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Disclaimer

The views expressed in this presentation are those of the author(s) and do not 
necessarily represent the views or policies of the U.S. Environmental Protection 
Agency, nor does mention of trade names or products represent endorsement 
for use.



• Background
• Emphasis on NAMs at US EPA
• US EPA Blueprint for Computational Toxicology

• High Throughput Transcriptomics (HTTr)

• High Throughput Phenotypic Profiling (HTPP)

• Potential Applications for HTTr- and HTPP-derived Molecular PODs

Outline



Regulatory Driver for Development & Use of NAMs by US EPA

The Toxic Substances Control Act (TSCA), as amended by the Frank R. 
Lautenberg Chemical Safety for the 21st Century Act, directs EPA to:

1. Reduce and replace, to the extent practicable and scientifically justified, the 
use of vertebrate animals in the testing of chemical substances or mixtures;

2. Promote the development and timely incorporation of alternative test 
methods or strategies that do not require new vertebrate animal testing

2016

“Alternative test methods”   “New Approach Methods (NAMs)”

“Alternative test methods” – Tools of the Trade
1. Computational toxicology and bioinformatics.
2. High-throughput screening methods.
3. Testing of categories of chemical substances.
4. Tiered testing methods.
5. In vitro studies.
6. Systems Biology.
7. ICCVAM or OECD validated assays.
8. Industry consortia that develop information submitted under this title.

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce

Any technology, methodology, approach or combination thereof that can be
used to provide information on chemical hazard and risk that avoids the use of
intact animals.



2016 2018

Emphasis on NAMs at US EPA

Outlines strategic plan for the reduction of testing in vertebrates for 
chemicals regulated under TSCA.

Directs leadership at US EPA [OSCPP and ORD] to prioritize efforts that 
will demonstrate measurable reduction of animal testing while ensuring 
protection of human health and environment.

Describes US EPA’s roadmap and tangible steps to pursuing and 
achieving animal use reduction goals while ensuring that the 
Agency’s regulatory, compliance and enforcement activities 
remain fully protective of human health and the environment.

2019 2020
https://www.epa.gov/chemical-research/epa-new-approach-methods-work-plan-reducing-use-animals-chemical-testing



Computational Toxicology Research Areas

• New Strategy for Hazard Evaluation: Improve efficiency and 
increase biological coverage by using broad-based (i.e. non-
targeted) assays that cast the broadest net possible for 
capturing the potential molecular and phenotypic responses 
of human cells in response to chemical exposures.

# of 
assays

# of 
chemicals

Types of 
chemicals

Phase 1 
(2007 – 2009)

500 300 Mostly pesticides

Phase 2 
(2009 – 2013)

700 2,000 Industrial, consumer 
product, food use, ”green”

• ToxCast: Uses targeted high-throughput screening (HTS) assays 
to expose living cells or isolated proteins to chemicals and 
assess bioactivity and potential toxic effects.

The NexGen Blueprint of CompTox at US EPA 
Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058

• Mostly targeted assays (chemical X  target Y).

• Incomplete coverage of human biological space.

2016 2018 2019 2020

https://doi.org/10.1093/toxsci/kfz058


NAMs-Based Tiered Hazard Evaluation Approach (1)

High throughput profiling (HTP) assays are
proposed as the first tier in a NAMs-based hazard
evaluation approach.

HTP Assay Criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction
and evaluation of chemical similarity.

2. Compatible with multiple human-derived
culture models.

3. Concentration-response screening mode.
4. Cost-effective.

To date, EPA has identified and implemented two 
HTP assays that meet this criteria. 

• High-Throughput Transcriptomics [HTTr]
• High-Throughput Phenotypic Profiling [HTPP]

The NexGen Blueprint of CompTox at US EPA 
Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058

https://doi.org/10.1093/toxsci/kfz058


High-Throughput Transcriptomics (HTTr)



• The TempO-Seq human whole transcriptome assay
measures the expression of greater than 20,000
transcripts.

• Requires only picogram amounts of total RNA per sample.

• Compatible with purified RNA samples or cell lysates.

• Lysates are barcoded according to sample identity and
combined in a single library for sequencing using industry
standard instruments.

• Scalable, targeted assay: 
• 1) specifically measures transcripts of interest
• 2) ~50-bp reads for all targeted genes
• 3) requires less flow cell capacity than RNA-Seq

TempO-Seq Assay Illustration

Known, captured in probe 
manifests and fastq files

Aligned to reference 
transcriptome to generate counts

Templated Oligo with Sequencing Readout (TempO-Seq)

Yeakley et al. (2017) DOI: 10.1371/journal.pone.0178302

https://doi.org/10.1371/journal.pone.0178302


MCF7 Pilot Experimental Design

Parameter Multiplier Notes
Cell Type(s) 1 MCF7

Assay Formats: 2 High-Throughput Transcriptomics
Cell Viability

Culture Condition 1 DMEM + 10% HI-FBS

Chemicals 44 ToxCast chemicals

Time Points: 1 6 hours
Concentrations: 8 3.5 log10 units; semi log10 spacing

Biological 
Replicates: 3 Independent cultures

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

MCF7

DMSO Staurosporine (1 µM)

CellEvent Caspase 3/7

https://pubmed.ncbi.nlm.nih.gov/33538836/


MCF7 Pilot Chemical List

• Chemicals were selected that cover a broad range of molecular targets with some redundancy within target class.

• Intentionally selected some chemicals whose molecular targets are not expressed in MCF7 cells (or in mammalian tissues).

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

https://pubmed.ncbi.nlm.nih.gov/33538836/


HTTr Experimental Design and Bioinformatics Workflow

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

200X chemical stocks

https://pubmed.ncbi.nlm.nih.gov/33538836/


Concentration-Response Modeling of Gene Signatures

• Understanding the biological meaning of changes in gene expression for 10,000 – 20,000 genes is difficult.

• Analyzing responses at the level of the gene signature aids in data interpretation.

• Takes into account coordinated changes in gene expression that may not be identified using gene level fitting approaches.

• Examples of signature types:
• Genes that are perturbed in diseased tissue vs. healthy tissue.
• Genes perturbed by gene knockdowns / knockouts.
• Genes perturbed by drugs or other chemicals with known (or unknown) mechanisms.

• Example use:
• If an unknown chemical X perturbs genes that are also perturbed by a well-characterized chemical with a specific 

mechanism of action, then one can infer the chemical X may affect the same molecular target(s).

• CCTE signature collection:
• Compiled from many public sources (MSigDB1, BioPlanet2, DisGeNET3, Connectivity Map4 )  ~10,000 signatures
• For CMAP signatures:

• Identify the top 100 up- and down-regulated genes.
• Score each “up” and “down” signature separately.
• Combine into a single score (ScoreUP – ScoreDown = ScoreCombined)

1 Liberzon et al., Bioinformatics. 2011 Jun 15;27(12):1739-40
2 Huang et al., Front Pharmacol. 2019 Apr 26;10:445

3 Pinero et al., Database (Oxford). 2015 Apr 15;2015:bav028
4 Subramanian et al., Science. 2006 Sep 29;313(5795):1929-35.



Signature Scoring for HTTr Assay Performance Assessment

• Signature scoring using the single sample Gene Set Enrichment Analysis (ssGSEA) approach (Barbie et al. 2009)

• The “correct” target classes were identified for reference chemical treatments.

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009
Barbie et al. (2009) DOI: 10.1038/nature08460

https://pubmed.ncbi.nlm.nih.gov/33538836/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783335/


New and/or improved functionality of tcplfit2 (versus tcpl):
• All curve forms from tcpl and BMDExpress are included.
• Calculates benchmark concentrations (BMCs) in addition to AC50s.
• Models in the “up” and “down” direction.
• Provides continuous hit calls for identifying high confidence and low confidence hits.

Concentration response modeling of signature scores using tcplfit2 (https://rdrr.io/github/USEPA/CompTox-ToxCast-tcplFit2/)

Concentration-Response Modeling of Signature Scores

https://rdrr.io/github/USEPA/CompTox-ToxCast-tcplFit2/


A B

Concentration-Response Modeling of Signature Scores (2)

Fulvestrant Signature
(Top 100 Up & Down Genes)

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

The expression of fulvestrant
signature “down” genes goes down
following ER antagonist treatment

The expression of fulvestrant
signature “down” genes goes up
following ER agnoist treatment

These 
gene level 
data are 

noisy!

Signature 
level results 

display 
correct 

directionality!

https://pubmed.ncbi.nlm.nih.gov/33538836/


Comparison of Transcriptional BPACs to ER Model

ER Model log10(AC50, µM)
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• US EPA has developed a battery of 18 ToxCast assays to predict activity at the estrogen receptor (Brown et al. (2015) DOI: 
10.1021/acs.est.5b02641)

• Log10 AC50 values from the ToxCast ER model assays were compared to transcriptomic signature BPACs in MCF7 cells for a 
collection of 37 estrogenic chemicals.

• Signature-based BPACs are concordant with ER model predictions. 

• Estrogen receptor is also abundantly expressed in MCF7 cells (and 
other breast-derived cell lines).



Harrill et al., (unpublished). DO NOT CITE OR QUOTE

https://pubmed.ncbi.nlm.nih.gov/26066997/


High-Throughput Phenotypic Profiling (HTPP)



Golgi + membrane 
+ actin skeleton DNA RNA + ER Mitochondria

Marker Cellular 
Component Labeling Chemistry Labeling 

Phase
Opera Phenix

Ex. Em.

Hoechst 33342 Nucleus Bisbenzamide probe that binds to dsDNA

Fixed

405 480

Concanavalin A –
AlexaFluor 488

Endoplasmic 
reticulum

Lectin that selectively binds to 
α-mannopyranosyl and α-glucopyranosyl
residues enriched in rough endoplasmic 

reticulum

435 550

SYTO 14 nucleic acid 
stain Nucleoli Cyanine probe that binds to ssRNA 435 550

Wheat germ 
agglutinin (WGA) –

AlexaFluor 555

Golgi Apparatus and 
Plasma Membrane

Lectin that selectively binds to sialic acid and 
N-acetylglucosaminyl residues enriched in the 

trans-Golgi network and plasma membrane 570 630
Phalloidin –AlexaFluor

568
F-actin 

(cytoskeleton)
Phallotoxin (bicyclic heptapeptide) that binds 

filamentous actin

MitoTracker Deep Red Mitochondria Accumulates in active mitochondria Live 650 760

High Throughput Phenotypic Profiling (HTPP) with Cell Painting

• Cell Painting is a profiling method that
measures a large variety of phenotypic features
in fluoroprobe labeled cells in vitro

(Bray et al. (2016) DOI: 10.1038/nprot.2016.105)

• Previous Uses:
• Drug discovery
• Compound efficacy and toxicity screening
• Mechanism-of-action identification
• Chemical grouping
• Functional genomics

• Efficient and cost-effective method for
evaluating the bioactivity of environmental
chemicals.

1300 features

https://pubmed.ncbi.nlm.nih.gov/27560178/


adapted from Nyffeler et al. (2020) DOI: 10.1016/j.taap.2019.114876

Mitochondrial compactness/texture  Cells are larger 

Chemicals Produce Distinct Quantifiable Phenotypes

• Repeated testing of reference chemicals demonstrates reproducibility of Cell Painting phenotypes.

https://pubmed.ncbi.nlm.nih.gov/31899216/


Label Reference Chemicals: Molecular Mechanism-of-Action Test Concentrations

A Etoposide DNA topoisomerase inhibitor 0.03 - 10 µM

B all-trans-Retinoic Acid Retinoic acid receptor agonist 0.0003 – 1 µM

C Dexamethasone Glucocorticoid receptor agonist 0.001 – 3 µM
D Trichostatin A Histone deacetylase inhibitor 1 µM
E Staurosporine Cytotoxicity control 1 µM
F DMSO Vehicle control 0.5 %

HTPP Screening Dose Plate Design (U-2 OS Cells)
200X chemical stocks



Data reduction

cell-level data

normalized
cell-level data

well-level data

cell value – medianDMSO

1.4826 MADDMSO

Concentration Response Modeling

Fit Multiple Curve 
Shapes

Best Model 
Selection

BMC

scaled 
well-level data

Cell Count Info
Conc. > 50% cell loss

Berberine chloride
Mito_Cells_Morph_STAR

Normalization
MAD normalization

Aggregation
median

Standardization
Z transformation

clipped 
well-level data

Feature z-scores
Latent variables

HTPP Data Analysis Pipeline

(See Next Slide)

Nyffeler et al. (2021). DOI: 10.1177/2472555220950245

https://pubmed.ncbi.nlm.nih.gov/32862757/


Mahalanobis Distance (DM): 
• A multivariate distance metric that measures the distance between a point (vector) and a distribution.  
• Takes into account inherent correlations in phenotypic feature data

1300 features

group them in 
49 categories

derive a Mahalanobis distance
(relative to control wells)

derive a Mahalanobis distance
(relative to control wells)

1 BMC

49 BMCs

BPAC

Global Mahalanobis

Category-level Mahalanobis

Feature-level 
fitting

• Chemicals where a BMC can be determined using either the global or category DM approach are considered active.

• The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC).

• Feature level results are used to compare bioactivity profiles across chemicals.

Mahalanobis Distance Modeling of HTPP Data

Adapted from Nyffeler et al. (2021). DOI: 10.1177/2472555220950245

https://pubmed.ncbi.nlm.nih.gov/32862757/


Summarization of Concentration-Response Modeling of HTPP Data

Benchmark Concentration

Profile of Phenotypic Effects



• Agonists of the glucocorticoid receptor and of retinoic acid receptors display characteristic profiles
• Expression of a target does not guarantee that characteristic profiles are observed (e.g. PPAR)

Biological similarity in HTPP Gene expression in U-2 OS

Phenotypic Profile Similarity with 
Nuclear Receptor Modulators



Potential Applications for HTTr- and HTPP-
Derived Molecular PODs



Parameter Multiplier Notes

Chemicals 462 APCRA case study chemicals

Cell Types 4 U-2 OS HepaRG-2D MC-7

Assay Formats 2 HTPP HTTr HTTr HTTr

Exposure Durations Variable 24 HR 24 HR 24 HR 6 HR

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: Variable 4 3 3 3

HTP Screening Experimental Designs

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

International collaboration of regulatory scientists focused on next generation chemical risk 
assessment including deriving quantitative estimates of risk based on NAM-derived potency 
information and computational exposure estimates.

APCRA Chemicals
PK parameters necessary for in vitro to in vivo extrapolation (IVIVE) 
in vivo toxicity data   



Comparison of Screening Results Across Cell Lines

• Molecular POD defined as the minimum potency observed in HTP NAM assays across three cell types.

MCF7 U-2 OS

HepaRG



HTP Potency Estimate
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose

In Vitro to In Vivo Extrapolation (IVIVE) Using 
High-Throughput Toxicokinetic (httk) Modeling



Bioactivity / In Vivo Effect Value Ratio Analysis

• Negative ratios indicate that AEDs 
derived from HTP NAMs molecular 
PODs are conservative surrogates 
for traditional in vivo PODs.

• When cell lines are considered 
individually, ~66-68% of chemicals 
had negative ratios.

• When considered in combination, 
the number and percentage of 
chemicals with negative ratios 
increased (82.3 %). 

• Paul-Friedman et al. (2020)a:
• Using ToxCast, 89 % of APCRA 

chemicals had negative ratios.

• Positive ratios observed for several 
organophosphate and carbamate 
pesticides.



Bioactivity Exposure Ratio (BER) Analysis
• Negative ratios indicate a potential 

for human exposure to chemicals in 
a range that is bioactive in vitro.

• When cell lines are considered 
individually, ~1-2% of chemicals had 
negative ratios.

• When considered in combination, 
the percentage of chemicals with 
negative ratios did not appreciably 
change. 

• Positive ratios observed for several 
chemicals found in consumer 
products. 

• Most extreme negative ratios 
associated with banned or limited 
use organochlorine pesticides.



Perspectives on the Use of HTP Assays at US EPA (1)



Example of Deployment of HTP Assays at US EPA

Tiered Testing Methods

Assay Assay Endpoints Purpose

https://www.epa.gov/chemical-research/pfas-chemical-lists-and-tiered-testing-methods-descriptions#2

“Panel of new approach methods to screen for 
potential liver, developmental neurotoxicity, 
developmental toxicity, immunotoxicity and 
mitochondrial toxicity as well as to better predict the 
disposition and excretion of PFAS from the body.”

“Results from the [NAMs] testing will be used to prioritize (tier) PFAS for risk 
assessment, provide support for gap-filling approaches such as chemical read-
across and to inform further testing.”



• High-Throughput Profiling:  Developed experimental designs and scalable laboratory workflows 
for high-throughput transcriptomics and high-throughput phenotypic profiling of environmental 
chemicals that can be used in multiple human-derived cell types.

• Potency Estimation: Developed high-throughput concentration-response modeling workflows to 
identify thresholds for perturbation of gene expression (e.g. BPACs) and cell morphology (e.g. 
PACs).

• IVIVE: Potency estimates can be converted to administered equivalent doses (AEDs) using high-
throughput toxicokinetic modeling.

• Bioactivity to In Vivo Effect Value Ratio Analysis: AEDs derived from HTP assays were 
conservative compared to traditional PODs a majority of the time.  Performance improved to 
~80% when results from multiple cell types were considered in combination. 

• Bioactivity to Exposure Ratio (BER) Analysis: AEDs derived from HTP assays were compared to 
high-throughput exposure predictions.  There were very few chemicals where AEDs were within 
the range of exposure predictions. 

• Comparison to ToxCast:  Applications using HTP NAMs potencies as input yielded comparable 
results compared to the use of ToxCast NAMs potencies.

Summary and Conclusions
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