

Transcriptomic Connectivity for Read-Across Inference of Chemical Bioactivity

QSAR 2021 June 2-6, 2021

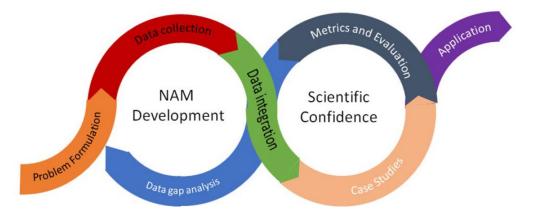
Imran Shah Center for Computational Toxicology & Exposure

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

# Reducing use of animals in chemical testing

- On September 10, 2019 EPA Administrator Andrew Wheeler signed a directive that prioritizes efforts to reduce animal testing. The memorandum calls for the agency to:
  - reduce its requests for, and funding of, mammal studies by 30 percent by 2025, and
  - eliminate all mammal study requests and funding by 2035.
- This will be achieved via new approach methodologies (NAMs): any technology, methodology, approach, or combination of methods that can provide information about chemical <u>hazard</u> and <u>point of departure (POD)</u> without using whole animals

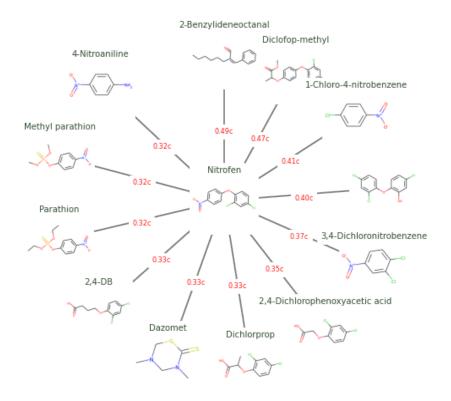


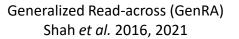




## Read-across (RAX)

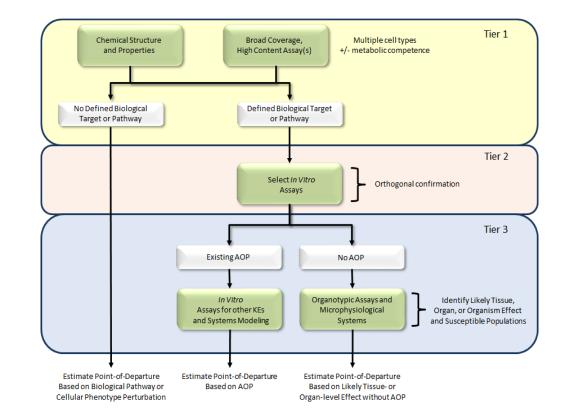
- "Read-across" (RAX) techniques are often used to fill data gaps by inference from a 'similar' substance or substances (OECD, 2017):
  - Identify analogues using between structure / physicochemical similarity
  - Assign hazard and POD value based on analogue(s)
- Problem: Many chemicals of interest do not have any structural analogues with any bioactivity data
- We have developed generalized read-across (GenRA) to automate RAX using physico-chemical, bioactivity and metabolic contexts of similarity
- How can we use NAMs to define new contexts of similarity and aid RAX?





#### Regulatory Context: Tiered Hazard Evaluation

- The "CompTox Blueprint" lays out a tiered approach for evaluating untested chemicals with NAMs
- Tier 1 NAMs based on high-throughput profiling (HTP) assays are flexible, portable and cost-efficient platforms to comprehensively evaluate the potential effects of thousands of chemicals
  - Identify hazards putative targets and pathways
  - Estimate POD *in vitro* associated with hazards
- Two types of HTP assays:
  - High-throughput transcriptomics (HTTr)
  - High-throughput phenotypic profiling (HTPP)



# Some HTTr Technologies ...

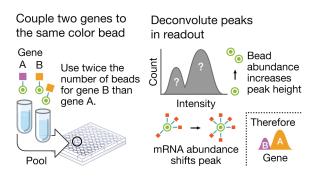
GeneChip

Affymetrix.com



- Established technology with vast amount of legacy gene expression data
- Multiple resources on chemical bioactivity including Connectivity Map v2, Open TG-GATES, and others

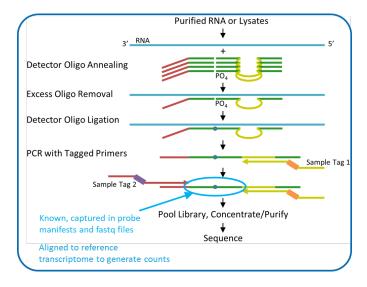
"Landmark 1000" (L1000)



- Bead-based assay to measure expression of 998 "landmark" genes used to infer expression of ~13,000 genes
- Used by the Broad Institute LINCS project
- Used to evaluate bioactivity of thousands of chemicals

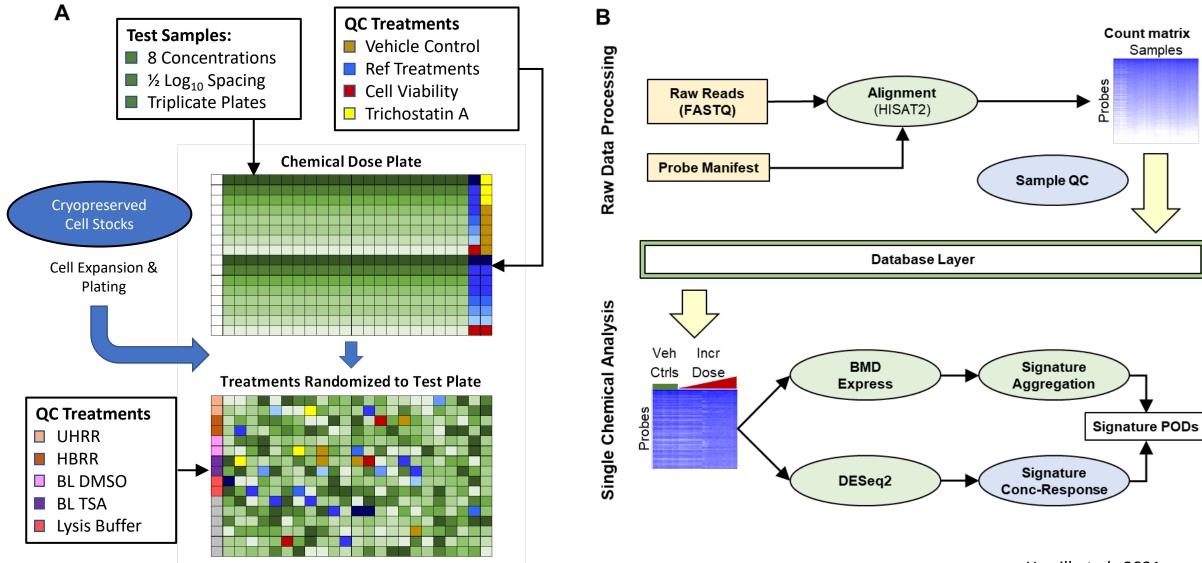
#### "Templated Oligo with Sequencing Readout" (TempO-Seq)

Yeakley, et al. PLoS ONE 2017



- Targeted RNA-Seq uses unique 50-mer oligos for mRNA detection
- Measures 21,000 unique mRNA
- Read space focused on known genes
- Compatible with whole cell lysates
- Being used by the US EPA for screening environmental chemicals

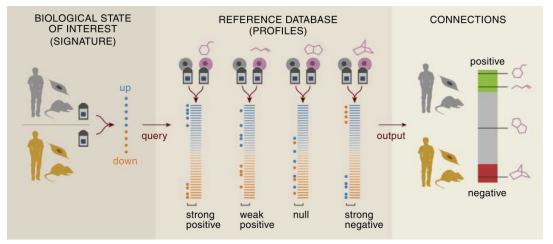
#### EPA HTTr Experimental Design and Bioinformatics Workflow for TempO-Seq data



Harrill et al., 2021

## Connectivity Mapping and Read-Across

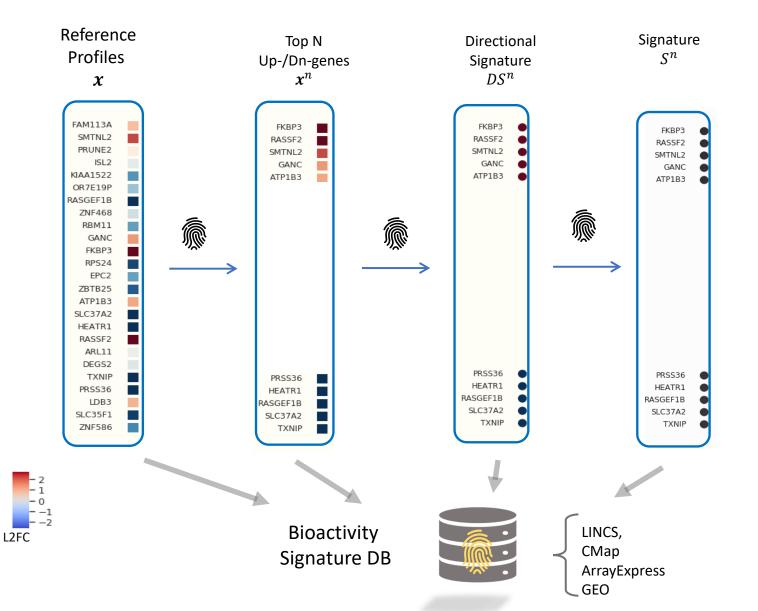
- Connectivity mapping (Lamb *et al.,* 2016) developed to interpret gene sets using similarity with reference HTTr profiles.
- Assumptions:
  - Biological state of samples represented by transcriptomic descriptors
  - Similarity between transcriptomic representation implies common mechanisms
- Transcriptomic connectivity provides a new context of similarity for evaluating untested chemicals by read-across
- Key questions:
  - How do we represent transcriptomic data?
  - How can we measure similarity



Connectivity Mapping

Lamb *et al.,* 2006

## Gene sets as transcriptomic "fingerprints"



 $0 \in \{x, x^n, DS^n, S^n\}$ 

# Generalising Connectivity Analysis



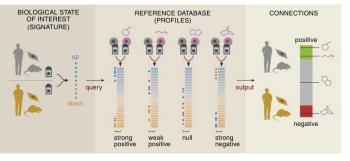
• Can generalize connectivity analysis as:

$$s = SM(O_q, O_r)$$

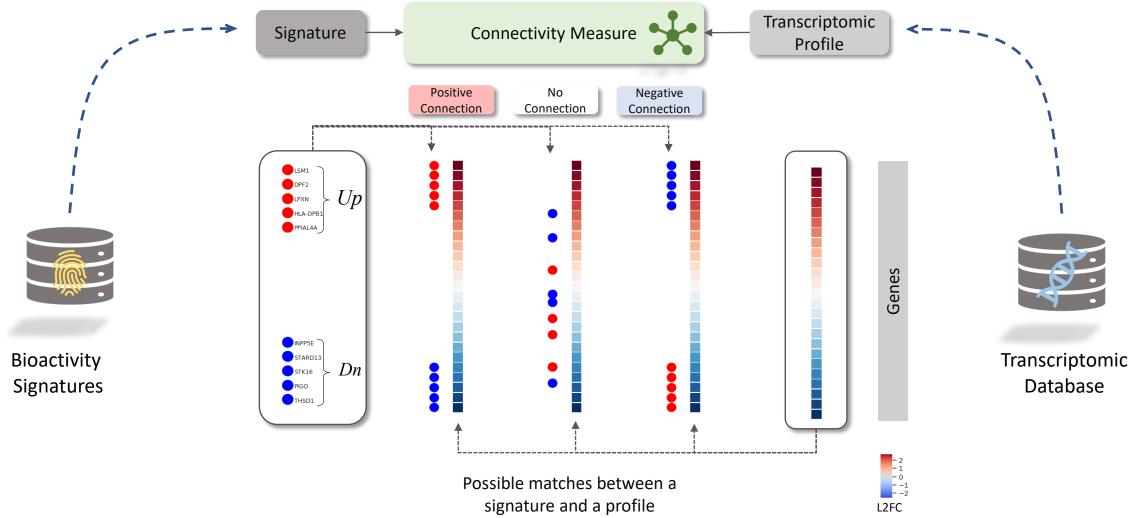
s = similarity / connectivity score SM = similarity metric O = gene set "Object" $O \in \{x, x^n, DS^n, S^n\}$  Connectivity mapping (Lamb *et al.*, 2006) Query  $(O_q)$ : directional signature (**DS**<sup>n</sup>) Reference  $(O_r)$ : transcriptomic profiles in CMap v2 (**x**) Similarity measure (*SM*): Gene set enrichment Analysis (GSEA<sub>b</sub>)

(Subramanian et al. 2005)

$$SM(DS^n, x)$$



# Connectivity-mapping with gene signatures



Shah et al. (in prep)



# <u>Generalised</u> <u>Connectivity</u> Toolkit (gecco)



| DB       | Source   | Signatures |
|----------|----------|------------|
| Srp      | US EPA   | 83         |
| Lincs    | Lincs    | 30,000     |
| стар     | CMap v2  | 1200       |
| msigdb   | MSigDB   | 26860      |
| dorothea | Dorothea | 1333       |

#### $0 \in \{x^n, DS^n, S^n\}$

- MongoDB for storage
- Consistent document structure
- Supports public and in-house data
- Multiple HTTr technologies

Similarity Measures  $s = SM(O_q, O_r)$ 

| Methods               | Measures                                                                                                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aggregation-<br>based | eXtreme Sum (XS), eXtreme Mean<br>(XM), T-statistic (TT-p), Ranksum<br>statistic (RS), Kolmogorov-Smirnov<br>statistic (GSEA), Total enrichment<br>score (TES)                                            |
| Vector-based          | Extreme Pearson correlation<br>(XCP), Extreme Spearman<br>Correlation (XCS), Jaccard index<br>(JI), Signed Jaccard (SJI),<br>Szymkiewicz–Simpson index (SI),<br>Signed Szymkiewicz–Simpson<br>index (SSI) |
|                       |                                                                                                                                                                                                           |

- Standardized API in Python 3
- Multiple connectivity measures
- Parallelized for speed
- Uses tcplFit2 for curve-fitting / BMD

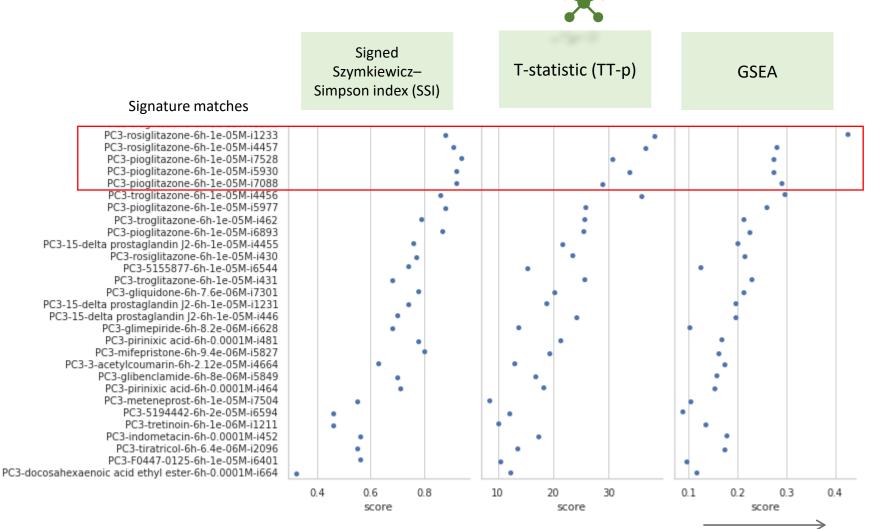


| DB                 | Source       | Profiles |  |  |  |  |
|--------------------|--------------|----------|--|--|--|--|
| lincs              | Lincs        | 591697   |  |  |  |  |
| стар               | CMap v2      | 6100     |  |  |  |  |
| arexp              | ArrayExpress | 3843     |  |  |  |  |
| mcf7               | US EPA       | 31352    |  |  |  |  |
| heparg             | US EPA       | 23102    |  |  |  |  |
| u2os               | US EPA       | 22980    |  |  |  |  |
| $0 \in \{x, x^n\}$ |              |          |  |  |  |  |

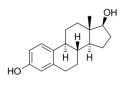
- MongoDB for storage
- Multiple HTTr technologies

# Matching troglitazone transcriptomic profiles with other chemical signatures

- Troglitazone is a thiazolidinedione (TZD) used as an antidiabetic and anti-inflammatory
- MIE: peroxisome proliferator activated receptor (PPARα) activator
- Use transcriptomic profile (x) for troglitazone 10µM @ 6 h in PC3 cells
- Match 6,100 transcriptomic signatures DS<sup>100</sup> for 1200 chemicals in Connectivity Map v2
- Use three connectivity scores
- Best matches with other TZDs and PPARα-activators
- Can use this approach to identify putative PPARα activators

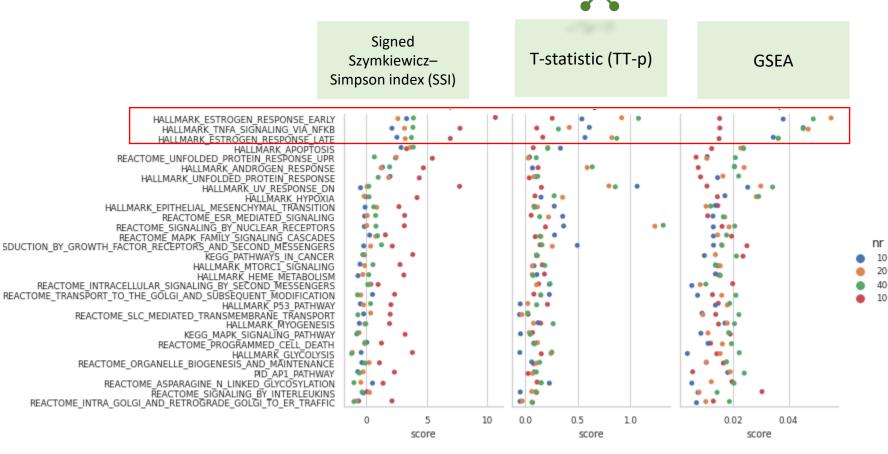


Connectivity scores



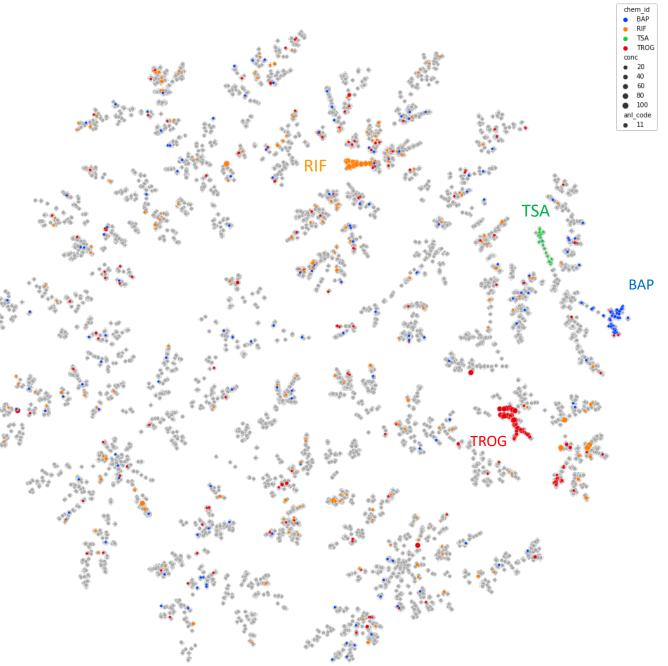
# Matching estrogen transcriptomic profile with pathway signatures

- Estrogen is a female sex hormone activates the estrogen receptors (ERα/β)
- Use transcriptomic profile for estrogen 14µM after 6 h in MCF7 cells
- Match against 2,253 canonical and hallmark pathways in MSigDB v7.2
- Use different connectivity scoring methods and parameters
- Best matches are with estrogen response pathways
- Could use this approach to find putative ER-disruptors



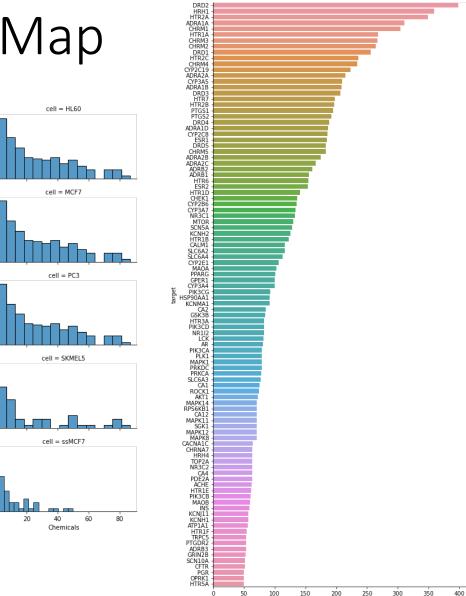
### Transcriptomic neighbours are mechanistically related

- HepaRG cells treated with 1,366 chemicals 8 concentrations (0.01-100µM) for 24h
- Data processed by EPA HTTr pipeline to produce 11,551 L2FC profiles x ~12,250 genes
- Clustering of all 11,551 transcriptomic fingerprints  $DS^{100}$  using Jaccard Index
- Four reference chemicals: benzo(a)pyrene (BAP•), rifampicin (RIF•), trichostatin A (TSA•) and troglitazone (TROG•)



# Signatures of targets using CMap

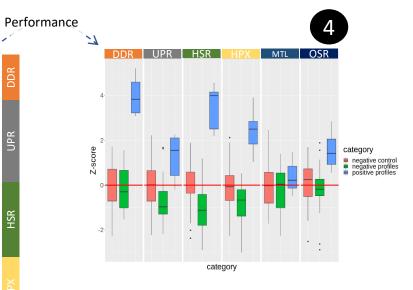
- Obtain target annotations from CMap
- 833 targets
- Create "consensus" target signatures for cell type
  - Approach 1
    - For each  $DS^n$  for target in cell
      - Create consensus signature from the the n most frequent up/dn genes
  - Approach 2
    - For each *x* for target in cell
      - Find the consistently up/dn regulated genes (e.g. based on median L2FC or otherwise)
      - Create consensus signature as  $DS^n$  and  $x^n$



n\_perts

#### Signatures of stress-response pathways: non-specific chemicals

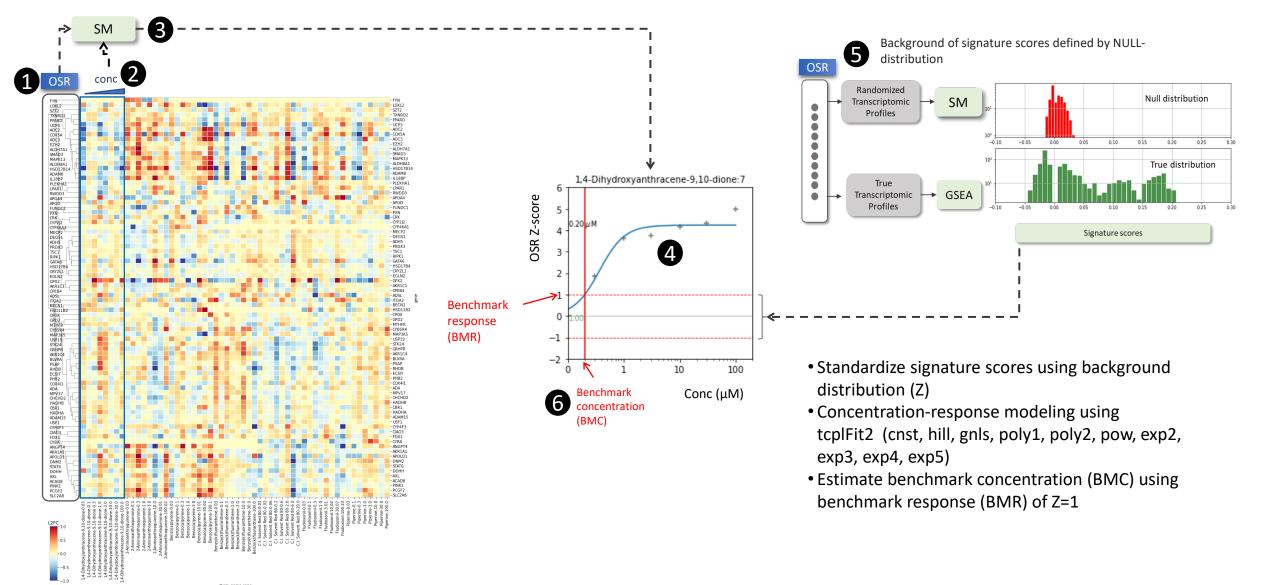
|            |                                            | The Major Adapt                                                                                                       | ive Stres               | s response pathways                             | 3                                                        | ·                                                     |
|------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
|            | Stress response pathway                    | Chemical inducers                                                                                                     | TF                      | Activated gene promoters                        |                                                          | 1                                                     |
| OSR        | Oxidative stress                           | Quinones, hydroperoxides, heavy metals,<br>trivalent arsenicals                                                       | Nrf2                    | HMOX1, NQO1, GST2A                              |                                                          | 0                                                     |
| HSR<br>DDR | Heat shock response<br>DNA damage response | Heat, Heavy Metals<br>Etoposide, Methyl Methanesulfonate,<br>N-Dimethylnitrosamine, Cyclophosphamide,<br>UV radiation | HSF-1<br>p53            | HSPA6<br>CDKNIA, GADD45A, MDM2, BCL2,<br>TP5313 |                                                          | -1                                                    |
| HPX        | Нурохіа                                    | Hypoxia, Cobalt, Desferriozamine,<br>Quercetin, Dimethyloxalylglycine                                                 | HIF-1                   | VEGF, TF, EPO                                   |                                                          |                                                       |
| UPR        | ER stress                                  | Tunicamycin, Thapsigargin, Caplain,<br>Brefeldin A                                                                    | XBP-1,<br>ATF6,<br>ATF4 | HSP90B1, HSPA5, DNAJB9                          |                                                          | а.                                                    |
| MTL        | Metal stress                               | Heavy Metals                                                                                                          | MTF-1                   | MT1E, MT2A                                      | í.                                                       |                                                       |
| ,          | Inflammation                               | Metal, PCBs, Exhaust Particles, Smoke<br>Particles                                                                    | NF-ĸB                   | ILIA, TNFA                                      | Connectivity                                             |                                                       |
|            | Osmotic stress                             | High salt, polyethylene glycol, mannitol                                                                              | NFAT5                   | AKR1B1, SLC6A12, SLC5A3                         | Mapping with                                             |                                                       |
|            |                                            |                                                                                                                       | S                       | Simmons et al., 2009                            | Transcriptomic<br>Data for reference<br>Chemicals (GSEA) | 28                                                    |
| <i>.</i> 7 |                                            |                                                                                                                       |                         |                                                 |                                                          |                                                       |
| A          |                                            |                                                                                                                       |                         |                                                 |                                                          | MTL-200<br>HPX-WINT<br>HSR-GO-D<br>UPR-050<br>DDR-400 |
| •          | Published<br>Signatures<br>(MSigDB v7      | <ul><li>Overlapping</li><li>Consensus</li><li>Genes</li></ul>                                                         | -                       | Unique<br>Consensus<br>Signatures               | $0 \in \{x, x^n, D\}$                                    | $S^n, S^n$                                            |



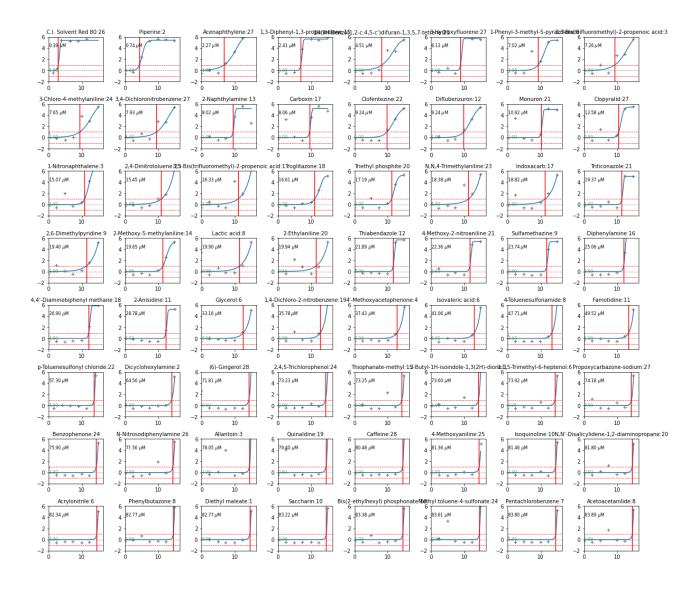
- Consensus signatures for most SRPs can identify reference perturbagens
- Can use SRP signatures to evaluate nonspecific chemicals

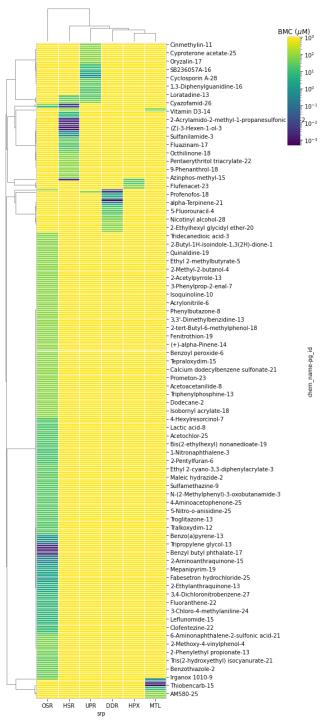
Chambers *et al*. (in prep)

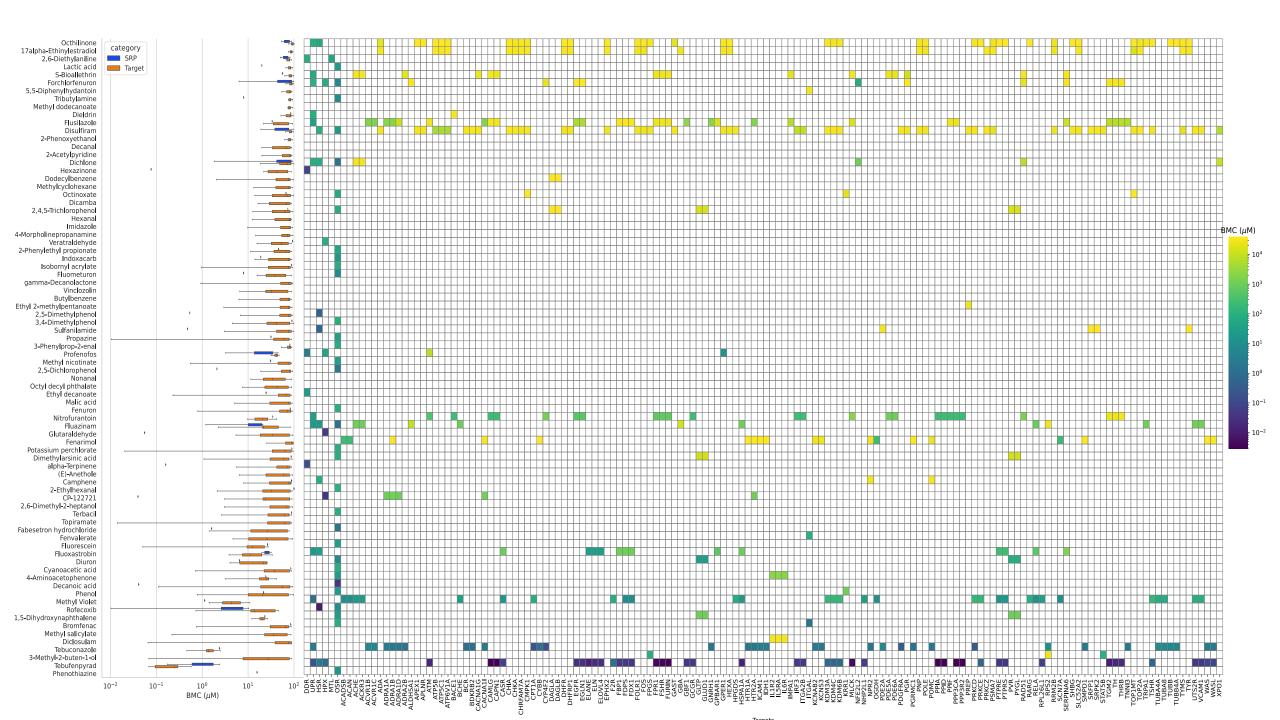
#### Using signature scores to estimate PODs



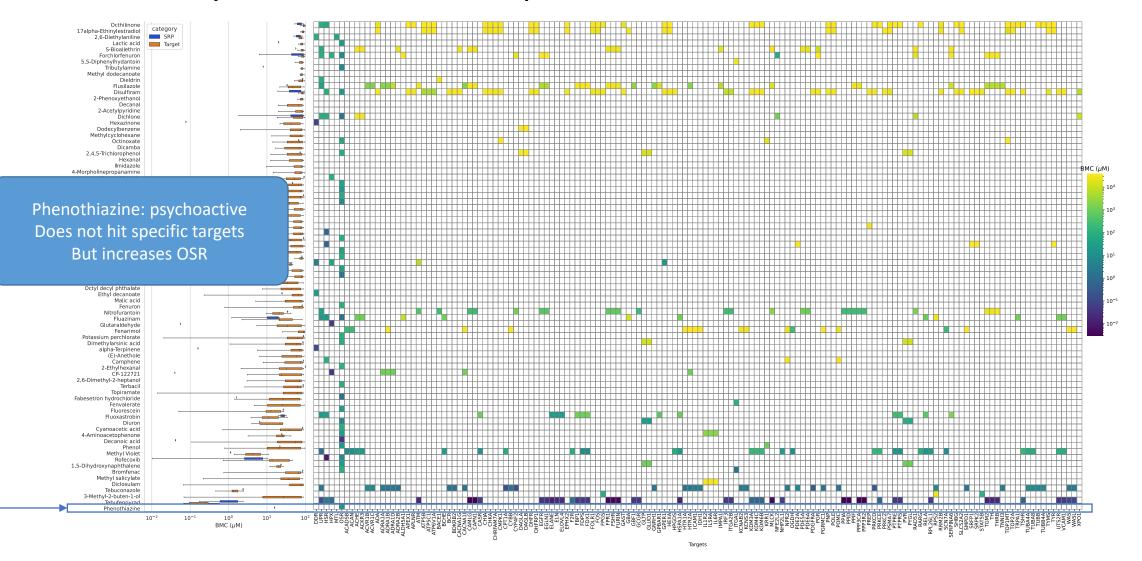
## PODs for all chemicals and SRPs



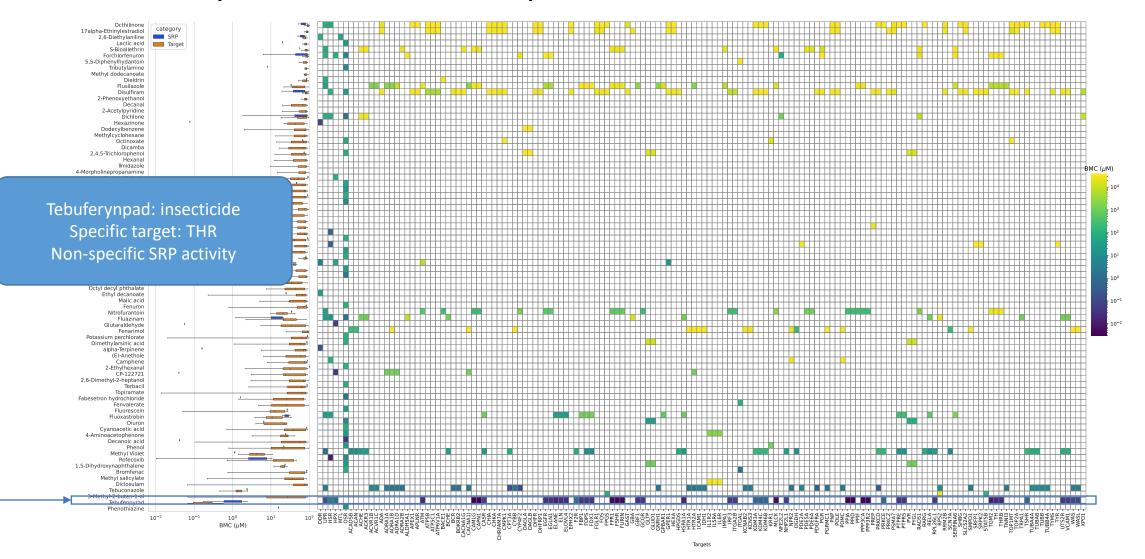




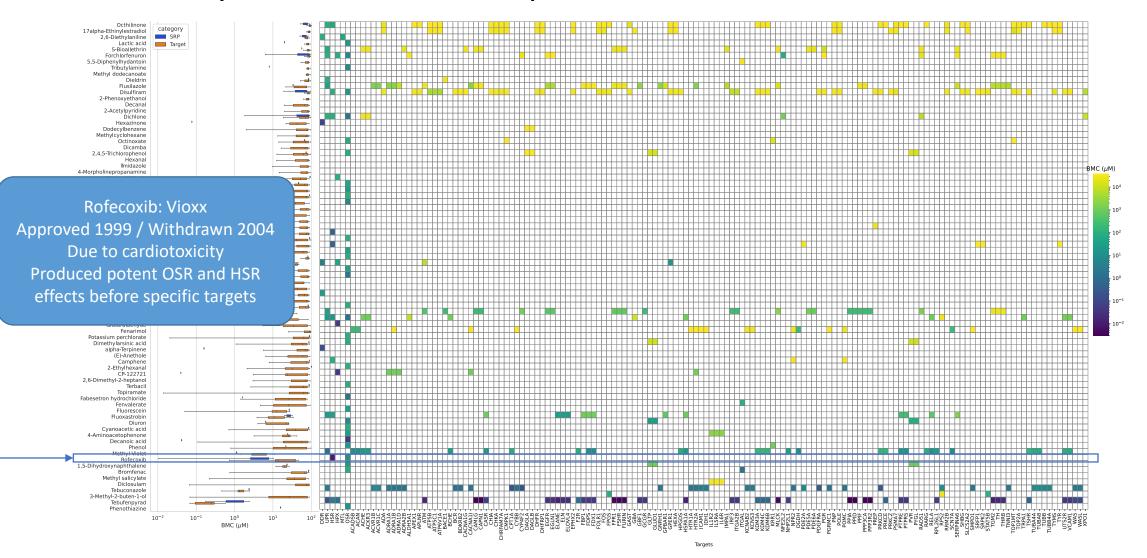
### Summary of hits for HepaRG treatments



### Summary of hits for HepaRG treatments



## Summary of hits for HepaRG treatments



# Summary

1. High-throughput transcriptomics is promising for NAM development

We are using TempO-Seq technology (targeted RNA-Seq) to evaluate thousands of chemicals in multiple cell lines and have developed a high-throughput pipeline to process and analyze transcriptomic concentration-response data.

2. Feasible to identify hazard and estimate POD using gene signature "similarity"

We are systematically evaluating gene signature-based connectivity mapping and other approaches for identifying putative targets, AOPs and *in vitro* POD values. Gene signature-based approaches are more sensitive than single gene-based techniques.

3. Connectivity mapping, read-across and risk assessment

Transcriptomic nearest-neighbor techniques are conceptually like expert read-across approaches, which are widely used to fill data gaps for untested chemicals. Could be easier "sell" than more sophisticated network inference and AI/ML/DL.

4. Future directions

Systems biology of adaptive stress response pathways using transcriptomics to investigate the molecular basis of cellular resilience and tipping points; streamline the development of NAMs for evaluating untested chemicals based on adaptive stress responses.

# Acknowledgements



**US EPA Bryant Chambers** Joe Bundy Derik Haggard Joshua Harrill Logan Everett **Richard Judson** Woodrow Setzer Beena Valanat Thomas Knudsen Tim Shafer **Brian Chorley** John Cowden Maureen Gwinn **Russell Thomas** 

**UniLever, UK** Alistair Middleton

Joe Reynolds Andy White Paul Russell

Paul Carmichael

University of Cambridge, UK Andreas Bender Danilo Basili

Layla Hosseini-Gerami

.

A\*Star, Singapore

Hanry Yu

Fan Lee

Yun Ting Soon



Unilever





## Additional information

#### References

#### Contact

Thomas, R.S., T. Bahadori, T.J. Buckley, J. Cowden, C. Deisenroth, K.L. Dionisio, J.B. Frithsen, et al. 2019. "The next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency." Toxicological Sciences 169 (2). https://doi.org/10.1093/toxsci/kfz058.

Yeakley, Joanne M., Peter J. Shepard, Diana E. Goyena, Harper C. VanSteenhouse, Joel D. McComb, and Bruce E. Seligmann. 2017. "A Trichostatin A Expression Signature Identified by TempO-Seq Targeted Whole Transcriptome Profiling." Edited by Yan Xu. PLOS ONE 12 (5): e0178302. https://doi.org/10.1371/journal.pone.0178302.

Harrill, Joshua A, Logan J Everett, Derik E Haggard, Thomas Sheffield, Joseph Bundy, Clinton M Willis, Russell S Thomas, Imran Shah, and Richard S Judson. 2021. "High-Throughput Transcriptomics Platform for Screening Environmental Chemicals." Toxicological Sciences. February. https://doi.org/10.1093/toxsci/kfab009.

Lamb, Justin, Emily D Crawford, David Peck, Joshua W Modell, Irene C Blat, Matthew J Wrobel, Jim Lerner, et al. 2006. "The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease." Science (New York, N.Y.) 313 (5795): 1929–35. https://doi.org/10.1126/science.1132939.

Liu, Jie, Grace Patlewicz, Antony J. Williams, Russell S. Thomas, and Imran Shah. 2017. "Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure." Chemical Research in Toxicology 30 (11): 2046-59. https://doi.org/10.1021/acs.chemrestox.7b00084.

Liu, Anika, Panuwat Trairatphisan, Enio Gjerga, Athanasios Didangelos, Jonathan Barratt, and Julio Saez-Rodriguez. 2019. "From Expression Footprints to Causal Pathways: Contextualizing Large Signaling Networks with CARNIVAL." Npi Systems Biology and Applications 5 (1): 1–10. https://doi.org/10.1038/s41540-019-0118-z.

Shah, Imran, R Woodrow Setzer, John Jack, Keith A Houck, Richard S Judson, Thomas B Knudsen, Jie Liu, et al. 2016. "Using ToxCast<sup>™</sup> Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure." Environmental Health Perspectives 124 (7): 910–19. https://doi.org/10.1289/ehp.1409029.

Abrew, K. Nadira De, Raghunandan M. Kainkaryam, Yuqing K. Shan, Gary J. Overmann, Raja S. Settivari, Xiaohong Wang, Jun Xu, et al. 2016. "Grouping 34 Chemicals Based on Mode of Action Using Connectivity Mapping." Toxicological Sciences 151 (2): 447–61. https://doi.org/10.1093/toxsci/kfw058.

Wang, Rong-Lin, Adam D Biales, Natalia Garcia-Reyero, Edward J Perkins, Daniel L Villeneuve, Gerald T Ankley, and David C Bencic. 2016. "Fish Connectivity Mapping: Linking Chemical Stressors by Their Mechanisms of Action-Driven Transcriptomic Profiles." BMC Genomics 17 (January): 84. https://doi.org/10.1186/s12864-016-2406-y.

Chambers, B, and I. Shah. n.d. "Elucidating Stress Response Pathway Activity Using Transcriptomics." (submitted)

www.linkedin.com/in/imranshah

Shah.Imran@epa.gov

github.com/i-shah