

11TH WORLD CONGRESS ON ALTERNATIVES AND ANIMAL USE IN THE LIFE SCIENCES

Organising frameworks: AOPs, MOAs and KCs – Mutually Informative, Not Mutually Exclusive S104, Monday, August 30

Modeling the Retinoid System in Biology and Toxicology

Thomas B. Knudsen, PhD

Developmental Systems Biologist
US EPA, Center for Computational Toxicology and Exposure
Chemical Safety for Sustainability (CSS) Research Program
Research Triangle Park, NC 27711

knudsen.thomas@epa.gov

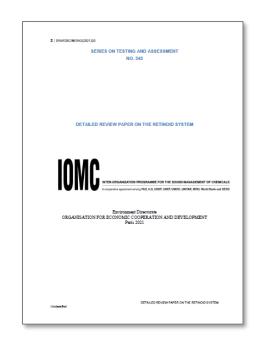
ORCID 0000-0002-5036-596x

New Approach Methods (NAMs)

- New Approach
 Methods Work Plan
 Reducing use of armols in chemical testing
 U.S. Environmental Processing Appropriate
 Office of Calminal Stafey and Pollution Prevention
 Junio 2020
- NAMs refer to *in vitro* data and *in silico* models for toxicological assessment with low reliance on animal testing (accelerating data acquisition with fewer resources).
- Healthy pregnancy is an important consideration, that data generated with new testing strategies can be used for developmental hazard evaluation.
- Computational (in silico) models that integrate in vitro data with knowledge of embryology and development can fill regulatory data gaps for more mechanistic assessments.
- The molecular and cellular determinants of retinoid signaling provide a case study of mutually informative organizing frameworks for NAM-based developmental hazard evaluation.

Can *in vitro* and *in silico* mechanistic tests identify chemicals that perturb development through the retinoid signaling pathway, rather than *in vivo* animal testing?

Regulatory interest in the retinoid signaling pathway

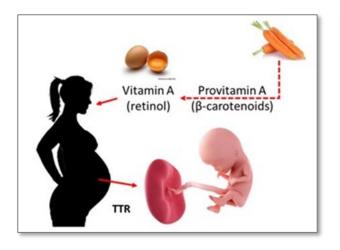


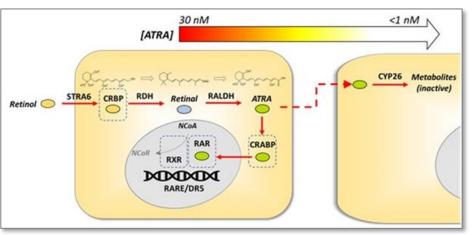
: DRP 178 of OECD Test Guidelines Programme highlighted a critical need for harmonized regulations on this system for toxicity screening and evaluation.

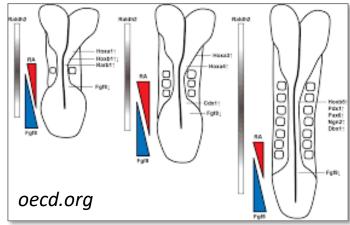
: OECD EDTA Advisory Group initiated DRP Project 4.97 to review the retinoid signaling pathway across diverse organ systems.

: DRP 4.97b narrowed to four areas: Overview, Reproductive System (Annex A), Skeletal Patterning (Annex B), and CNS Development (Annex C).

: individual publications in *Reproductive Toxicology* (H Hakannson); final report published in *OECD Testing and Assessment Series* No. 343 (P Browne).







Retinoid signaling pathway

- ATRA is locally regulated by a complex network of enzymes, molecular transporters, and nuclear receptors (RARs) determined by cell-specific expression.
- ATRA gradients collaborate with some of the most powerful morphogenetic signals that shape embryonic growth and development (e.g., FGF, BMP, SHH, WNT, ...).
- Local regulation of ATRA homeostasis and its disruption may be captured in diverse AOP frameworks linking molecular initiating events (MIEs) to adverse developmental outcomes.

ATRA thresholds

Regional ATRA concentration thresholds reported in different studies on morphogenesis, differentiation, and pregnancy.

Dosimetric	Conc.	Indication	Reference
baseline ATRA (5 somite zebrafish embryo)	<1 nM	non-morphogenetic	(Shimozono, limura et al. 2013)
maternal serum (animal study)	1.7 nM	non-teratogenic	(Daston, Beyer et al. 2014)
devTOX ^{qp} assay (pluripotent hESC)	3.0 nM	teratogenic threshold	(Zurlinden, Saili et al. 2020)
normal plasma concentration	5.0 nM	physiological (adult)	(Napoli, Posch et al. 1991)
axial gradient (5 somite zebrafish embryo)	6.0 nM	morphogenetic signal	(Shimozono, limura et al. 2013)
endodermal differentiation (h-iPSC)	17 nM	toxicological tipping point	(Saili, Antonijevic et al. 2019)
devTOX ^{qp} assay (pluripotent h-iPSC)	19 nM	DevTox potential	(Palmer, Smith et al. 2017)
genetic perturbation (mouse)	30 nM	altered homeostasis	(Helms, Thaller et al. 1994)
maternal serum (animal study)	30 nM	teratogenic potential	(Daston, Beyer et al. 2014)
limb-bud (GD 10.5 mouse embryo)	30 nM	physiological (embryo)	(Horton and Maden 1995)
pharmacological kinetics	1,000 nM	efficacious (therapeutic)	(Helms, Thaller et al. 1994)
limb-bud (GD 11 mouse embryo)	1,500 nM	weakly teratogenic dose	(Satre and Kochhar 1989)
limb-bud (GD 10.5 mouse embryo)	12,500 nM	fully teratogenic dose	(Horton and Maden 1995)

Information retrieval: biological targets

Retinoid Pathway Targets

Retinol Binding Proteins (plasma and cellular transporters)

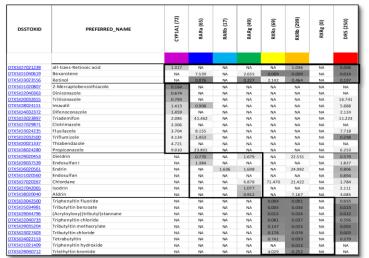
Molecular transporters for retinol uptake (STRA6, STRA8)

Retinol Dehydrogenase (RDH10)

Retinaldehyde Dehydrogenase (RALDH2)

Cellular Retinoic Acid Binding Proteins (CRABP-I, CRABP-II)

Retinoic Acid Receptors (RARs) alpha, beta, and gamma


Retinoid X Receptors (RXRs) alpha, beta, and gamma

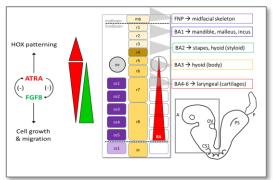
Nuclear Coactivators (NCOAs) and Corepressors (NCORs)

Cytochrome P450 family 26 (CYP26A, CYP26B, CYP26C)

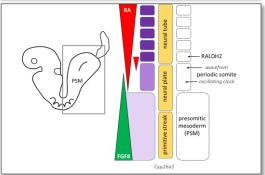
Assemble candidate chemical list for each target:

- ChEMBL has data on 12 metabolic assays for drug-like compounds;
- Bioactivity from high-throughput screening (HTS);
- ToxCast has HTS data on 11 downstream assays testing ~2K chemicals;
- Tox21 has HTS data on an intact retinol signaling pathway for ~10K chemicals;
- Potential disruption of ATRA signaling identified for 213 compounds;
- Literature mining (AbstractSifter v5.7) \rightarrow 5903 related publications;
- Compile information for pMIEs, key events, and adverse outcomes.

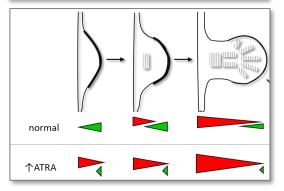
Retinoids


Triazoles (CYP)

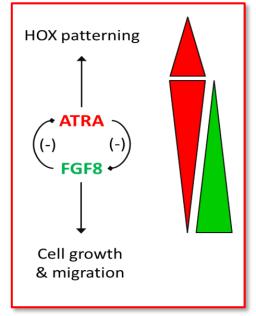
Organochlorines (RAR)


Organotins (RXR)

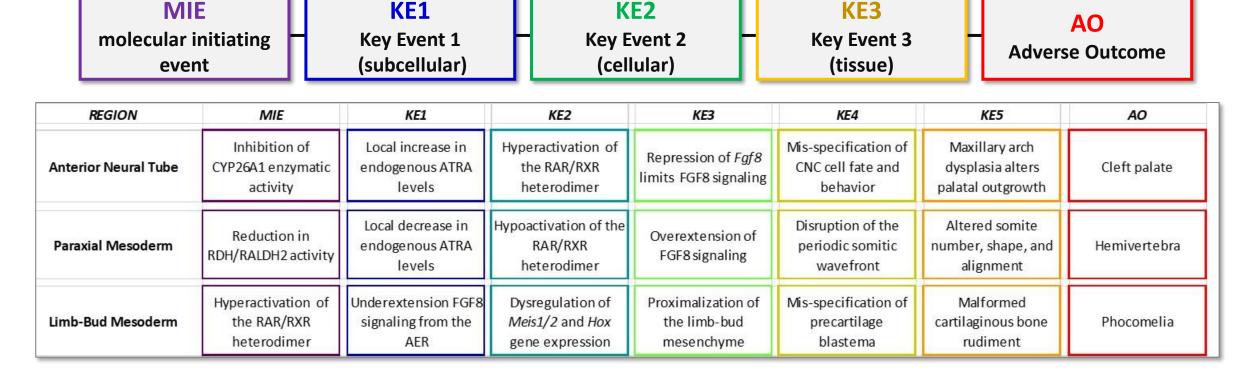
HTS data exists for modeling downstream RAR/RXR responses but less available for ATRA metabolism (eg, RDH10, RALDH2, CYP26a/b/c) and molecular transporters (eg, STRA6, CRABP-I, CRABP-II).


Regional domains for ATRA-dependent skeletal patterning

Facial skeleton: positional information of premigratory neural crest cells destined for branchial arches (5- to 11 somite stage).

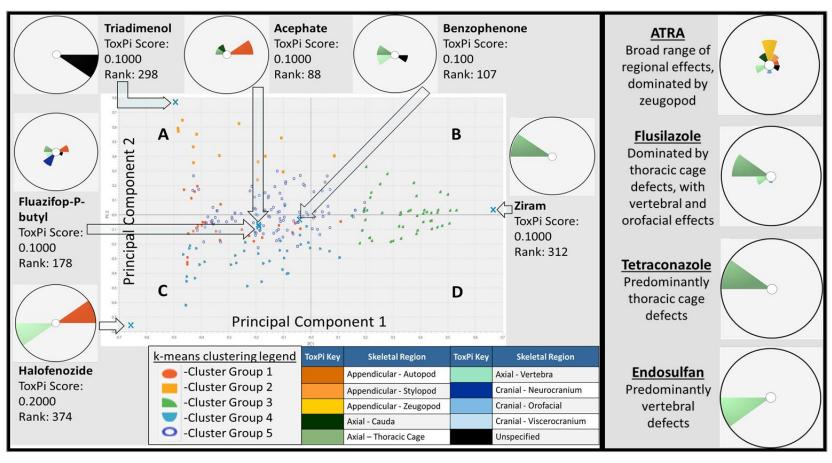


Vertebral skeleton: size, alignment, and specification of somites giving rise to individual vertebrae/ribs (0- to 36 somite stage).

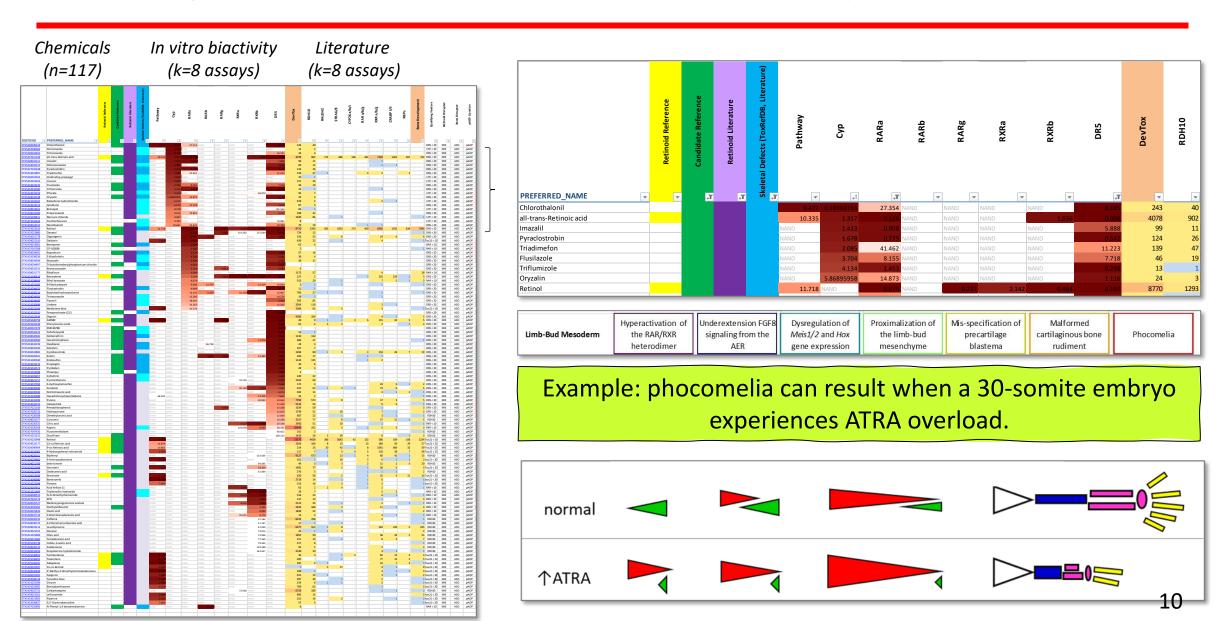


Appendicular skeleton: limb-bud initiation, outgrowth, patterning, and differentiation (12- to 36+ somite stage).

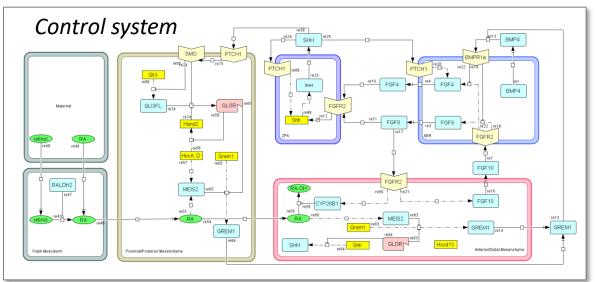
Putative AOPs for ATRA-dependent skeletal embryopathy

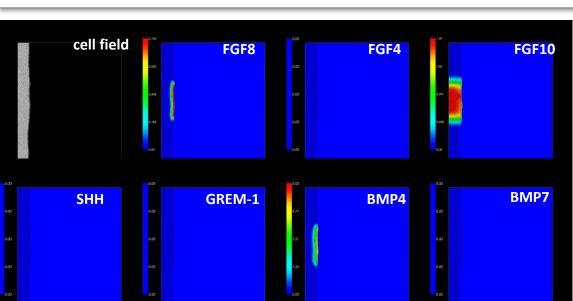

Although it is not clear which AOPs may be attributable exclusively to a retinoid-related mechanism, harmonized protocols assessing retinoid signaling can aid developmental hazard prediction.

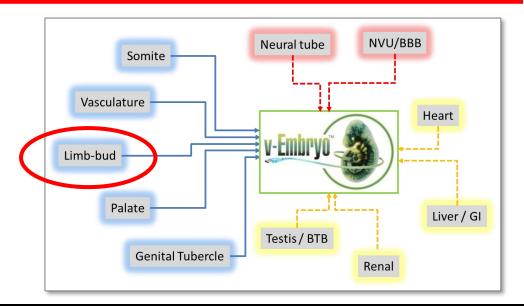
ToxRefDB chemicals (370) clustered by ToxPi phenotype

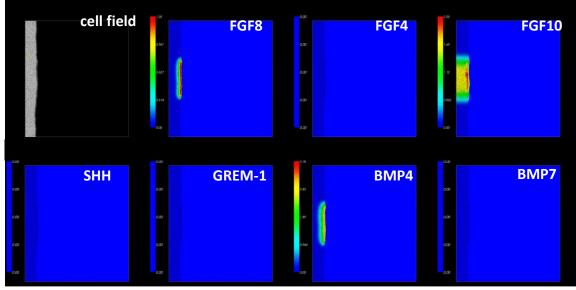


- Culled fetal effects data from 2,946 ToxRefDB studies;
- 57,198 skeletal defects across rodent/nonrodent studies;
- clustered chemicals (k=5) by phenotypic domains (ToxPi).

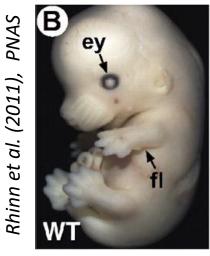



Are fetal skeletal defects consistent with AOPs linked to ATRA pathway?

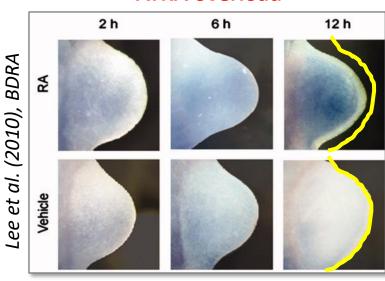

Mapping potential MIEs to ASOs in the ATRA pathway



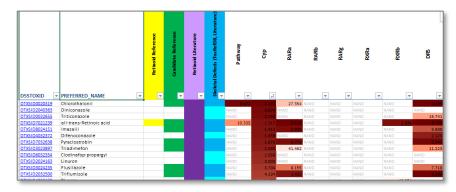
Putting an AOP in motion: loss of SHH signaling impairs limb-bud outgrowth



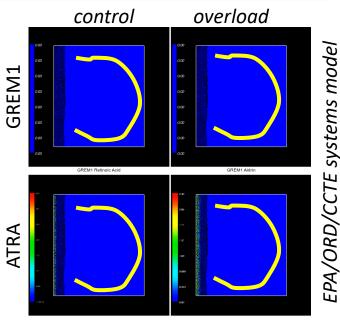
Example: mode-of-action for ATRA-mediated limb-bud truncation


Limb-bud initiation requires ATRA signaling but morphogenetic patterning is sensitive to ATRA overload

ATRA deficiency



Rdh 10-/-


ATRA overload

Several ToxCast compounds inhibit CYP26-like enzymatic activity and weakly activate RAR signaling in vitro.

Simulating an ATRA overload *in silico:* 'cybermorph' foreshadows deficiencies of distal elements.

Predictive Toxicology of the Retinoid Signaling Pathway

Goal: mine HTS bioactivity profiles for the retinoid system and build relevant AOPs based on embryological knowledge for fetal (skeletal) development.

Knowledgebase (skeletal development)

AOP-WIKI (limb defects)

HTS-based signatures (ToxPi classifier)

HTS data analysis (ToxCast/Tox21/ChEMBL)

Pregnancy IVIVE models (targeted case studies)

Performance-based prediction (ATRA pathway in Devtox)

Morphoregulatory simulation (Limb ABM)

- 1. Formalize an Adverse Outcome Pathway (AOP) framework for the retinoid system.
- 2. Map HTS data from relevant assays in ToxCast/Tox21 profiles to the AOP framework.
- 3. Build and test computational models for quantitative disruption of ATRA signaling.

US EPA, CCTE

Nancy Baker, Leidos Richard Judson Thomas Knudsen Jocylin Pierro Ann Richard Laura Taylor

Tox21 contact

Nisha Sipes, CCTE

NTP/NIEHS

Nicole Kleinstreuer

NIH/NCATS

Srilatha Sakamuru Menghang Xia

NCTR/FDA

Annie Lumen

OECD

Patience Browne

