

OPERA, AN OPEN-SOURCE AND OPEN-DATA SUITE OF QSAR MODELS

K. Mansouri¹, X. Chang², D. Allen², R. Judson³, A.J. Williams³, W. Casey¹, N. Kleinstreuer¹

¹NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA; ²ILS, RTP, NC, USA; ³CCTE/EPA, RTP, NC, USA

Introduction

- OPERA is a free and open-source/open-data suite of QSAR models providing predictions for toxicity endpoints and physicochemical, environmental fate, and ADME properties.
- In addition to predictions, OPERA provides accuracy estimates, applicability domain assessment and experimental data when available.
- Recent additions to OPERA include models for estrogenic activity, androgenic activity, and acute oral systemic toxicity developed through international collaborative modeling projects, and updates to models predicting plasma protein binding and intrinsic hepatic clearance.
- OPERA predictions for ADME parameters (CL_{int} and F_U) as well as physicochemical parameters (logP, pKa, and logD) are used as inputs for the in vitro to in vivo extrapolation (IVIVE) workflow on the NTP's Integrated Chemical Environment (ICE: https://ice.ntp.niehs.nih.gov/).
- OPERA predictions are also available both via the user interface and for download from the EPA's CompTox Chemicals Dashboard. (https://comptox.epa.gov/dashboard).

OPERA application

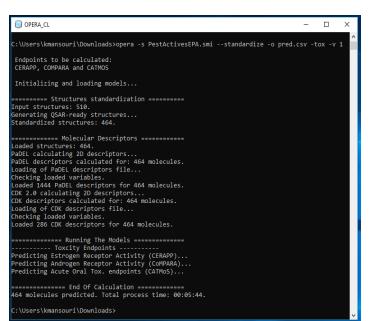
General approach:

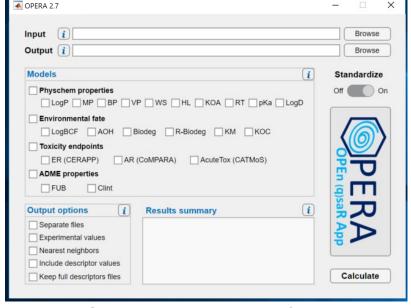
- OECD 5 principles for QSAR validation are employed during modeling
- Only high-quality curated data are used to build the models
- Chemical structures are processed using the QSAR-ready standardization workflow prior to modeling
- The QSAR-ready workflow is also implemented in the app for user input processing structures prior to prediction
- Works with different input and output formats
- Provides applicability domain and prediction accuracy assessment
- Provides experimental values when available
- Provides information about the nearest neighbors
- Provides molecular descriptor values for transparency
- OECD-compliant QSAR model reporting format (QMRF) reports available

Availability:

Predictions:

- EPA CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard)
- NTP's Integrated Chemical Environment (https://ice.ntp.niehs.nih.gov/)


Standalone desktop application (current version 2.7):


- Github: https://github.com/NIEHS/OPERA
 - Windows and Linux packaged installers with dependencies.
- Additional wrappers and libraries: Java, Python, C/C++
- NTP KNIME server: knime.niehs.nih.gov/knime/

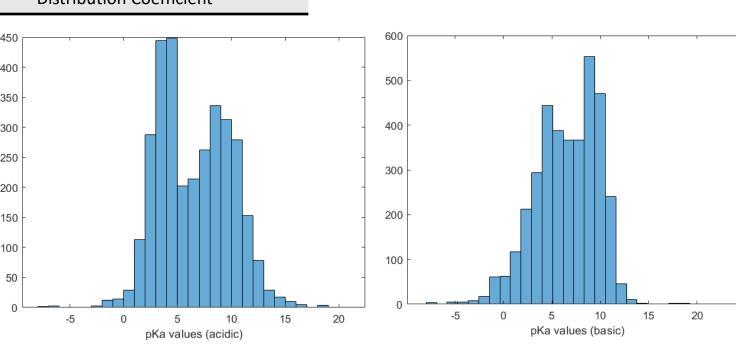
More info:

- https://ntp.niehs.nih.gov/go/opera

Interfaces:

Command line Graphical user interface

Existing, recently updated and future models

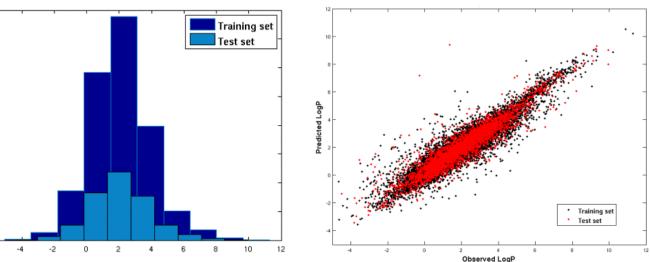

All models:

Environmental fate						
AOH	Atmospheric Hydroxylation Rate					
BCF	Bioconcentration Factor					
BioHL	Biodegradation Half-life					
RB	Ready Biodegradability					
KM	Fish Biotransformation Half-life					
КОС	Soil Adsorption Coefficient					
	ADME properties					
FUB	Atmospheric Hydroxylation Rate					
Clint	Bioconcentration Factor					

BP Boiling Point HL Henry's Law Constant KOA Octanol/Air Partition Coefficient LogP Octanol-water Partition Coefficient MP Melting Point KOC Soil Adsorption Coefficient VP Vapor Pressure WS Water Solubility RT HPLC Retention Time pKa Acid Dissociation Constant logD Distribution Coefficient

Toxicity endpoints ER Estrogen Receptor Activity AR Androgen Receptor Activity AcuteTox Acute Oral Systemic Toxicity

	Future models
	ruture inoueis
CACO2	Caco-2 permeability
Inhalation	Acute Inhalation Systemic Toxicity
SixPack	Acute Toxicity Six-Pack Endpoints
UGT	Glucuronidation: substrate selectivity
SULT	Sulfation: substrate selectivity

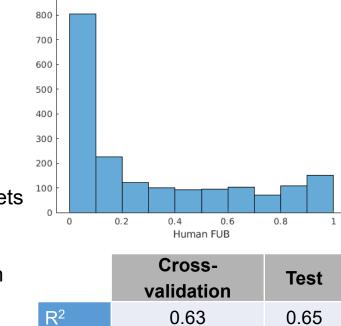


pKa: acid dissociation constant

Recent model updates:

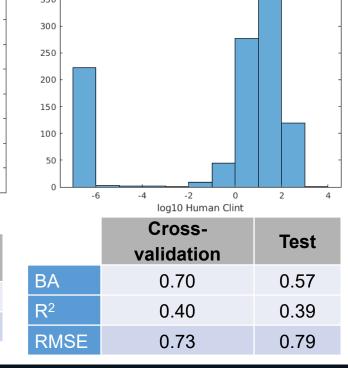
- The OPERA pKa model was built on a curated version of the DataWarrior dataset.
- The acidic (3260 chemicals) and basic (3680 chemicals) datasets were modeled separately
- First, a weighted-kNN classification model predicts whether a chemical is acidic, basic or both. Then a SVM model predicts the strongest acidic and basic pKa values
- The acidic and basic pKa models reached an R² of 0.72 and 0.78 and RMSE of 1.80 and 1.53, respectively.

LogP: octanol-water partition coefficient

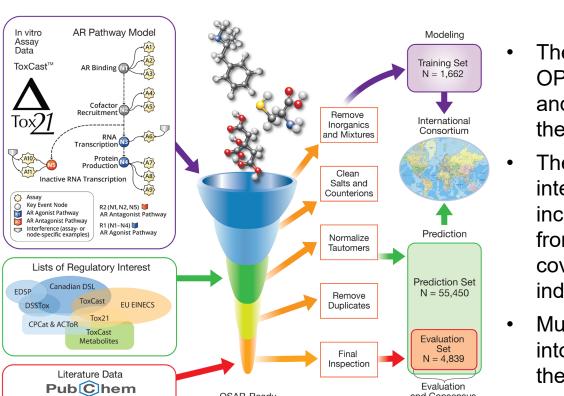

- The OPERA logP model was initially built using a curated dataset from the PHYSPROP database.
- The overall statistics of the model reached an R² of 0.86 and an RMSE of 0.78 for the test set.
- The logP model as well as other OPERA models (water solubility, and vapor pressure) have been updated to account for highly investigated groups of chemicals such as polyfluorinated substances (PFAS).

LogD: distribution coefficient

- LogD is the distribution coefficient that takes into account pH-dependence and is used to estimate the different relative concentrations of the ionized and non-ionized forms of a chemical at a given pH.
- OPERA uses both pKa and logP predictions to provide logD estimates for ionizable chemicals at pH 5.5 and pH 7.4.
- LogD is estimated using the following formula: $logD_{(pH)} = logP log(1 + 10^{(pH-pKa)})$


PK parameters: F_U and CL_{int}

- Both CL_{int} and F_U OPERA models were built using datasets combined from different sources.
- Most of the data entries are also available in the EPA's high-throughput toxicokinetic (httk) R package.
- After several rounds of automated and manual curation to reduce errors, variability and outliers, the CL_{int} and F_U datasets consisted of 1056 and 1873 chemicals, respectively.
- The CL_{int} dataset was modeled in two steps:
 - First a classification model to separate the cleared from non-cleared chemicals
 - Then, a regression model is applied to predict the CL_{int} value for the cleared chemicals.



0.20

0.19

Consensus of international collaborations

- The toxicity endpoints included in OPERA are the estrogen and androgen pathway activities and the acute oral toxicity
- The models were the result of three international collaborations including over a hundred scientists from a total of 35 research groups covering governmental institutions, industry and academia
- Multiple models were combined into a unique consensus as show in the diagram.

CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

	Binding		Age	onist	Antagonist		
	Training	Validation	Training	Validation	Training	Validation	
Sn	0.93	0.58	0.85	0.94	0.67	0.18	
Sp	0.97	0.92	0.98	0.94	0.94	0.90	
BA	0.95	0.75	0.92	0.94	0.80	0.54	

CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity

	Binding		Ag	onist	Antagonist		
	Training	Validation	Training	Validation	Training	Validation	
Sn	0.99	0.69	0.95	0.74	1.00	0.61	
Sp	0.91	0.87	0.98	0.97	0.95	0.87	
ВА	0.95	0.78	0.97	0.86	0.97	0.74	

CATMoS: Collaborative Acute Toxicity Modeling Suite

 CATMoS consisted of five different endpoints and the final consensus model was a combination of all predictions using a weight of

	VOI	- IOAIC	NOII-TOXIC			
	Training	Evaluation	Train	Evaluation		
BA	0.93	0.84	0.92	0.78		
Sn	0.87	0.70	0.88	0.67		
Sp	0.99	0.97	0.97	0.90		

CATMoS is currently being evaluated for regulatory use by the US EPA.

| Bar |

evidence approach.

./				G	ons car	tegorie	S			
y	Training					Evaluation				
	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5
BA	0.88				0.74					
Sn	0.73	0.75	0.84	0.80	0.88	0.50	0.53	0.56	0.66	0.67
Sp	0.99	0.99	0.92	0.89	0.96	0.99	0.97	0.89	0.74	0.90

	LD50				
	Training Evaluation				
R ²	0.85	0.65			
RMSE	0.30	0.49			
RIVISE	0.30	0.49			

			_	i A Cat	egorie				
	Training				Evaluation				
	Cat 1	Cat 2	Cat 3	Cat 4	Cat 1	Cat 2	Cat 3	Cat	
ВА	0.87				0.74				
Sn	0.87	0.83	0.91	0.63	0.70	0.56	0.81	0.40	
Sp	0.99	0.95	0.75	0.98	0.97	0.88	0.62	0.97	

References

- [1] Mansouri K. et al. J Cheminform (2018) https://doi.org/10.1186/s13321-018-0263-1 [2] Mansouri, K. et al. SAR & QSAR in Env. Res. (2016)
- https://doi.org/10.1080/1062936X.2016.1253611
- [3] Williams A. J. et al. J Cheminform (2017) https://doi.org/10.1186/s13321-017-0247-6
- [4] JRC QSAR Model Database https://qsardb.jrc.ec.europa.eu/qmrf/endpoint
- [5] Mansouri, K. et al. EHP (2016) https://doi.org/10.1289/ehp.1510267
- [6] Mansouri, K. et al. J Cheminform (2019) https://doi.org/10.1186/s13321-019-0384-1
- [7] Mansouri, K. et al. EHP (2020) https://doi.org/10.1289/EHP5580
- [8] Kleinstreuer et al. Comp Tox (2018) https://doi.org/10.1016/j.comtox.2018.08.002
- [9] Mansouri, K et al. EHP "CATMoS manuscript" (2021) In Press

This poster does not necessarily reflect policies of EPA or any federal agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

