

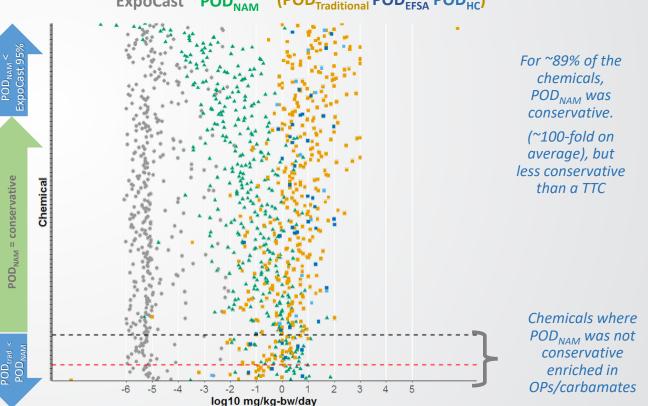
New approach methods toxicokinetics

Barbara A. Wetmore

Center for Computational Toxicology and Exposure Office of Research and Development

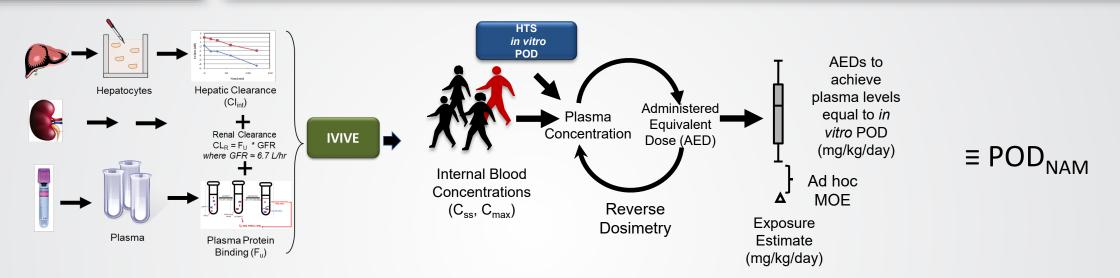
Executive Meeting | Board of Scientific Counselors September 29-30, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.


SEPA Goals Toxicokinetics (TK) incorporates dosimetry with NAM bioactivity data to enable direct comparisons to anticipated external exposures – allowing risk evaluations.

TK evaluations also provide PFAS-specific information that can inform:

- Bioaccumulative potential
- Half-life estimations
- Read-across approaches
- Biotransformation


Targeted analytic methodologies are also being used to evaluate:

- PFAS *In vitro* stability and disposition
- Quality and stability of DMSO stocks

Paul-Friedman et al., 2020 Toxicol. Sci.

- Experimental TK data generated across ~130 PFAS
 - Plasma protein binding (Ultracentrifugation assay): F_u
 - Hepatocyte clearance (hepatocyte suspensions, loss of parent compound over time): Cl_{int}
 - Renal transport and clearance (MDCK-II model; transporters associated with PFAS uptake/efflux)
 - PFAS metabolite and biotransformation evaluations
 - Above work requires development of sensitive, targeted analytic methods for each PFAS
- Incorporate in vitro TK data in *in vitro-in vivo* extrapolation (IVIVE) approach to estimate steady state concentrations (C_{ss}); incorporation into httk; make available for QSAR development
- Evaluate PFAS in vitro disposition (distribution/binding to media, cells, plastics)
- Stock QC: Evaluate ORD PFAS stocks distributed to screening partners for quality and stability

Current Status

- QC of PFAS DMSO stocks complete
 - Over 470 unique stocks analyzed across multiple procurements; Pass/fail score; informational flags
- Plasma protein binding data >95% complete
 - Methodologically challenging PFAS still being attempted
- Hepatic clearance data (NTP and EPA collaboration)
 - 85% complete; to be completed by FY22 Q1
 - More methodologically challenging than plasma work
- Renal transporter data

S EPA

- Phase 1: assay work 80% complete
- Phase 2: Targeted mass spectrometric analysis of samples underway
- To be completed in FY22
- PFAS biotransformation
 - Chemical selection, study design underway, data generation in FY22
- PFAS *in vitro* disposition
 - Chemical selection, proof of concept design underway; data generation in FY22

\$EPA

Contributors

Experimental Team:

M. Scott Clifton, CEMM Matthew Henderson, CEMM Marci Smeltz, CCTE Brett Blackwell, CCTE Anna Kreutz, ORISE/CCTE Evgenia Korol-Bexell, ORISE/CCTE Steven Lasee, ORISE/CCTE Lucas Albrecht, ORAU/CCTE Matthew Phillips, ORAU/CCTE John Wambaugh, CCTE

ORD Colleagues:

Kathy Coutros, CCTE John Cowden, CCTE Michael DeVito, CCTE Annette Guiseppi-Elie, CSS Dale Hoff, CCTE Michael Hughes, CCTE **Richard Judson, CCTE** Grace Patlewicz, CCTE Ann Richard, CCTE Antony Williams, CCTE **Russell Thomas, CCTE**

- Supported by Chemical Safety for Sustainability National Research Program -