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• In silico predictions along with high
throughput toxicokinetic (HTTK) methods
are needed as in vivo and in vitro
measurements are unavailable for
thousands of chemicals in commerce
and the environment

Risk 
Exposure

Hazard

Toxicokinetics

• We wish to understand toxicokinetics (chemical
absorption, distribution, metabolism, and excretion by the
body) to help assess public health risk posed by chemicals

101 Chem
icals

• This collaborative trial uses 101 chemicals with in vivo
measured toxicokinetic (TK) data

http://orcid.org/0000-0002-4024-534X

• Six different sets of in silico
(QSAR) tools for predicting TK
were evaluated

• Predicted parameters and
plasma concentrations were
compared with empirical data

• Model predictions for in vitro measurements were
generally consistent across QSARs; however, accuracy
varied by chemical

• When combined with a PBTK model (httk, https://cran.r-

project.org/package=httk) to predict plasma concentration, the
models performed similarly across all 101 chemicals
(CvTdb, https://github.com/USEPA/CompTox-PK-CvTdb)

• Multiple QSARs exist that make reasonably accurate
predictions for in vitro TK parameters

• This will provide key information for risk-based
prioritization of many thousands of chemicals without
either in vivo or in vitro TK data

• For more information, contact:
John Wambaugh (wambaugh.john@epa.gov)
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OBJECTIVES

Model Team Predictions Mechanism Reference

Simulations Plus 
ADMET Predictor®

Michael Lawless, Stephen 
Ferguson, Nisha Sipes, and 

John DiBella

Level 1
(in vitro parameters)

Sum of CYP-specific 
Artificial Neural Network 

(ANN)
Sipes et al. (2017)

Pradeep 2020
Prachi Pradeep, Grace 

Patlewicz, John Wambaugh, 
Richard Judson

Level 1 Random forest and 
support vectors method Pradeep et al. (2020)

Dawson 2021
Daniel Dawson, John 
Wambaugh, Rogelio 

Tornero-Velez
Level 1 Random forest, clearance 

organized by categories Dawson et al. (2021)

OPERA Kamel Mansouri Level 1 Nearest-neighbors Mansouri et al. (2018, 2021)

IFS-QSAR Jon Arnot, Trevor Brown, 
and Alessandro Sangion

Level 3
(Half-lives)

Fragment-based 
Multiple Linear 

Regressors (MRL)
Arnot et al. (2014

QSARINS-Chem Ester Papa  and Jon Arnot Level 3 Ordinary Least 
Squares MLR

Papa et al. (2018)

Time

Co
nc

en
tr

at
io

n

• In vivo plasma 
concentration vs. time 
data were available for 
101 chemicals from the 
CvTdb (Sayre et al. 2020)

• In vitro measurements 
were available for 86 
chemicals (httk v2.0.4)

• Four different modeling teams produced quantitative structure-activity relationship (QSAR) models for two key toxicokinetic 
parameters that can be measured in vitro: intrinsic hepatic clearance (Clint measured with hepatocyte incubations) and 
fraction unbound in plasma (fup)

• Models were evaluated for ability to reproduce the full concentration vs. time (Cvt) curve as well as summary statistics and 
parameters (such as half-life)

• Two additional models for chemical half-life were also evaluated
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APPROACH

Evaluation TK Quantities Chemicals

Level 1 In Vitro TK Measurements 
(fup, Clint)

69

Level 2 TK Concentration vs. Time
(all points, Cmax, time-integral/AUC)

91

Level 3 Summary Statistics 
(Vd, thalf, Cltot)

91

• R package “httk” (Pearce, 2017)  can parameterize a 
physiologically-based toxicokinetic (PBTK) model based on 
chemical-specific values for fup and Clint

• For 86 of the test chemicals, in vitro measurements were 
also available for comparison

• There were 101 chemicals present in the CvTdb (Sayre, 2020) 
as of September 2019 that had plasma concentration data 
following either rat or human oral or intravenous doses

• 57 from the Toxic Substances Control Act  (TSCA) active inventory
• 20 pharmaceuticals 
• 24 pesticides 
• 99 that are found in consumer products, 
• 7 per- and poly-fluorinated substances (PFAS) 
• 64 that are part of the ToxCast screening program

101 CvTdb
Chem

icals

Standard Deviations
From Mean

QSAR fup/Clint Predictions and Phys-Chem Properties

• 10 chemicals 
could not be 
predicted by 
most models

Three levels of evaluation were performed:
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MAIN RESULTS

• Here we have evaluated all observed time points 
equally, neglecting phase 
(absorption/distribution/metabolism) and 
measurement accuracy. Other analyses focusing on 
key statistics (such as peak and time-integrated 
concentration) will be examined elsewhere

• Maximum likelihood empirical one-compartment 
model fits provide an estimate of ideal performance

• At left are box-and-whiskers plots showing the 
distribution of RPE across all 99 chemicals for which 
predictions were available (no model predicted 
Oxoacetic acid--water (1/1) or Nitrite )

• The upper and lower extent of the box for each 
model indicates the 25th to 75th quantiles, the mid-
line indicates the median (50th quantile) and vertical 
line indicates 1.5x the range of the box.

Models were evaluated against all chemicals based on 
Relative Predictive Error (RPE): 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜
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IMPACT/SIGNIFICANCE

• EPA is continuing to accumulate chemical-specific TK 
data, both:

• In vivo (CvTdb, Sayre (2020))
• In vitro (Wetmore (2012, 2015), Wambaugh (2019))

• However, several thousand chemicals remain in need of 
TK info; the QSARs evaluated here provide options to fill 
this gap

• Overall, the HTTK PBTK model performed similarly when 
using TK QSARs for Clint and fup as when the actual in 
vitro measured data were used (“HTTK-InVitro” in figure 
at right)

• These QSARs will enable public health risk-based 
prioritization of chemicals in commerce and the 
environment

• TK information, such as elimination half-life (thalf, plotted below), is critical for understanding chemical risk
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