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Reducing use of animals in 
chemical testing

• On September 10, 2019  EPA Administrator 
Andrew Wheeler signed a directive that 
prioritizes efforts to reduce animal testing. The 
memorandum calls for the agency to:

• reduce its requests for, and funding of, 
mammal studies by 30 percent by 2025, 
and

• eliminate all mammal study requests and 
funding by 2035. 

• This will be achieved via new approach 
methodologies (NAMs): any technology, 
methodology, approach, or combination of 
methods that can provide information about 
chemical hazard and point of departure (POD)
without using whole animals

New Approach Methods Work Plan

EPA 2020



Read-across (RAX)

• “Read-across” (RAX) techniques are often used to fill 
data gaps by inference from a ‘similar’ substance or 
substances (OECD, 2017):

• Identify analogues using between structure / physico-
chemical similarity

• Assign hazard and POD value based on analogue(s)

• Problem: Many chemicals of interest do not have any 
structural analogues with any bioactivity data

• We have developed generalized read-across (GenRA) 
to automate RAX using physico-chemical, bioactivity 
and metabolic contexts of similarity

• How can we use NAMs to define new contexts of 
similarity and aid RAX?

Generalized Read-across (GenRA)
Shah et al. 2016, 2021



Regulatory Context: Tiered Hazard Evaluation 

• The “CompTox Blueprint” lays out a tiered approach 
for evaluating untested chemicals with NAMs

• Tier 1 NAMs based on high-throughput profiling 
(HTP) assays are flexible, portable and cost-efficient 
platforms to comprehensively evaluate the potential 
effects of thousands of chemicals

• Identify hazards - putative targets and  pathways
• Estimate POD in vitro associated with hazards

• Two types of HTP assays:
• High-throughput transcriptomics (HTTr) 
• High-throughput phenotypic profiling (HTPP) 

Thomas et al., 2018



Some HTTr Technologies …

Yeakley, et al. PLoS ONE 2017

• Bead-based assay to measure 
expression of 998 “landmark” genes 
used to infer expression of ~13,000 
genes

• Used by the Broad Institute LINCS 
project 

• Used to evaluate bioactivity of 
thousands of chemicals 

Affymetrix.com

GeneChip “Landmark 1000”
(L1000)

“Templated Oligo with Sequencing Readout”
(TempO-Seq)

• Targeted RNA-Seq uses unique 50-mer oligos for mRNA detection
• Measures 21,000 unique mRNA
• Read space focused on known genes 
• Compatible with whole cell lysates
• Being used by the US EPA for screening environmental chemicals

• Established technology with vast 
amount of legacy gene expression 
data 

• Multiple resources on chemical 
bioactivity including Connectivity 
Map v2, Open TG-GATES, and others



EPA HTTr Experimental Design and Bioinformatics Workflow for TempO-Seq data

Test Samples:
8 Concentrations
½ Log10 Spacing
Triplicate Plates

QC Treatments
Vehicle Control
Ref Treatments
Cell Viability
Trichostatin A

QC Treatments
UHRR
HBRR
BL DMSO
BL TSA
Lysis Buffer

Cryopreserved 
Cell Stocks

Cell Expansion & 
Plating

Harrill et al., 2021



Connectivity Mapping and Read-Across

• Connectivity mapping (Lamb et al., 2016) 
developed to interpret gene sets using 
similarity with reference HTTr profiles. 

• Assumptions: 
• Biological state of samples represented by 

transcriptomic descriptors
• Similarity between transcriptomic 

representation implies common mechanisms

• Transcriptomic connectivity provides a new 
context of similarity for evaluating untested 
chemicals by read-across

• Key questions: 
• How do we represent transcriptomic data? 
• How can we measure similarity 

Lamb et al., 2006

Connectivity Mapping



Gene sets as transcriptomic “fingerprints”
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Generalising Connectivity Analysis

Query (𝑂𝑂𝑞𝑞) Similarity Measure (SM) Reference (𝑂𝑂𝑟𝑟)

• Can generalize connectivity 
analysis as:

�s = 𝐷𝐷𝑆𝑆(𝑂𝑂𝑞𝑞 ,𝑂𝑂𝑟𝑟
s = similarity / connectivity score
SM= similarity metric
O = gene set “Object”

}𝑂𝑂 ∈ {𝒙𝒙,𝒙𝒙𝑛𝑛,𝐷𝐷𝐷𝐷𝑛𝑛, 𝐷𝐷𝑛𝑛

Connectivity mapping (Lamb et al., 2006)
Query (𝑂𝑂𝑞𝑞): directional signature (𝑫𝑫𝑫𝑫𝑛𝑛)
Reference (𝑂𝑂𝑟𝑟): transcriptomic profiles in CMap v2 (𝒙𝒙)
Similarity measure (SM): Gene set enrichment Analysis (GSEAb) 
(Subramanian et al. 2005)

𝐷𝐷𝑆𝑆(𝐷𝐷𝐷𝐷𝑛𝑛, 𝑥𝑥)



G
en

es

L2FC

Signature Connectivity Measure Transcriptomic
Profile

Positive
Connection

Negative
Connection

No 
Connection

Possible matches between a 
signature and a profile

Up

Dn

Connectivity-mapping with gene signatures

Shah et al. (in prep)
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Generalised Connectivity Toolkit (gecco)

DB Source Profiles
lincs Lincs 591697

cmap CMap v2 6100

arexp ArrayExpress 3843

mcf7 US EPA 31352

heparg US EPA 23102

u2os US EPA 22980

Methods Measures

Aggregation-
based

eXtreme Sum (XS), eXtreme Mean 
(XM), T-statistic (TT-p), Ranksum
statistic (RS), Kolmogorov-Smirnov  
statistic (GSEA), Total enrichment 
score (TES)

Vector-based

Extreme Pearson correlation 
(XCP), Extreme Spearman 
Correlation (XCS), Jaccard index 
(JI), Signed Jaccard (SJI), 
Szymkiewicz–Simpson index (SI), 
Signed Szymkiewicz–Simpson 
index (SSI)

• MongoDB for storage
• Consistent document structure
• Supports public and in-house data
• Multiple HTTr technologies Shah et al. (in prep)

Similarity 
Measures

DB Source Signatures
Srp US EPA 83
Lincs Lincs 30,000

cmap CMap v2 1200

msigdb MSigDB 26860
dorothea Dorothea 1333

• Standardized API in Python 3
• Multiple connectivity measures
• Parallelized for speed
• Uses tcplFit2 for curve-fitting / BMD

• MongoDB for storage
• Multiple HTTr technologies

}𝑂𝑂 ∈ {𝒙𝒙𝑛𝑛,𝐷𝐷𝐷𝐷𝑛𝑛, 𝐷𝐷𝑛𝑛 }𝑂𝑂 ∈ {𝒙𝒙,𝒙𝒙𝑛𝑛

�s = 𝐷𝐷𝑆𝑆(𝑂𝑂𝑞𝑞,𝑂𝑂𝑟𝑟



Matching troglitazone transcriptomic profiles 
with other chemical signatures

• Troglitazone is a thiazolidinedione 
(TZD) used as an 
antidiabetic and anti-inflammatory

• MIE: peroxisome proliferator 
activated receptor (PPARα) activator

• Use transcriptomic profile (x) for 
troglitazone 10μM @ 6 h in PC3 cells

• Match 6,100 transcriptomic 
signatures 𝐷𝐷𝐷𝐷100 for 1200 chemicals 
in Connectivity Map v2

• Use three connectivity scores
• Best matches with other TZDs and 

PPARα-activators
• Can use this approach to identify 

putative PPARα activators

Signed 
Szymkiewicz–

Simpson index (SSI)
T-statistic (TT-p) GSEA

Connectivity scores

Signature matches



Matching estrogen transcriptomic profile 
with pathway signatures

• Estrogen is a female sex hormone 
activates the estrogen receptors 
(ERα/β)

• Use transcriptomic profile for 
estrogen 14μM after 6 h in MCF7 
cells

• Match against 2,253 canonical and 
hallmark pathways in MSigDB v7.2

• Use different connectivity scoring 
methods and parameters

• Best matches are with estrogen 
response pathways

• Could use this approach to find 
putative ER-disruptors

Signed 
Szymkiewicz–

Simpson index (SSI)
T-statistic (TT-p) GSEA



Transcriptomic neighbours
are mechanistically related

• HepaRG cells treated with 1,366 
chemicals 8 concentrations (0.01-
100μM) for 24h 

• Data processed by EPA HTTr pipeline 
to produce 11,551 L2FC profiles x 
~12,250 genes

• Clustering of all 11,551 transcriptomic 
fingerprints 𝐷𝐷𝐷𝐷100 using Jaccard Index 

• Four reference chemicals: 
benzo(a)pyrene (BAP●), rifampicin 
(RIF●), trichostatin A (TSA●) and 
troglitazone (TROG●)

BAP

RIF

TSA

TROG



Signatures of targets using CMap

• Obtain target annotations from CMap
• 833 targets
• Create "consensus" target signatures 

for cell type
• Approach 1

• For each 𝐷𝐷𝐷𝐷𝑛𝑛 for target in cell
• Create consensus signature from the the n 

most frequent up/dn genes

• Approach 2
• For each 𝒙𝒙 for target in cell

• Find the consistently up/dn regulated genes 
(e.g. based on median L2FC or otherwise)

• Create consensus signature as 𝐷𝐷𝐷𝐷𝑛𝑛 and 𝒙𝒙𝒏𝒏



Signatures of stress-response pathways: non-specific chemicals
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Simmons et al., 2009

Bryant Chambers
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Performance

• Consensus signatures for most SRPs can 
identify reference perturbagens 

• Can use SRP signatures to evaluate non-
specific chemicals 

Chambers et al. (in prep)
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Using signature scores to estimate PODs
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6
• Standardize signature scores using background 

distribution (Z)
• Concentration-response modeling using 

tcplFit2 (cnst, hill, gnls, poly1, poly2, pow, exp2, 
exp3, exp4, exp5)

• Estimate benchmark concentration (BMC) using 
benchmark response (BMR) of Z=1

Background of signature scores defined by NULL-
distribution5

OSR

SM



PODs for all chemicals and SRPs





Summary of hits for HepaRG treatments

Phenothiazine: psychoactive 
Does not hit specific targets

But increases OSR



Summary of hits for HepaRG treatments

Tebuferynpad: insecticide
Specific target: THR

Non-specific SRP activity



Summary of hits for HepaRG treatments

Rofecoxib: Vioxx  
Approved 1999 / Withdrawn 2004

Due to cardiotoxicity
Produced potent OSR and HSR 
effects before specific targets



Summary
1. High-throughput transcriptomics is promising for NAM development

We are using TempO-Seq technology (targeted RNA-Seq) to evaluate thousands of chemicals in multiple cell lines and 
have developed a high-throughput pipeline to process and analyze transcriptomic concentration-response data. 

2. Feasible to identify hazard and estimate POD using gene signature “similarity”
We are systematically evaluating gene signature-based connectivity mapping and other approaches for identifying 
putative targets, AOPs and in vitro POD values. Gene signature-based approaches are more sensitive than single gene-
based techniques. 

3. Connectivity mapping, read-across and risk assessment
Transcriptomic nearest-neighbor techniques are conceptually like expert read-across approaches, which are widely 
used to fill data gaps for untested chemicals. Could be easier “sell” than more sophisticated network inference and 
AI/ML/DL.  

4. Future directions
Systems biology of adaptive stress response pathways using transcriptomics to investigate the molecular basis of cellular 
resilience and tipping points; streamline the development of NAMs for evaluating untested chemicals based on adaptive 
stress responses.

27
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