compour InChIKey Skeletor MS-Ready Formul Exact Formula(e) (e () nce ID () nd ID () n () ila(e) ()		Enter Identifiers to Search Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone	h (searches should be limited to	o <5000 identifiers)
 Monoisotopic Ma Display All C 		d Chemical Data			
		d Chemical Data			
		d Chemical Data	INPUT Buprenorphine	FOUND_BY	DTX SID
		d Chemical Data	Buprenorphine	Approved Name	DTXSID2022705
		d Chemical Data	Buprenorphine Codeine	Approved Name Approved Name	DTXSID2022705 DTXSID2020341
		d Chemical Data	Buprenorphine Codeine Dextromethorphan	Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908
		d Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine	Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936
		d Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine	Approved Name Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908
		d Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936
		d Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760
	Chemicals Download		Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049
			Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761
	Chemicals Download	cel	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761 DTXSID8023131
	Chemicals Download	cel	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761 DTXSID8023131 DTXSID8023133
	Chemicals Download	cel	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone Hydromorphone Ketamine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID8023131 DTXSID8023133 DTXSID8023187

Batch Search in specific lists

	INPUT	DTXSID	MASSBANKREF	NEMILIST	WRTMSD	NORMANPRI	SUSDAT
	Buprenorphi	DTXSID202	-	-	Y	-	Y
		DTXSID202		Υ	Y	Y	Υ
	Dextrometh	DTXSID302:	Y	Υ	Y	-	Υ
	Dihydrocod	DTXSID502	Υ	-	Y	Υ	Y
<u>N</u>	Dihydromor			-	-	-	Y
	Ethylmorph	DTXSID104	-	-	Y	-	Y
		DTXSID902:	Y	-	Y	-	Y
💌 N	Heroin	DTXSID604	Y	-	Y	Y	Y
N-	Hydrocodor			Y	Y	Y	Y
	Hydromorph			-	Y	-	Υ
<u>N</u>	Ketamine			-	Y	-	Υ
🗹 N-	Meperidine			-	Y	-	Υ
	wietnadone			Y	Y	-	Υ
🗹 📐	Morphine			Y	Y	Y	Υ
1 N	Morphinone			-	-	-	Υ
<u> </u>		DTXSID802	-	-	Y	-	Y
	Naltriben	-	-	-	-	-	-
	Oxycodone			Y	Y	Y	Υ
	Oxymorpho			-	Y	-	Υ
	Propoxyphe			Y	Y	-	Υ
— —	Sufentanil			-	Y	-	Υ
<u> </u>	Tramadol	DTXSID908	Υ	Y	Y	Y	Y

Opioids and Metabolites (160)

	DRUGS: Opioids and r	elated metabolites	
Q Search OF	OIDS Chemicals		
Identifier su	string search		
List Details			•
	assembled primarily from public resources (e.g. Wikipedia, datab	ases and literature articles) and is under ongoing curation and	d expansion.
Number of Chemicals: 180			
Select all 🛃 Download 🔻 Send to Batch Search	Default V 1 CASRN X DTXSID X V	hemicals Hide chemic	als that are: 👻 Filter by Name or CASRN 🔳
СНь			
	2		м,с
	No Contraction	ини _{сна}	
N-CH3	\bigcirc	CH3	
HO ^W Codeine	Alfentanil	Alphaprodine	Anileridine
CASRN:76-57-3 DTXSID:DTXSID2020341	CASRN:71195-58-9 DTXSID:DTXSID9022570	CASRN:77-20-3 DTXSID:DTXSID4022575	CASRN:144-14-9 DTXSID:DTXSID8022610
		O	
H ₃ C	HO		
		но	
s I s	HC 0 Laur H		но Сн,
	HOIMING		H ₃ C

• We work with **thousands** of masses/formulae!

- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?

Batch Searching Formula/Mass

inmental Protection

Searching batches using MS-Ready Formula (or mass) searching

	A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3		46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol			32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3		20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3		19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3		19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine			14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol			12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide		266.163042576	7
10	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S		35
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride	C18H35CIN2O6S	442.1904357	22
14	C18H34N2O6S	DTXSID20849438	1398534-62-7	PUBCHEM_71432748	C18H35CIN2O6S	442.1904357	1
15	C10H12N2O	DTXSID1047576	486-56-6	Cotinine	C10H12N2O		40
16	C10H12N2O	DTXSID8075330					22
17	C10H12N2O	DTXSID8044412					18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride			11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine			10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine		176.094963014	7
22	C10H12N2O	DTXSID40178777				176.094963014	7
	C10H12N2O	DTXSID80157026				176.094963014	6
24	C10H12N2O	DTXSID30205607	570-14-9			176.094963014	6
25	C14H18N4O3				C14H18N4O3		68
26	C14H18N4O3						51
27	C14H18N4O3	DTXSID40209671				326.1145682	8
28	C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
29	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
30	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-		290.137890456	3
	C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-		308.14845514	3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
	C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam		290.137890456	3
35	C12H11N7	DTXSID6021373					52
		DTXSID00204465				253.107593382	7
37	C12H11N7	DTXSID5064621				251.091943318	4
38	C12H11N7	DTXSID00848025				351.074973101	1
39	C12H11N7	DTXSID50575293				253.107593382	1
40	C8H9NO2	DTXSID2020006			C8H9NO2		75
11	C8H0NIO2	DTYSID6025567	13/1 201 3	Mothyl 2 aminohonzoato		161 063328634	50

Benefits of Open Data

API services and Open Data

- Available API and web services
- Open Data available for download

1	casrn	dsstox_substance_id	ncludes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name. preferred_name
2	26148-68-5	DTXSID7020001	A-alpha-C
3	107-29-9	DTXSID2020004	Acetaldehyde oxime
4	60-35-5	DTXSID7020005	Acetamide
5	103-90-2	DTXSID2020006	Acetaminophen
6	968-81-0	DTXSID7020007	Acetohexamide
7	18523-69-8	DTXSID2020008	Acetone[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazone
8	75-05-8	DTXSID7020009	Acetonitrile
9	127-06-0	DTXSID6020010	Acetoxime
10	65734-38-5	DTXSID6020012	N'-Acetyl-4-(hydroxymethyl) phenylhydrazine
SS	Tox MS Ready N	lapping File	Posted: 11/14/2016

DSSTox SDF File

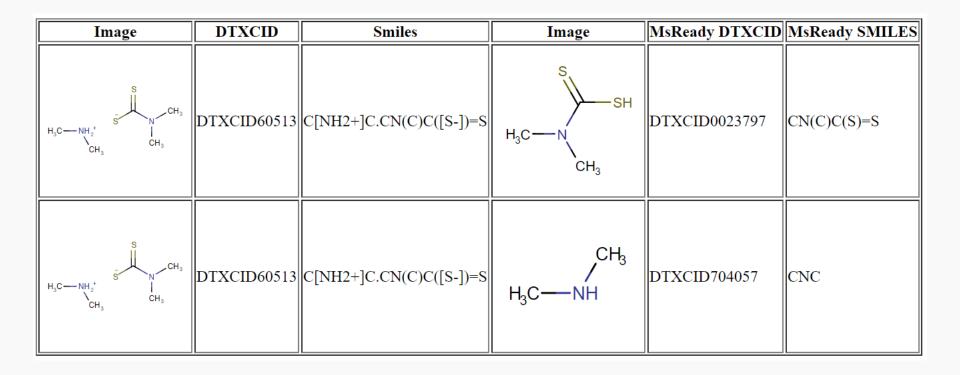
Posted: 12/14/2016

This zip file contains the entire chemical structure collection of over 700,000 chemicals from the DSSTox database contained in one large SDF file. The file contains the structure, The DSSTox Structure Identifier (DTXCID), The DSSTOX Substance Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated synonyms and Quality Control Lovel datails. In order to view an SDE file you will need to have assess to the appropriate piece of coffware to open an SDE file. The material Data Source) is the structure of coffware to open an SDE file you will need to have assess to the appropriate piece of coffware to open an SDE file.

Web Services https://actorws.epa.gov/actorws/

- Dozens of web services to provide access to data
- Data in UI, JSON and XML format

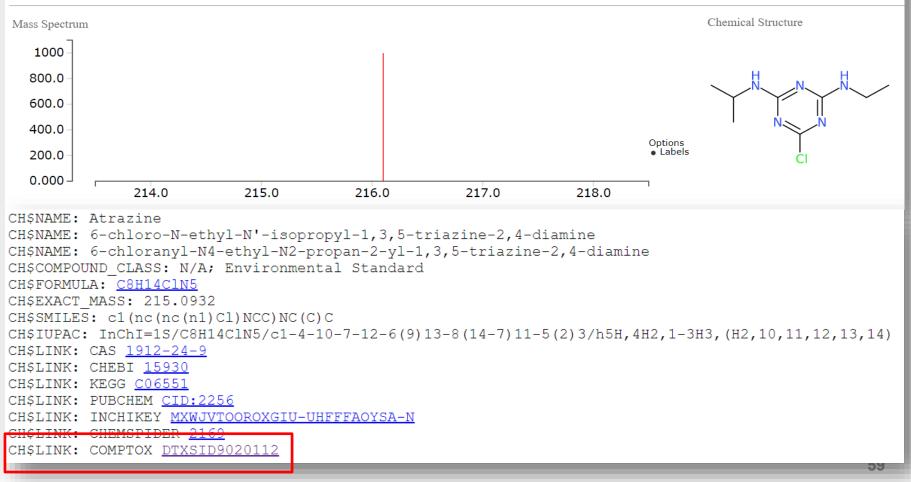
https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=80-05-7


https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=DTXCID60513

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N

Example: InChIKey to DTXCIDs

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier =UVOFGKIRTCCNKG-UHFFFAOYSA-N


MassBank mapping to Dashboard

MassBank Record: EA028808

Home | Search | Record Index | Data Privacy | Imprint | MassBank ID:

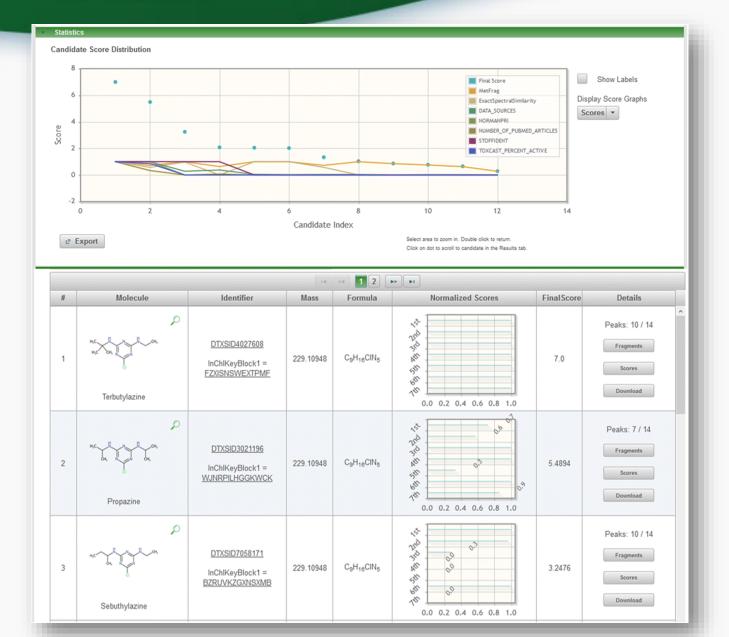
Go

Atrazine; LC-ESI-ITFT; MS2; CE: 15%; R=15000; [M+H]+

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

NORMAN


Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0299-2

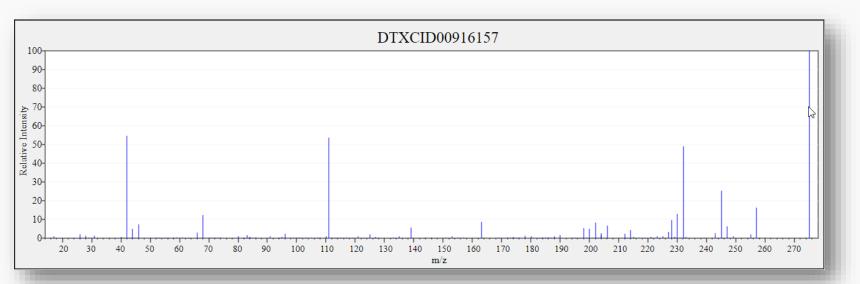
61

Work in Progress

Prototype Work in Progress

• CFM-ID

- Viewing and Downloading pre-predicted spectra
- Search spectra against the database
- Structure/substructure/similarity search
- The EPA NTA WebApp
- Access to API and web services


Predicted Mass Spectra

http://cfmid.wishartlab.com/

- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard

CFM-ID Predicted Library Available

- SEPA United States Environmental Protection Appendy
- Predictions generated and stored for >800,000 structures
- Python code to score experimental vs predicted spectra
- Cosine dot product match score calculation

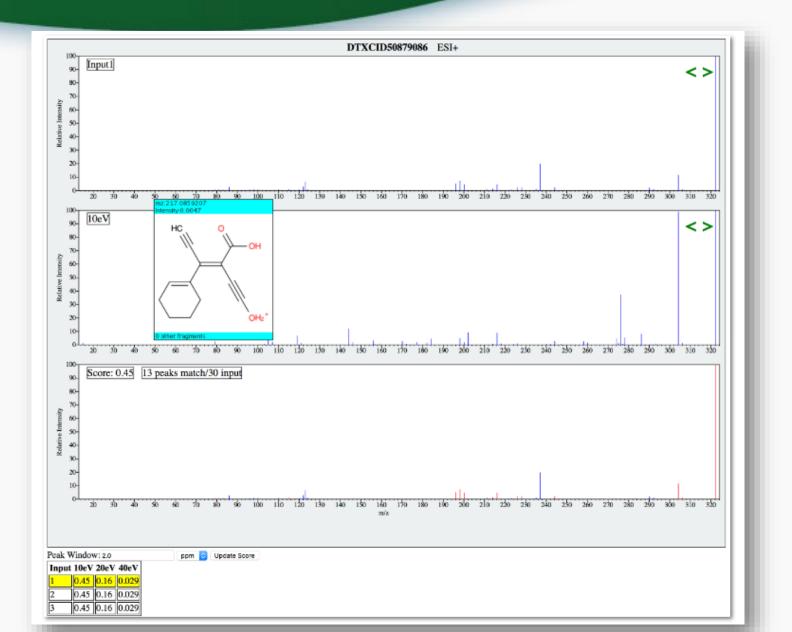
Data Descriptor | OPEN | Published: 02 August 2019 Linking *in silico* MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran[™], Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams[™]

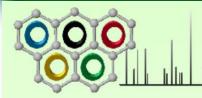
Scientific Data 6, Article number: 141 (2019) | Download Citation 🛓

Search Expt. vs. Predicted Spectra

SEPA United States Environmental Protection Home Adv Agency	ranced Search Batch Search Lists 🗸 Prediction	ns Downloads	Share 🔻 🔍 Search all data
	Nor	n Target Analysis Prototype	Î
Mass Se ± 321.138493	Min/Max	± 0.000002 Da p	pm
Molecular F	ar Formula Search		
Mass or Ionizatio ESI+ ESI- EI Spectra		fore searching spectrum	
304.133200 198.09134	Ile Energy Multiple		
198.07569 218.10190 200.40800	59 6.538348292 04 5.269463115 51 4.700481978		
Peak Ma Search	atch Window: 0.02	Da ppm	


Search Expt. vs. Predicted Spectra

SEPA United State Environmen Agency	Q Search all data			
	Spectra Inpu Single Ener	Chemical Structure ID	Score (10eV)	
R	304.1332052 11.61 198.0913404 7.30 123.0440559 6.53 196.0756904 5.26	DTXCID101048191	0.22	
	216.1019051 4.70	DTXCID101181567	0.19	
	Peak Match Search	DTXCID50879086	0.17	
TSV	CSV Excel	DTXCID60686349	0.14	
	emical Structure ID	DTXCID00830900	0.13	n of Scores
	CID101181587 CID50879088	DTXCID10971176	0.12	
	CID60686349 CID00830900	DTXCID60301242	0.12	
	CID10971178 CID60301242	DTXCID40703048	0.11	
	CID40703048 CID60349982	DTXCID60349982	0.11	
	CID10316649 .	DTXCID10316649	0.09	1 2 3 4 Next


Spectral Viewer Comparison

CASMI 2012-2017 revisited

Critical Assessment of Small Molecule Identification

The experimental and computational mass spectrometry communities are invited to participate in the fifth round of an open contest on the identification of small molecules from mass spectrometry data.

This year the contest will test the applicability of MS and MS/MS on natural products chemistry identifications. With 45 (Category 1) and up to 243 (Categories 2&3) natural products challenges - including a few tricky ones - there's something for everyone!

 Application of metadata candidate ranking and CFM-ID to all five years of CASMI data

Open Access Article

Revisiting Five Years of CASMI Contests with EPA Identification Tools

	🖾 💿, 🔃 Alex Chao ¹ 🖾 💿, 🔃 Hussein Al-Ghoul ¹ 🗠 💿, 🌓	
📢 Christopher Grulke ² 🖾 💿, 📢	🔍 Jon R. Sobus ² 🖂 🔟 and 🚺 Antony J. Williams ^{2,*} 🖾 🔟	

- ¹ Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- ² Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- * Authors to whom correspondence should be addressed.

Metabolites 2020, 10(6), 260; https://doi.org/10.3390/metabo10060260

Received: 3 May 2020 / Revised: 3 June 2020 / Accepted: 17 June 2020 / Published: 23 June 2020

Published: Alex Chao et al

Analytical and Bioanalytical Chemistry

RESEARCH PAPER

In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT mixture samples

Alex Chao^{1,2} • Hussein Al-Ghoul^{1,2} • Andrew D. McEachran^{1,3} • Ilya Balabin⁴ • Tom Transue⁴ • Tommy Cathey⁴ • Jarod N. Grossman^{2,3} • Randolph Singh^{1,5} • Elin M. Ulrich² • Antony J. Williams⁶ • Jon R. Sobus²

Received: 4 October 2019 / Revised: 27 November 2019 / Accepted: 11 December 2019 © The Author(s) 2019

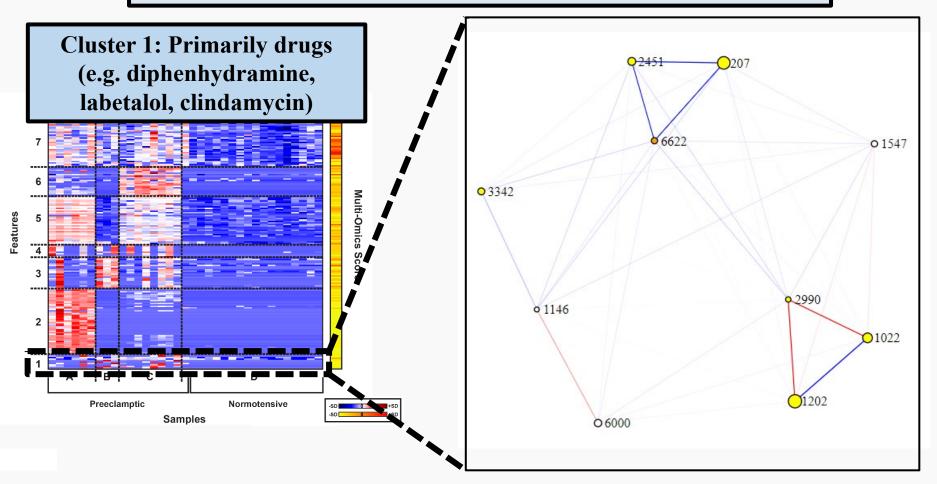
NTA WebApp Development

SEPA United States Environmental Protection Agency

Num MS3 Tool Imput Value MS1 Tool Adjustions Project name: Example nts MS1 Tool Adjustions Project name: Example nts MS2 CP/UD Tool Project name: Example nts NS2 CP/UD Tool Project name: Example nts NS2 CP/UD Tool Project name: Example nts NS2 CP/UD Tool Project name: Example nts Adduct mass accuracy units: ppm ~ Adduct retention time accuracy (ining): 0:5 Tracer mass accuracy units: ppm ~ Tracer retention time accuracy (ining): 0:1 Min sample/blank cotoff: 9 Min sample/blank cotoff: 9 Min sample/blank cotoff: 9 Min sample/blank cotoff: 0 Min sample/blank cotoff: 0 Min sample/blank cotoff: 0 Save top result only? ms Save top result only? ms Save top result only? ms Save top result only? 100	Tools MS1 Tool	Run NTA MS1 Too	L I		-
Mist tool QAQC Project name: Example nts Mint Mist tool References Positive MPP file (csv): Choose File to file chosen NTTA data input Documentation Adduct mass accuracy units: pem v Adduct nass accuracy units: pem v Adduct te tention time accuracy (mins): 0.65 Post of Doce File to file chosen Parameteers file (csv): Choose File to file chosen Tracer file (csv; optional): Choose File to file chosen Parameteers file (csv; optional): Doce file to file thosen Tracer retention time accuracy (mins): 0.1 Parameteers file (csv; optional): Parameteers file (csv; optional): Min replicate hits: 2 0.8 Parent ion mass accuracy (ppm): 5 Dicard features below this retention time (csv): 0.8 Parent ion mass accuracy (ppm): 5 Save to presult only? mass v Save to presult only? Save to presult only? Save to presult only? Save to presult only? Save to presult only?		Input	Value		
Mis Tool Reference Mis Zo EMUD Tool Negative MPP file (cav): Choose File No file chosen Adduct mass accuracy units: ppm v Adduct retention time accuracy (mins): 0.05 Tracer mass accuracy units: ppm v Tracer mass accuracy (mins): 0.1 Min replicate hits: 0.3 Min replicate hits: 0.3 Max replicate CV: 0.8 Parent ion mass accuracy (ppm): 5 Swee top result only? no w Swee top result only? no w		Project name:	Example nta		M
Nasz cFMID Tool NTA data ing files Documentation Adduct mass accuracy units: ppm • Source Code Adduct retention time accuracy (mins): 0.05 Adduct retention time accuracy (mins): 0.05 Tracer file (car) optional): Choose File No file chosen Tracer mass accuracy (mins): 0.05 Pareatmenters file (car) Parameters file (car) Min replicate bits: 0.0 Parention mass accuracy (ppm): 5 Dicard features below this retention time 0.0 Mass accuracy (ppm): 5 Save top result only? no • no • no •					
Documentation Adduct mass accuracy units: pm v Adduct mass accuracy units: Adduct retention time accuracy (mins): 0.05 Tracer file (cav; optional): Tracer file (cav; optional): Tracer mass accuracy units: pm v Tracer mass accuracy (mins): 0.1 Tracer retention time accuracy (mins): 1.1 Min sample:blank cutoff: 3 Min replicate hits: accuracy (pm): 5 Discard features below this retention time 0.0 mass v save top result only?	MS2 CFMID Tool			►	NTA data inr
Source Code Adduct mass accuracy: 0 Adduct retention time accuracy (mins): 0.05 Tracer file (csv; optional): Choose File No file chosen Tracer mass accuracy: 5 Tracer mass accuracy: 5 Tracer retention time accuracy (mins): 0.1 Min sample:blank cutoff: 3 Min replicate hits: -2 Max replicate CV: 0.8 Parent ion mass accuracy (ppm): -5 Diccord features below this retention time (mins): 0.0 Search dashboard by: mass • Save top result only? no	Desumantian	Negative MPP file (csv):	Choose File No file chosen		-
Adduct mass accuracy: io Adduct retention time accuracy (mins): 0.05 Tracer file (csv; optional): Choose File No file chosen Tracer mass accuracy units: ipm v Tracer mass accuracy units: ipm v Tracer mass accuracy units: ipm v Tracer mass accuracy (mins): 0.1 Min sample:blank cutoff: ipm v Min replicate hits: ipm v Parent ion mass accuracy (ppm): ipm v Parent ion mass accuracy (ppm): ipm v Search dashboard by: ipm v Save top result only? ipm v		Adduct mass accuracy units:	ppm V		files
Tracer file (csv; optional): Tracer mass accuracy units: ppm v Tracer mass accuracy: 5 Tracer retention time accuracy (mins): 0.1 Min sample:blank cutoff: 3 Min replicate hits: • Parent ion mass accuracy (ppm): • 0.0 Save top result only?	Source Code	Adduct mass accuracy:	10		
Tracer mass accuracy units: ppm Tracer mass accuracy: 5 Tracer retention time accuracy (mins): 0.1 Min sample:blank cutoff: 3 Min replicate hits: Parent ion mass accuracy (ppm): 5 Discard features below this retention time 0.0 Save top result only?		Adduct retention time accuracy (mins):	0.05		
Tracer mass accuracy: 5 Tracer retention time accuracy (mins): 0.1 Min sample:blank cutoff: 3 Min replicate hits: -2 Max replicate KV: 0.8 Parent ion mass accuracy (ppm): -5 Discard features below this retention time (mins): save top result only?		Tracer file (csv; optional):	Choose File No file chosen		
Tracer retention time accuracy (mins): 0.1 Min sample:blank cutoff: 3 Min replicate hits:		Tracer mass accuracy units:	ppm 🗸		
Min sample:blank cutoff: 3 Min replicate hits:		Tracer mass accuracy:	5		
Min replicate hits: 2 Max replicate CV: 0.8 Parent ion mass accuracy (ppm): 5 Discard features below this retention time (mins): 0.0 Save top result only? mass v		Tracer retention time accuracy (mins):	0.1		
Max replicate CV: 0.8 Parent ion mass accuracy (ppm): 5 Discard features below this retention time (mins): 0.0 Save top result only? mass v		Min sample:blank cutoff:	3		Parameters f
Max replicate CV: 0.8 Parent ion mass accuracy (ppm): 5 Discard features below this retention time (mins): 0.0 Save top result only? mass v		Min replicate hits:	2		NTA clean-ui
Discard features below this retention time (mins): Search dashboard by: Save top result only? Ino		Max replicate CV:	0.8		-
Search dashboard by: mass V Save top result only? no V		Parent ion mass accuracy (ppm):	 5		database
Save top result only?			0.0		searching
		Search dashboard by:	mass 🗸		_
DSSTox search batch size (deburging): 150		Save top result only?	no v		
		DSSTox search batch size (debugging):	150		

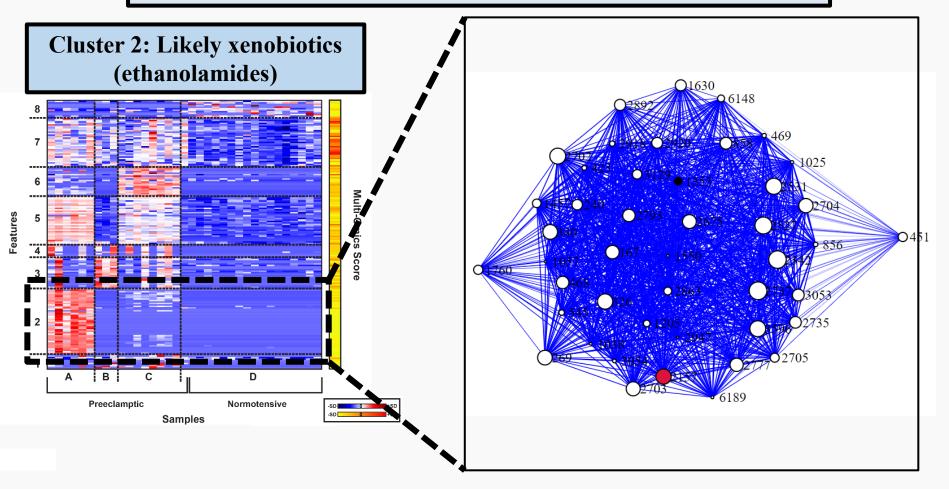
Minucci

Jeff



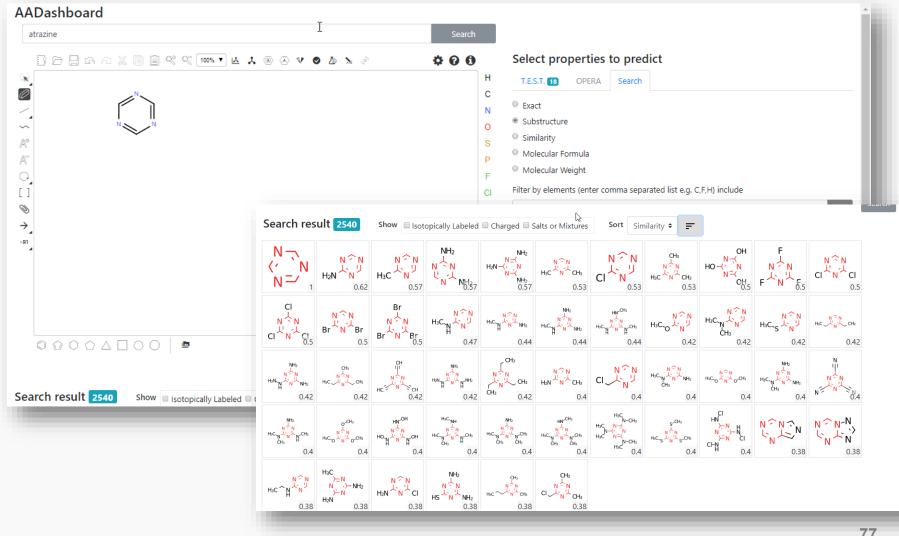
Visualizations of Data – Cluster 1

Chemical			(451	SEPA United States Environmental Protection	Home Advanced Search Batch Search Lists v Predictions Down	
Candidate	Chemical Name	Data	CEMI			58-73-1 DTXSID402294 Searched by DSSTox Substance Id.	19
Information		Sou		le quotient	DETAILS EXECUTIVE SUMMARY		Wikipedia • Etanautine, also known as diphenhydramine monoacefyllinate, is an
	Diphenhydramine Diphenhydramine hydrochloride	77.0 63.0	94.8 94.8	1.0 1.0	PROPERTIES ENV. FATE/TRANSPORT		Exhibiting, dou, Johnson supportingualamine motioaccybinate, is an anticholinengic used as an antipactingualamine motioaccybinate, is an alphonydramine with accifyline, similar to the diphonhydramine ¹⁰ - chiorotheophydrin combination product dimenhydramine. As with dimenhydramate, the stimulant effect of the etanautine counteracts the seataive effect from the diphonhydramine, resultion is an improved becaputic
	Dimenhydrinate	44.0	94.8	1.0	HAZARD		seoative erect from the alphenhydramine, resulting in an improved therapeutic profile. The 1:2 salt diphenhydramine diacefylline (with
	Phenyltoloxamine	34.0	87.1	0.63 5622	► SAFETY		Read more
DTXSID5047790	Phenyltoloxamine citrate	26.0	87.1	0.63	ADME EXPOSURE		Quality Control Notes 4
DTXSID2044266	Atomoxetine hydrochloride	23.0	25.0	0.0	BRACTIVITY SIMILAR COMPOUNDS	СН ₃	Intrinsic Properties
DTXSID9044297	Atomoxetine	22.0	25.0	0.0	GENRA (BETA)		Molecular Formula: C ₁₇ H ₂₁ NO Mol File G. Find All Chemicals
D1X51D80237211	Diphenhydramine citrate [USP]	12.0	94.8	1.0	RELATED SUBSTANCES SYNONYMS		Average Mass: 255.361 g/mol Mass: 255.162314 g/mol
DTXSID10225883	Diphenhydramine salicylate	8.0	94.8	1.0	LITERATURE LINKS		Structural Identifiers
	Diphenhydramine				COMMENTS		Linked Substances
	hydrochloride mixture with methaqualone	7.0	94.8	1.0			Presence in Lists
	Phentoloxamine PAS	7.0	87.1	0.63			Record Information 4
	Acetaminophen mixture						
DTXSID20229019	with phenyltoloxamine citrate	7.0	87.1	0.63			
Q1146							22
		(\$ 00	0	(



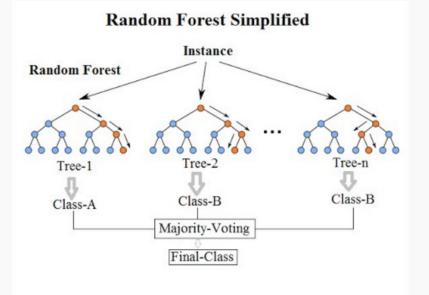
Patterns of Cluster Results

Patterns of Cluster Results



Patterns of Cluster Results Cluster 7: Mostly human Q3807 metabolism chemicals (acyl 05996 158 218 carnitines, amino acids, peptides) 355 3843 6053 O2403 ()1881 06598 1067 O1882 0660 Features 5 241 OI468 4 02919)1111 1890 3 007 359 181 622 2 2579 605 А в С D 6050 196 6196 1915 Preeclamptic Normotensive -SD 0 +SI -SD +sd Samples 06717

Prototype Development


77

Method Amenability Prediction Charlie Lowe

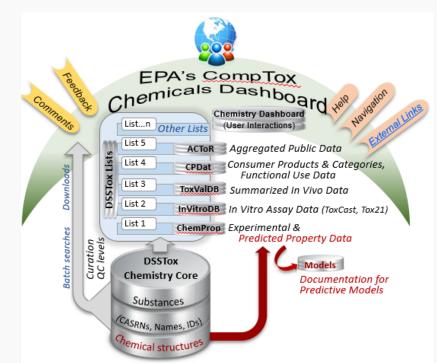
Why?

- Chromatography-mass spectrometry can be LC or GC
- Which phase is more appropriate for which chemicals?

Ongoing Work

• Data sources to date

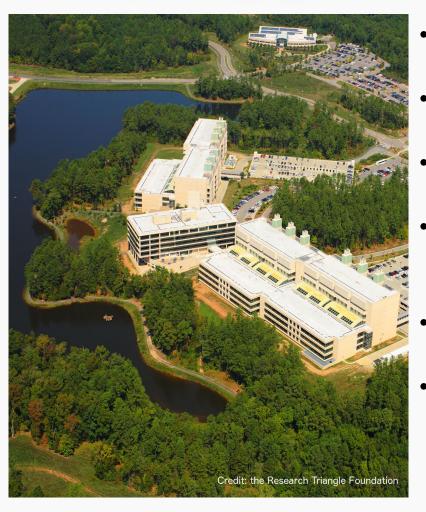
Massbank of North America


- 9,275 chemicals for non-derivatized GC
- 846 chemicals for derivatized GC
- 816 chemicals for APCI+
- 454 chemicals for APCI-
- 4,907 chemicals for ESI+
- 3,430 chemicals for ESI-

• EPA Non-targeted Analysis Collaborative Trial (ENTACT)

- 886 chemicals for non-derivatized GC
- 44 chemicals for derivatized GC
- 774 chemicals for APCI+
- 431 chemicals for APCI-
- 1,113 chemicals for ESI+
- 648 chemicals for ESI-

Conclusion


- Dashboard access to data for ~883,000 chemicals MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Curation and mutual sharing of chemical lists is important (e.g. NORMAN)

nmental Protection

Acknowledgements

- NCCT IT development team
- Tommy Cathey, ACTOR Web Services
- Nancy Baker, Abstract Sifter
- Todd Martin & Valery Tkachenko, WebTEST
- Kathie Dionisio & Kristin Isaacs, CPDat
- Thanks to Emma Schymanski, University of Luxembourg, for coordinating all efforts with the NORMAN Network for curation of lists on the Suspect Exchange

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology EMAIL: <u>Williams.Antony@epa.gov</u> ORCID: <u>https://orcid.org/0000-0002-2668-4821</u>

RETURN TO ISSUE < PREV SUSTAINABLE SYSTEMS NEXT >

Chemical Characterization of Recycled Consumer Products Using Suspect Screening Analysis

Charles N. Lowe, Katherine A. Phillips, Kristin A. Favela, Alice Y. Yau, John F. Wambaugh, Jon R. Sobus, Antony J. Williams, Ashley J. Pfirrman, and Kristin K. Isaacs*

 ♥ Cite this: Environ. Sci. Technol. 2021, 55, 16, 11375-11387
 Publication Date: August 4, 2021 ∨ https://doi.org/10.1021/acs.est.1c01907
 Copyright © 2021 American Chemical Society
 RIGHTS & PERMISSIONS √ Subscribed Article Views Altmetric Citations
530
16
LEARN ABOUT THESE METRICS

