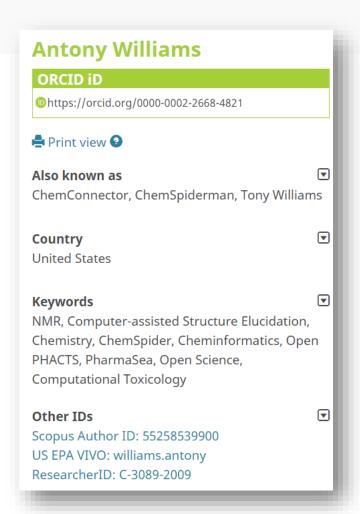


Introduction to Cheminformatics: Accessing data through the CompTox Dashboard

Antony John Williams

williams.antony@epa.gov

Center for Computational Toxicology and Exposure, US-EPA, RTP, NC

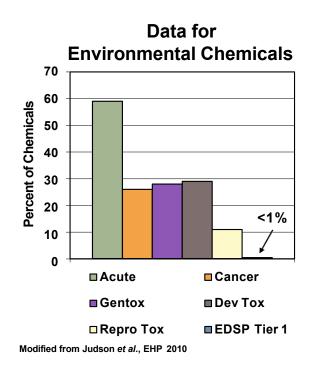

UNC Chapel Hill: September 20th 2021

Who am I? https://orcid.org/0000-0002-2668-4821

- Computational chemist at the US-EPA scientist
- Responsibility for cheminformatics projects, internal & external collaborations, "product marketing" cheminformatician
- Work with a team of people developing software solutions – "product & project manager"
- Scientific publications, books, blogger author; I am @ChemConnector – social networker

Learning Objectives

- A very short overview of cheminformatics focused on
 - Chemical identifiers and some associated challenges
 - Molecular fingerprints
 - Molecular similarity
 - Structure-based modeling (QSAR/QSPR/QSUR)
- An overview of the CompTox Chemicals Dashboard and how it can help to:
 - Search, source, visualize and download data for singleton or thousands of chemicals
 - Perform real-time prediction calculations and read-across
 - Navigate into dozens of other online resources that contain additional data


Problem: Too Many Chemicals and Too Few Resources

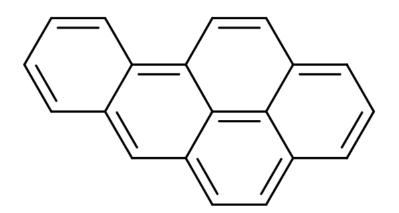
- Fast characterization of human and ecological risk posed by existing and emerging chemicals is a critical challenge
- Chemistry never stops. But there is sparse and distributed data...

CAS REGISTRY® contains more than 171 million unique organic and inorganic chemical substances, such as alloys, coordination compounds, minerals, mixtures, polymers and salts, and more than 68 million protein and DNA sequences

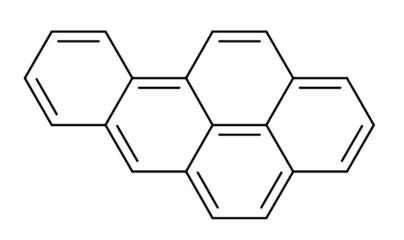
Solution

- Develop a "first-stop-shop" for environmental chemical data to support EPA and partner decision making:
 - Centralized location for relevant chemical data
 - Chemistry, exposure, hazard and dosimetry
 - Combination of existing data and predictive models
 - Publicly accessible, periodically updated, curated
- Easy access to data improves efficiency and ultimately accelerates chemical risk assessment

Cheminformatics and the Dashboard


- Cheminformatics is the application of computer science and informatics-based approaches to:
 - Represent chemical structures, substances and reactions
 - Store chemistry-related data
 - Search for chemistry related data
 - Model data sets to provide predictive capabilities
 - Visualize and analyse chemistry related data
- The US-EPA uses cheminformatics (and bioinformatics) to manipulate, integrate, store, model and deliver access to our data.
 The CompTox Chemicals Dashboard is built on a solid cheminformatics foundation

Types of Chemical Identifiers

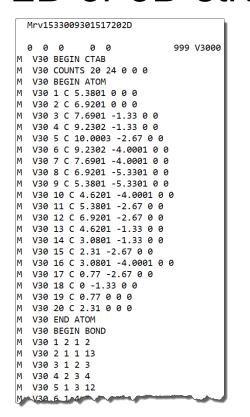

- The visual depiction
- Multiple electronic formats
- InChI (Key): FMMWHPNWAFZXNH-UHFFFAOYSA-N

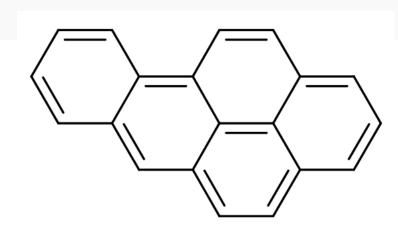
- Common Name: Benzo(a)pyrene
- Systematic Name: Benzo[pqr]tetraphene
- CAS Registry Number(s): 50-32-8
- Lots of other "common names and trade names"

Information Associated with a Chemical Structure?

INTRINSIC PROPERTIES

- Formula : C₂₀H₁₂
- Molecular weight: 252.316 g/mol
- Monoisotopic Mass: 252.093900 g/mol

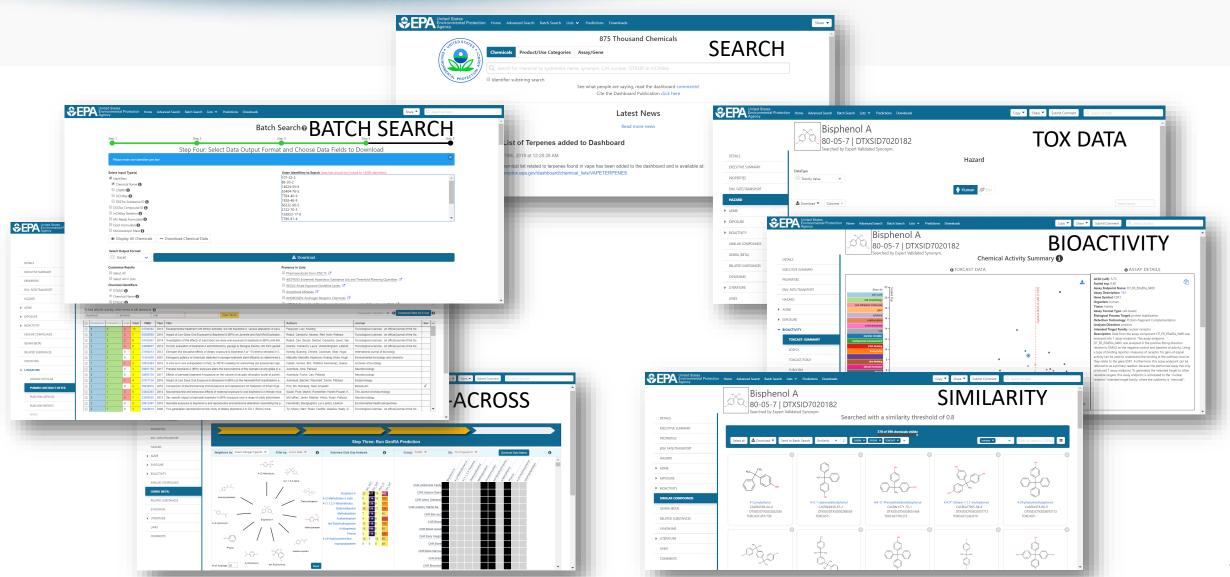

MEASURED PROPERTIES


- LogKow 6.13
- Melting Pt177°C
- Boiling Pt 485°C
-and many more

How to Store a Chemical Structure

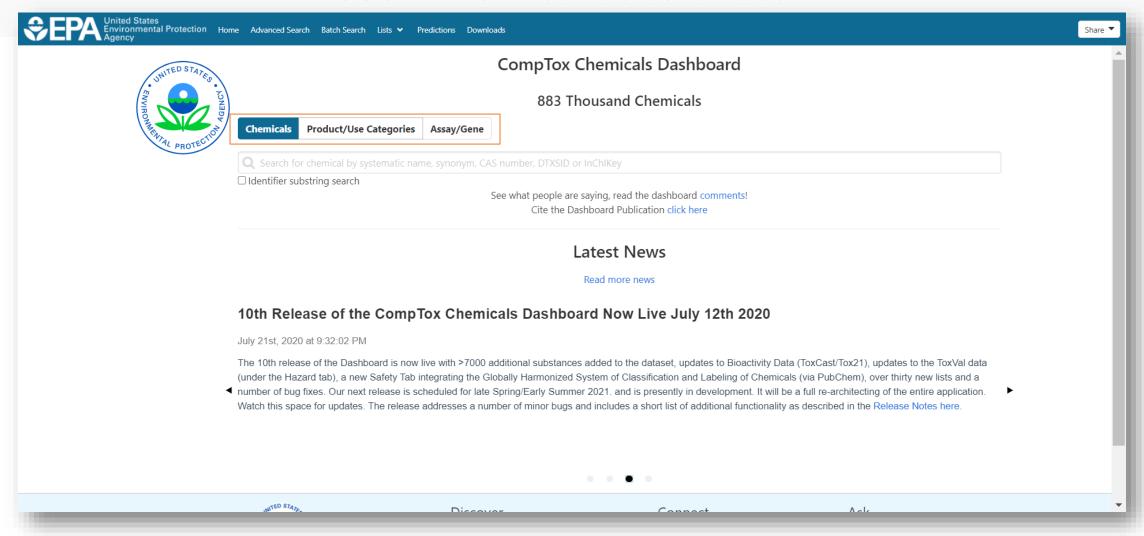
- Multiple approaches:
 - Names and identifiers
 - 2D or 3D structure "molfile"

- SMILES:
 - c1cc2c3ccc4cccc5ccc(cc2cc1)c3c45
 - C1=CC2=CC3=CC=C4C=CC=C5C=CC(=C2C=C1)C3=C45
 - and many other variants....
- InChI=1S/C20H12/c1-2-7-17-15(4-1)12-16-9-8-13-5-3-6-14-10-11-18(17)20(16)19(13)14/h1-12H
- InChikey: FMMWHPNWAFZXNH-UHFFFAOYSA-N

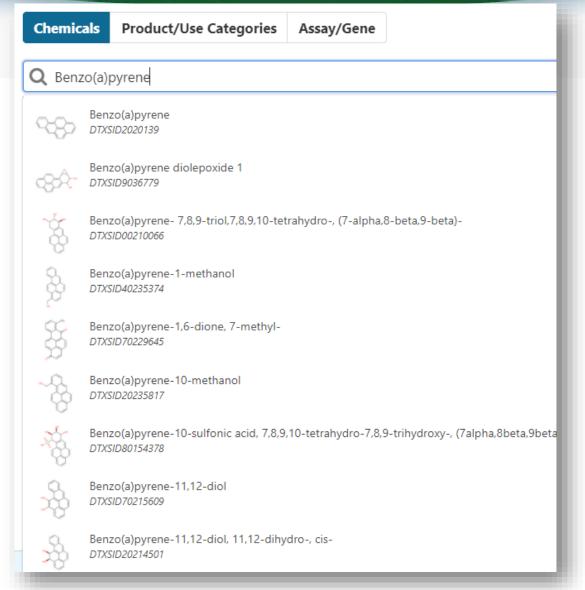

If We Database Chemical Structures...

- ...then we can search the dataset by inherent structural properties
 - Formula
 - Mass
 - Substructure
 - Structural similarity
- ...we can integrate other info into the database for retrieval
- …available data, both experimental and predicted, is a click away
- ...data can be downloaded, distributed and shared
- ...linking out to other resources enabled by adopting specific standards
- ...structure collections, with associated data, are available for modeling

CompTox Chemicals Dashboard https://comptox.epa.gov/dashboard



CompTox Chemicals Dashboard



883k Chemical Substances

BASIC Search

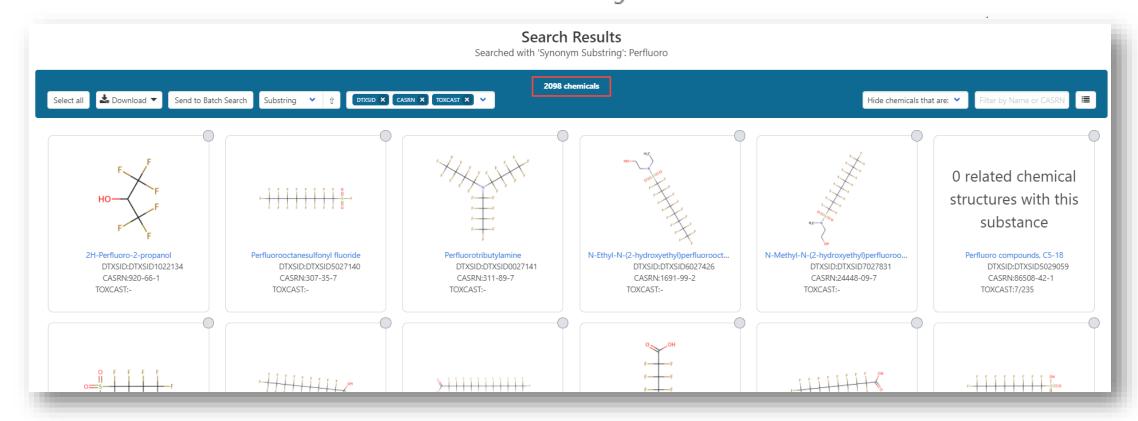
- Type ahead search using Names, synonyms and CASRNs
- Millions of identifiers
- Substring search

Search Results

Searched with 'Synonym Substring': Benzo(A)Pyrene

183 chemicals

Search for classes of chemicals



• Examples: "perfluoro"

Chemicals Product/Use Categories Assay/Gene

Q perfluoro

✓ Identifier substring search

Challenges with Nomenclature

- Be CAREFUL with names! There is a LOT of confusion in the public domain. CHOOSE sources wisely!
- There are MANY public databases but not many are curated
- All public databases have value but not many curate data

 Example: METHANE on PubChem https://pubchem.ncbi.nlm.nih.gov/compound/297

CAS Registry Numbers on PubChem

2.3.1 CAS

▶ CAMEO Chemicals; CAS Common Chemistry; ChemIDplus; DrugBank; EPA Chemicals under the TSCA; EPA DSSTox; European Chemicals Agency (ECH...

8006-14-2

▶ CAMEO Chemicals; EPA Chemicals under the TSCA; EPA DSSTox; European Chemicals Agency (ECHA)

7440-44-0

▶ ChemIDplus

7782-40-3

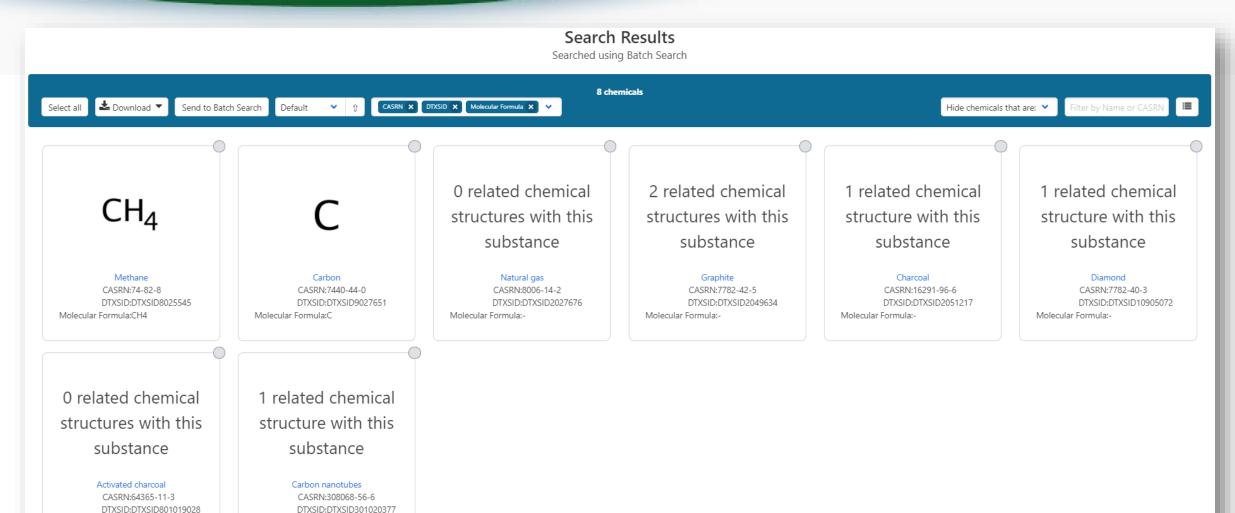
▶ ChemIDplus

7782-42-5

▶ ChemIDplus

16291-96-6

▶ ChemIDplus


64365-11-3

CASRN lookup on the dashboard

Molecular Formula:-

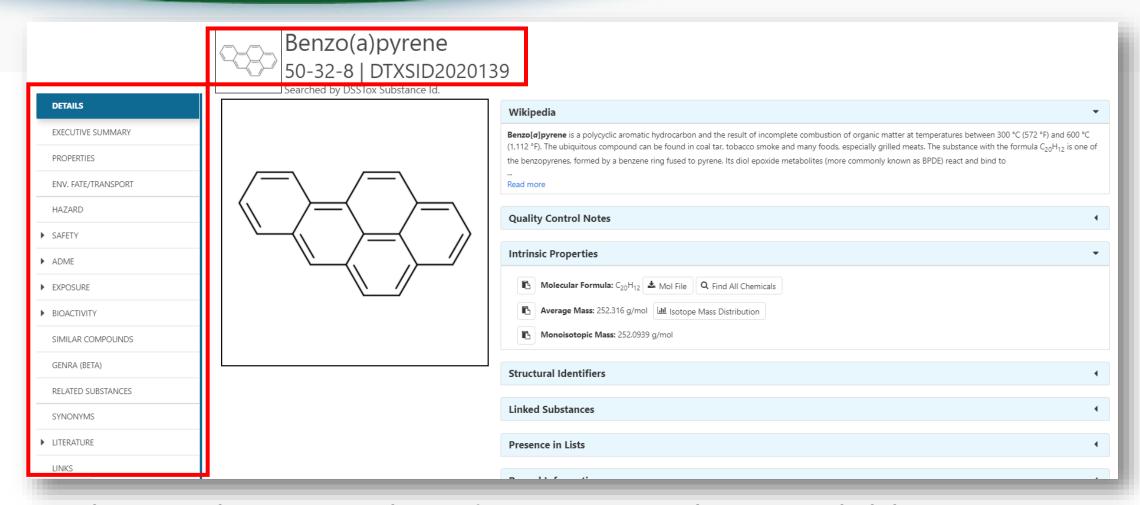
Molecular Formula:-

Methane is Diamond and Nanotubes?

• These are all Depositor Names for Methane 😊

2.4.2 Depositor-Supplied Synonyms

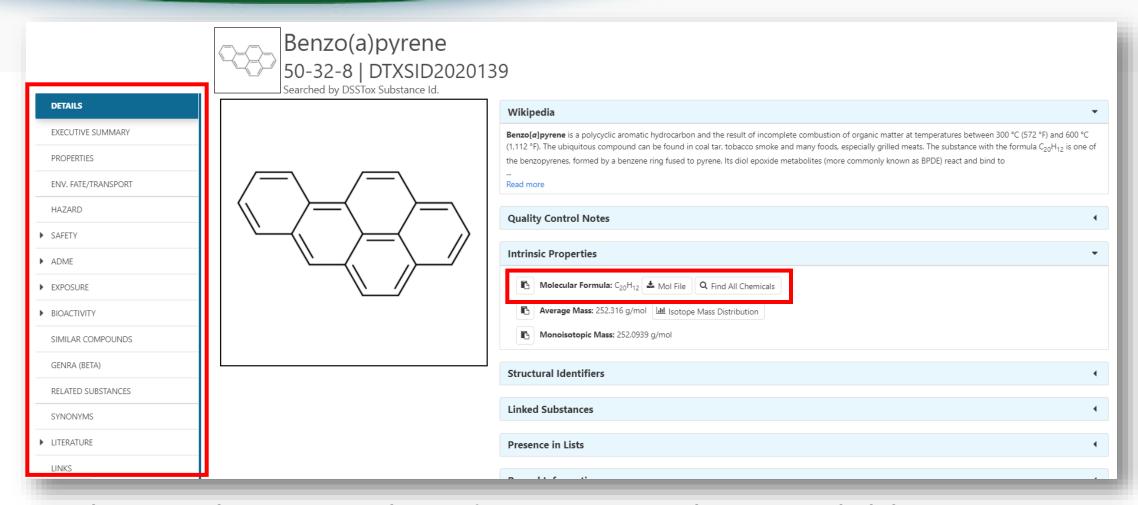
UN 1971 (Salt/Mix) UN 1972 (Salt/Mix) Activated carbon, pellets 3mm Graphene quantum dots(Powder) Multiwall Nanotubes 5-15 nm GO quantum dots(C: 1mg/ml) MWNTs ethyl acetate suspension Reduced Graphene Oxide@ SnO2 Carbon nanotubes aqueous slurry


Fullerene soot, (as produced) MWNTs Butyl acetate suspension QuadraPure C, 0.3-0.8mm 6GRV67N0U2 GO quantum dots yellow(Powder) Graphene electric aqueous slurry Graphene powder Physical methods Reduced Graphene Oxide@ Co3O4 Carbon Conductive Adhesive Tapes

Carbon Nanotube sponges XFCN01 Carbon Nanotube sponges XFCN07 Carbon Nanotube sponges XFCN08 Carbon, activated, -4+8 mesh Carbon, activated, 2mm & down CHEMBL2106049 Diamond Synthesized, 95% Nano Diethyl Cyanomethyl Phosphonate DTXSID8025545

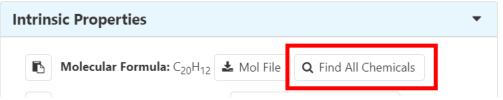
DTXSID9027651 Graphite electrode, rotrode disc Carbon conductive cement adhesive Conductive Flexible TPU Filament GO quantum dots yellow(1mg/ml) Graphite powder, -20+84 mesh Carbon black, Super P Conductive DTXSID50179391 NanoIntegris metallic SWCNTs70%

Detailed Chemical Pages One more identifier – the DTXSID

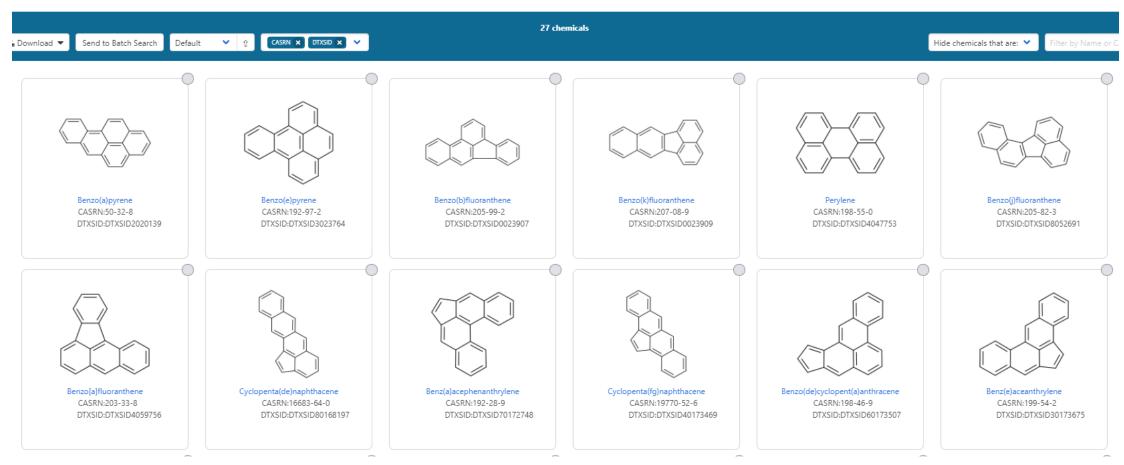


• Chemical page: Wikipedia snippet when available, intrinsic properties, structural identifiers, linked substances

Detailed Chemical Pages Easy Navigation



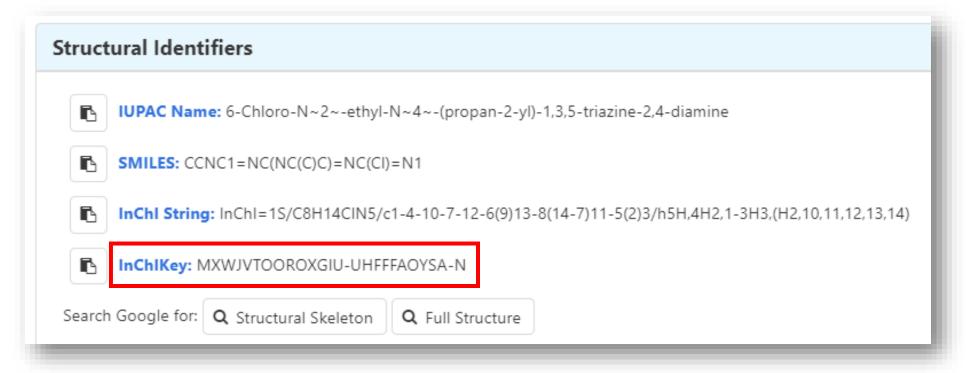
• Chemical page: Wikipedia snippet when available, intrinsic properties, structural identifiers, linked substances


From the Chemical Details Page... all chemicals with same FORMULA

Search Results

Searched by Exact Molecular Formula: C20H12.

How many chemicals are associated through LINKED SUBSTANCES?


- Atrazine, is a herbicide in MANY commercial products
- The dashboard has salt forms, isotopically labelled forms, multicomponent forms
- How do we identify what they are???

A little more about the InChI

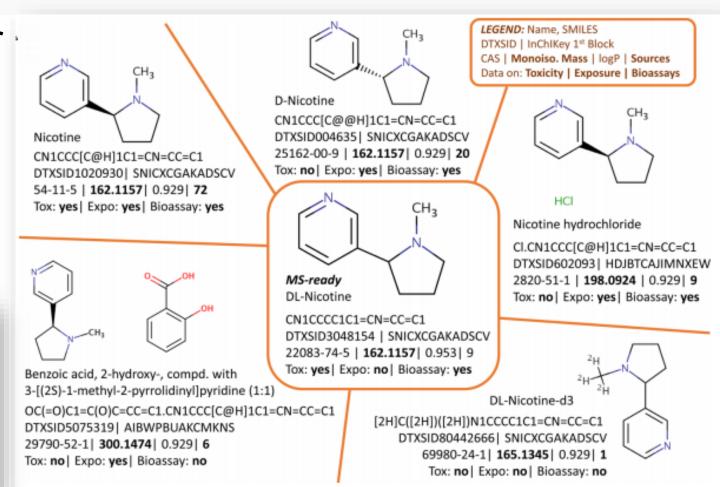
- An InChlKey is made up of two blocks...
 - Block 1 "the connectivity" of atoms and bonds
 - Block 2 isotopes, charge, stereo

The InChlKey is VERY USEFUL

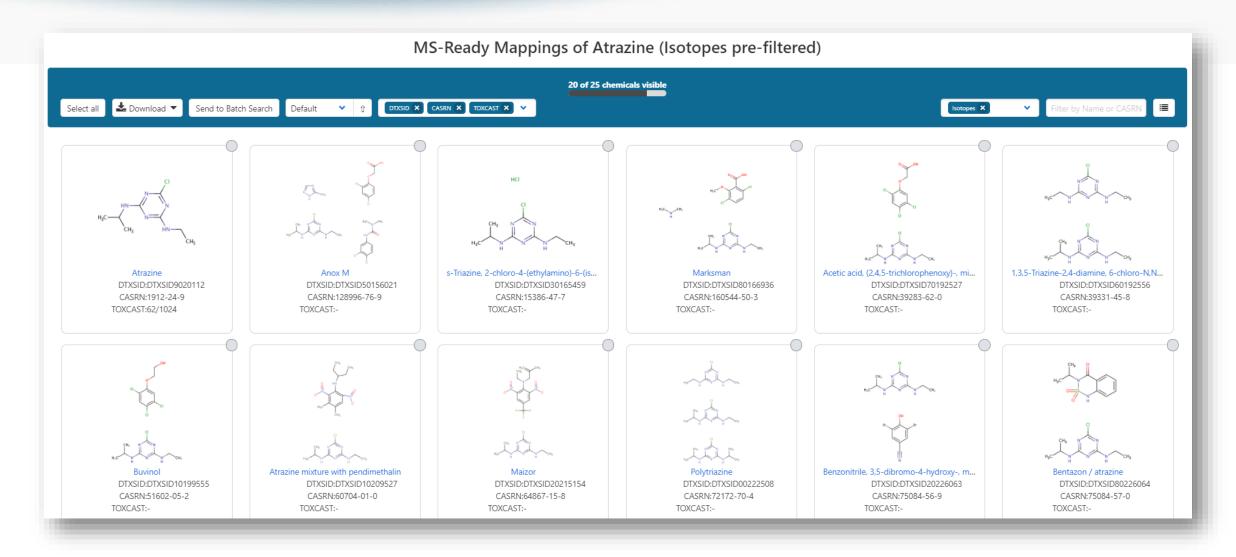
Searching using InChI

 Demo an internet search using InChIs – Cholesterol has the InChIKey: HVYWMOMLDIMFJA-DPAQBDIFSA-N

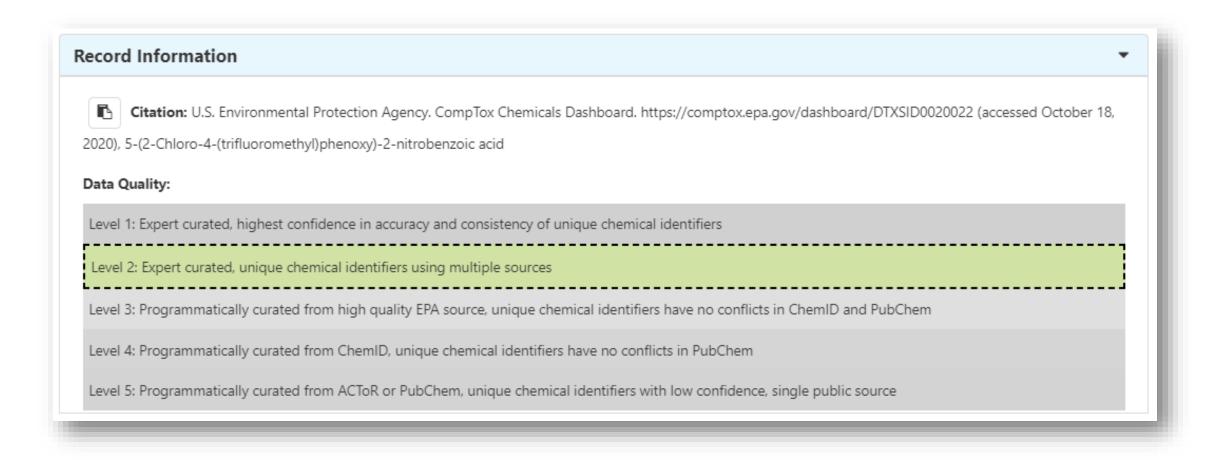
Demo Atrazine – Linked Substances – Skeleton


More about Linked Substances....

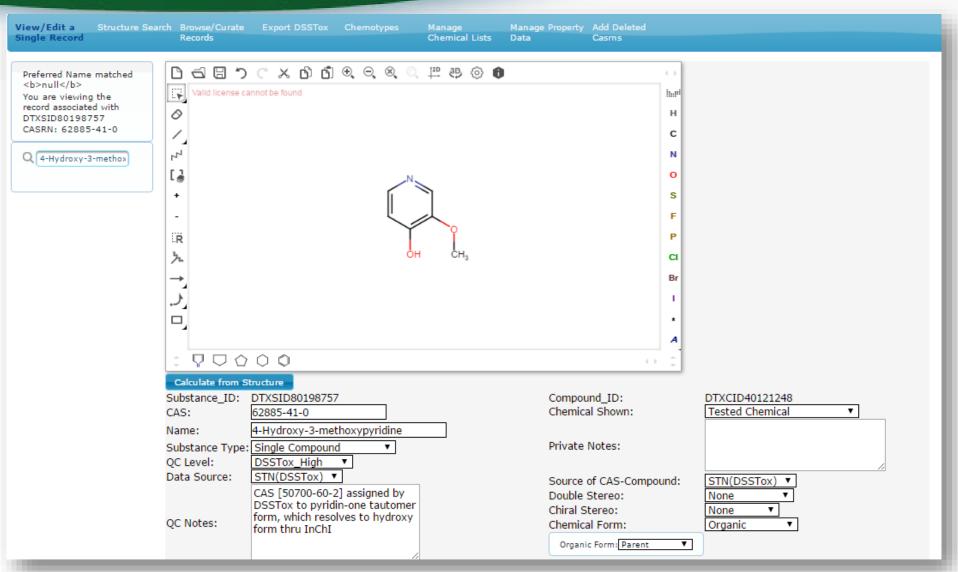
Linked Substances – more interesting


- We map chemicals together using cheminformatics approaches
- Use desalting, destereo, split multicomponents etc to map chemicals together

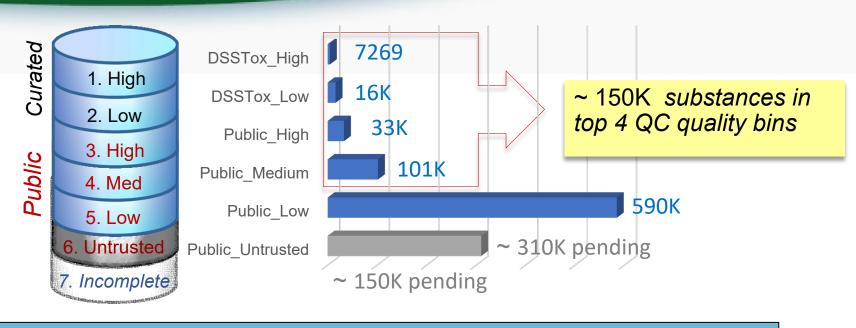
Atrazine Linked Substances



A little more about our data quality



Five full time curators register and curate data to elevate quality


Underneath the Dashboard

Distribution of curated data Now at >1.2 MILLION substances

QC Levels

DSSTox_High: Hand curated and validated

DSSTox_Low: Hand curated and confirmed using multiple public sources

Public_High: Extracted from EPA SRS and confirmed to have no conflicts in ChemID and PubChem

Public_Medium: Extracted from ChemID and confirmed to have no conflicts in PubChem

Public_Low: Extracted from ACToR or PubChem

Public_Untrusted: Postulated, but found to have conflicts in public sources

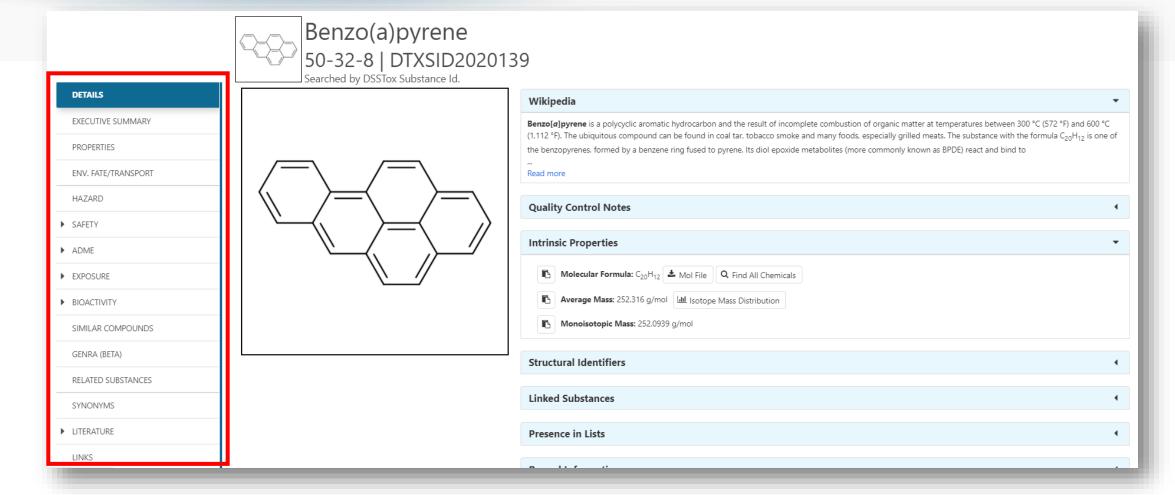
A little more about our data quality

Computational Toxicology 12 (2019) 100096

Contents lists available at ScienceDirect

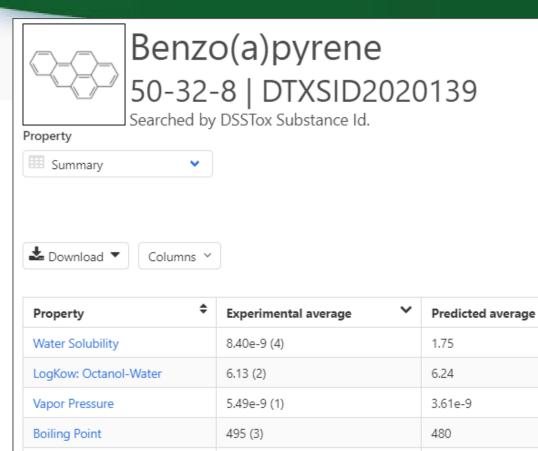
Computational Toxicology

EPA's DSSTox database: History of development of a curated chemistry resource supporting computational toxicology research


Christopher M. Grulke^a, Antony J. Williams^a, Inthirany Thillanadarajah^b, Ann M. Richard^{a,*}

^a National Center for Computational Toxicology, Office of Research & Development, US Environmental Protection Agency, Mail Drop D143-02, Research Triangle Park, NC 27711, USA

^b Senior Environmental Employment Program, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA


Navigating data via the Left Hand Tabs

Experimental and Predicted Data

4.57e-7 (1)

177 (8)

4.59e-7

189

53.9

234

1.28

Henry's Law

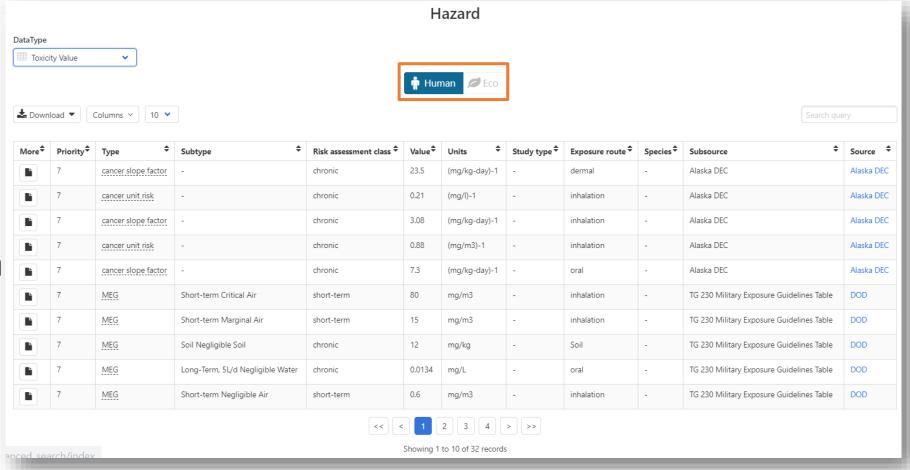
Melting Point

Flash Point

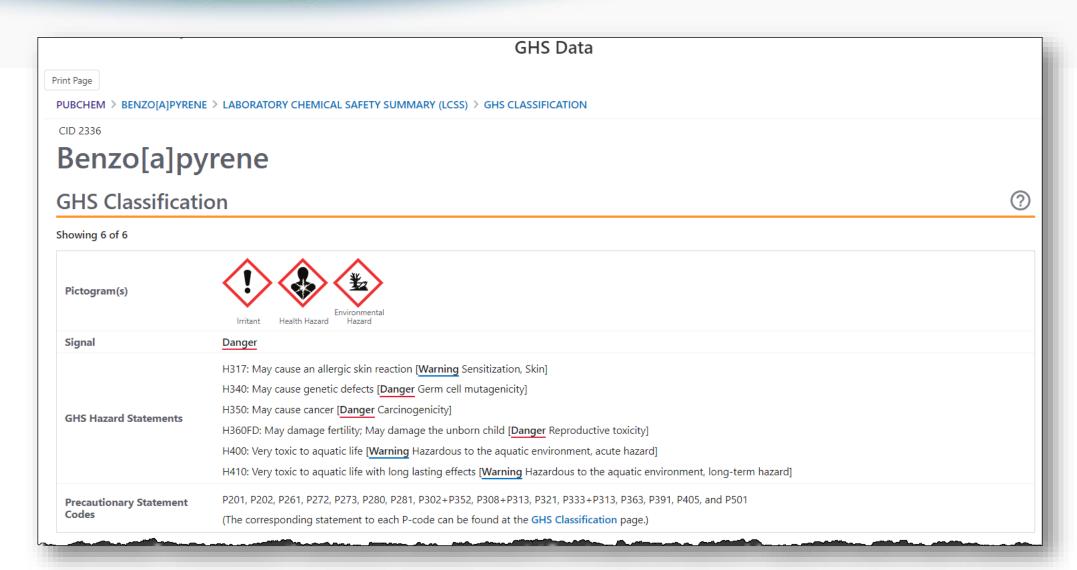
Density

Surface Tension

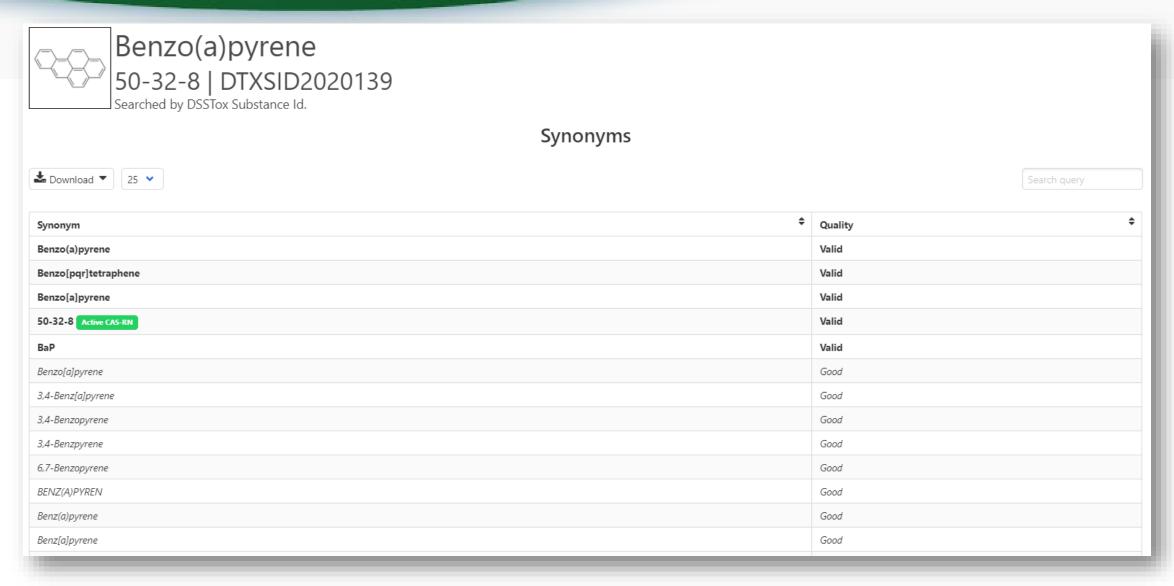
- Physchem and Fate & Transport experimental and predicted data
- Data can be downloaded as Excel, TSV and CSV files


- Predictions: multiple algorithms
 - EPI Suite: Estimation Program Interface
 - ACD/Labs (commercial)
 - TEST: Toxicity Estimation Software Tool
 - OPERA: OPEn structure—activity/ property Relationship App

Chemical Hazard Data

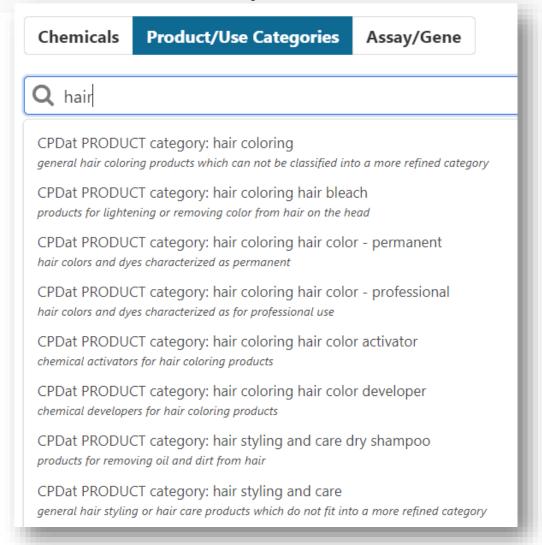

ToxVal Database

- >50k chemicals
- >770k tox. values
- >30 sources of data
- ~5k journals cited
- ~70k citations


Safety Data

Identifiers Support Searches in other systems

More About CASRNs



- CASRNs are very useful, and still limited
- Not every chemical has a STRUCTURE...substances vs structures
- "Chemical Abstracts Service" numbers don't exist until they abstracted and indexed
- Not every chemical on the dashboard necessarily has a CASRN how would you find those that didn't??? Hint: Search NOCAS_
- There are ~6000 chemicals without CASRN on the dashboard
- A chemical can also have many deleted CASRNs

Products Searching

What chemicals are in hair care products?

Let's Talk Exposure

- Types of Exposure Data on the Dashboard
 - Consumer product categories and uses
 - Products containing the chemical
 - Predicted exposure levels from modeling (more in next session)

Sources of Exposure to Chemicals

Benzo(a)pyrene 50-32-8 | DTXSID2020139

Searched by DSSTox Substance Id.

Chemical Weight Fractions 1

Columns Y 10 V

Product Name	Product Use Category	Minimum Weight Fraction	Maximum Weight Fraction	Data Type	Source
m-525-1-5x pah mixtures 0.5 mg/ml for method 525	Not Yet Categorized:			MSDS	SIRI
mm6125 surface conditioner	Not Yet Categorized:			Health Product Declaration	Health Product Declaration Collaborative
monolithic membrane 6125 (mm6125) / monolithic membrane	Not Yet Categorized:			Health Product Declaration	Health Product Declaration Collaborative
organic potablewatr pw 32_component h:reg semi-volatile 690	Not Yet Categorized:	0.00	1.00e-3	MSDS	SIRI
polynuclear aromatic hydrocarbon mixture_ep84627	Not Yet Categorized:			MSDS	SIRI
prestone(r) power steering fluid	engine maintenance: auto fluids and additives			MSDS	CPCPdb
r-12 shield tite wet surface coating	Not Yet Categorized:	0.00	0.500	MSDS	SIRI
sea tar 1010_ 0028	Not Yet Categorized:			MSDS	SIRI
supelpreme-hc kit pah mix_ 48909	Not Yet Categorized:			MSDS	SIRI
supelpreme-hc pah mix 1ml_ 48905	Not Yet Categorized:			MSDS	SIRI

QSAR modeling

- What do you trust more? Experimental or predicted data?
- Do you trust individual models or consensus models
- What if there are no experimental data, how good are predictions?

Data Curation Pipelines plus Manual Curation Processes

> SAR QSAR Environ Res. 2016 Nov;27(11):939-965. doi: 10.1080/1062936X.2016.1253611.

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling

K Mansouri ^{1 2}, C M Grulke ², A M Richard ², R S Judson ², A J Williams ²

Research article | Open Access | Published: 08 March 2018

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri [™], Chris M. Grulke, Richard S. Judson & Antony J. Williams

Journal of Cheminformatics 10, Article number: 10 (2018) Cite this article

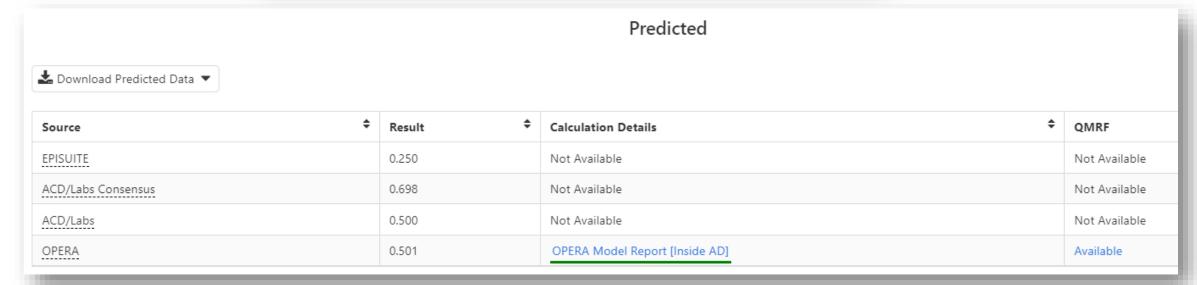
9195 Accesses | 90 Citations | 25 Altmetric | Metrics

Property and Fate and Transport Data ~25 MILLION pre-predicted values

- We have built QSPR models based on tens of thousands of property data points curated over the past decade
- We push our "QSAR-Ready" chemical structures through predictions to produce property predictions

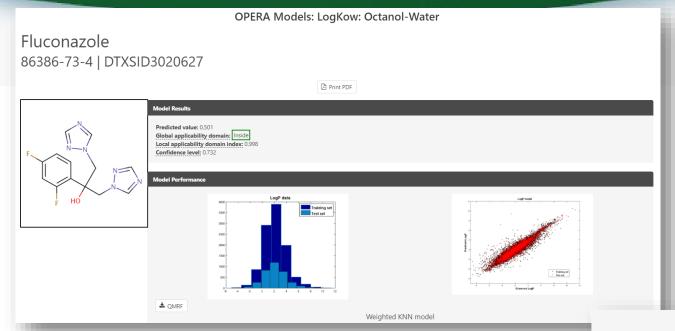
```
"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran , Kamel Mansouri, Chris Grulke, Emma L. Schymanski, Christoph Ruttkies & Antony J. Williams

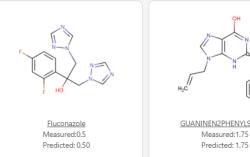

Journal of Cheminformatics 10, Article number: 45 (2018) | Cite this article

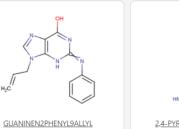
4640 Accesses | 34 Citations | 13 Altmetric | Metrics
```

Access to Predictions



OPERA Reports





Weighted KNN model

5-fold	CV (75%)	Trainir	ng (75%)	Test (25%)		
Q2 RMSE		R2 RMSE		R2	RMSE	
0.850	0.690	0.860	0.670	0.860	0.780	

Nearest Neighbors from the Training Set

2.4-PYRIMIDINEDIAMINE, 5-[[4-(DIMETHYLAMINO)-3-M Measured:1.87 Predicted: 1.87

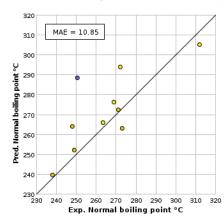
5_(1-P-NITROPHENYL-4-PIPERAZINYL)METHYL-2-AMINO-Measured:1.23 Predicted: 1.23

Similar reports for TEST predictions

Predicted Normal boiling point for 80-05-7 from Consensus method

Prediction results

Endpoint	Experimental value	Predicted value	
Normal boiling point °C	N/A	359.93	

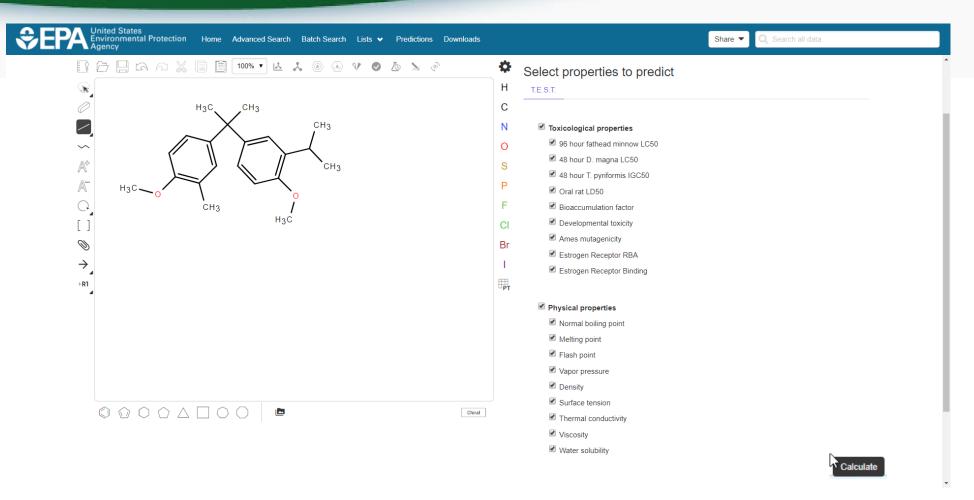

Individual Predictions								
Method	Predicted value °C							
Hierarchical clustering	372.06							
Group contribution	377.41							
Nearest neighbor	330.33							

Predictions for the test chemical and for the most similar chemicals in the external test set

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar chemicals

Prediction results (colors defined in table below)

Chemicals	MAE*
Entire set	11.46
Similarity coefficient ≥ 0.5	10.85


^{*}Mean absolute error in °C

CAS	Structure	Similarity Coefficient	Experimental value °C	Predicted value °C
80-05-7 (test chemical)	HAS CHA		N/A	359.93
14938-35-3	NC.	0.81	250.50	288.54
28994-41-4	HO	0.75	312.00	305.28
96-76-4	H,C CH,	0.71	263.50	265.93
4130-42-1	H _S C CH _S CH _S CH _S CH _S CH _S	0.70	272.00	293.96
616-55-7	H ₂ C CH ₃ CH ₃ CH ₃	0.70	269.00	276.42
2052-14-4	45	0.69	271.00	272.30

Real-Time Predictions

Toxicity and Properties

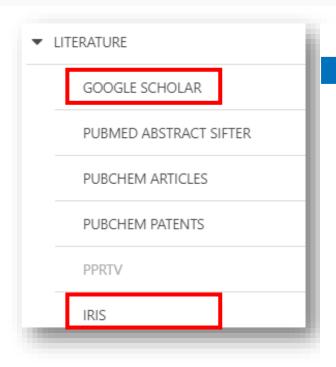
- ✓ Toxicological properties
 - ✓ 96 hour fathead minnow LC50
 - 48 hour D. magna LC50
 - ✓ 48 hour T. pyriformis IGC50
 - ✓ Oral rat LD50
 - Bioconcentration factor
 - Developmental toxicity
 - ✓ Ames mutagenicity
 - Estrogen Receptor RBA
 - ✓ Estrogen Receptor Binding

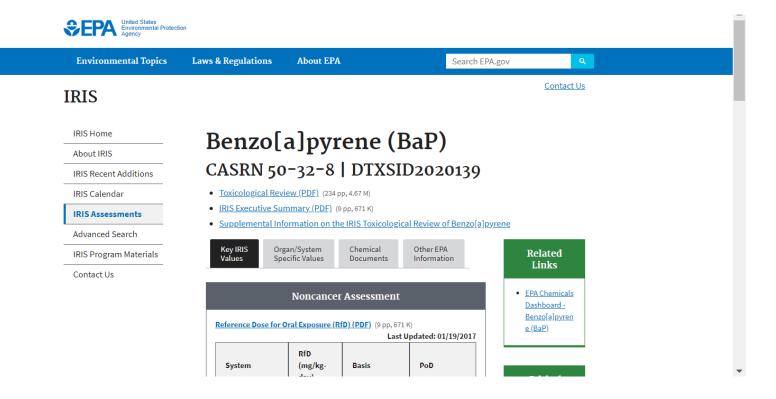
- ✓ Physical properties
 - ✓ Normal boiling point
 - ✓ Melting point
 - ✓ Flash point
 - ✓ Vapor pressure
 - ✓ Density
 - Surface tension
 - ✓ Thermal conductivity
 - ✓ Viscosity
 - ✓ Water solubility

Real-Time Predictions

United States Environmental Protection Agency	Home Advanced Search Ba	tch Search Lists ✔ Predict	ions Downloads		Share ▼	Q Search all data
Provider: T.E.S.T.						Oalculaic
丛 Download Summary ▼						
Property	Experimental Value	Consensus	Hierarchical clustering	Single model	Group contribution	Nearest neighbor
96 hour fathead minnow LC50		6.051 -Log10(mol/L) 0.278 mg/L	5.678 -Log10(mol/L) 0.656 mg/L	5.572 -Log10(mol/L) 0.836 mg/L	5.908 -Log10(mol/L) 0.386 mg/L	7.047 -Log10(mol/L) 0.028 mg/L
48 hour D. magna LC50		5.591 -Log10(mol/L) 0.802 mg/L	5.548 -Log10(mol/L) 0.884 mg/L	6.169 -Log10(mol/L) 0.212 mg/L	5.518 -Log10(mol/L) 0.948 mg/L	5.128 -Log10(mol/L) 2.329 mg/L
48 hour T. pyriformis IGC50		5.590 -Log10(mol/L) 0.804 mg/L	6.390 -Log10(mol/L) 0.127 mg/L		5.588 -Log10(mol/L) 0.806 mg/L	4.790 -Log10(mol/L) 5.068 mg/L
Oral rat LD50		2.400 -Log10(mol/kg) 1243.951 mg/kg	2.232 -Log10(mol/kg) 1829.942 mg/kg			2.568 -Log10(mol/kg) 845.609 mg/kg
Bioaccumulation factor		3.066 Log10 1164.438	3.090 Log10 1230.849	2.717 Log10 521.420	3.257 Log10 1806.262	3.200 Log10 1585.959
Developmental toxicity		true	true	true		true
Ames mutagenicity		false	false			false
Estrogen Receptor RBA		-0.710 Log10 0.195	-1.692 Log10 0.020	-1.515 Log10 0.031		1.077 Log10 11.931
Estrogen Receptor Binding		false	false	false		true
Normal boiling point		345.2 °C	306.6 °C		408.2 °C	320.7 °C
Melting point		74.3 °C	63.8 °C		41.0 °C	118.2 °C
Flash point		161.7 °C	143.5 °C		152.7 °C	188.9 °C
Vapor pressure		-5.955 Log10(mmHg) 1.109*10^-6 mmHg	-5.534 Log10(mmHg) 2.925*10^-6 mmHg		-5.903 Log10(mmHg) 1.249*10^-6 mmHg	-6.428 Log10(mmHg) 3.735*10^-7 mmHg
Density		0.959 g/cm ³	0.977 g/cm³		0.843 g/cm ³	1.057 g/cm³

What's the best way to search the internet for chemical data?

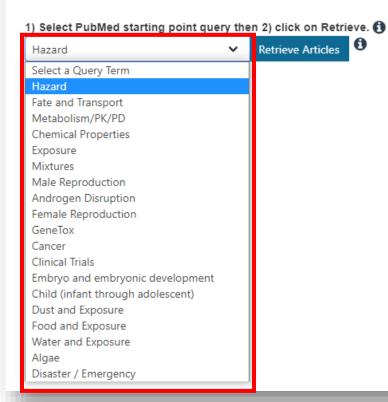



- We know how complex chemicals identifiers are...
 - CASRN(s)
 - Hundreds of names (maybe)
 - SMILES
 - InChIs
 - EINECS, EC numbers
- What can WE do to help you navigate the internet?

Identifiers are used in the app

Identifiers are used to feed and link into "Literature"

Literature Searching



Benzo(a)pyrene 50-32-8 | DTXSID2020139

Searched by DSSTox Substance Id.

Abstract Sifter

Optionally, edit the query before retrieving.	
("50-32-8" OR "Benzo(a)pyrene") AND (NOAEL OR NOEL OR LOEL OR Rfd OR "reference dose" OR "reference concentration" OR "adverse effect level"[tiab] OR "cancer slope factor"[tiab])	
	//

- Real-time retrieval of data from PubMed ~30 million abstracts and growing)
- Choose from set of pre-defined queries
- Adjust and fine tune queries based on interests

Literature Searching

- "Sifting" of results using multiple terms
- Frequency counting terms
- Color highlighting of terms
- Download list to Excel
- Send list to PubMed for downloading ref. file
- Direct link via PubMed ID

dermal cancer pyrene				pyrene	e Cl	ear Terms		Download / Send to Download Sifter for	or Exce		
	dermal	cancer ↓	pyrene	Total	PMID	Year	Title	Title Author		Journal	Rev
וכ	0	7	1	8	23922326	2013	Using immunotoxicity information to improve cance	Using immunotoxicity information to improve cancer risk a		International journal of toxicology	√
5	8	7	2	17	16632147	2006	Development of a dermal cancer slope factor for be	nzo[a]	Knafla; Phillipps; Brecher; Petrovic; Richardson	Regulatory toxicology and pharmacology : RTP	✓
וכ	4	6	2	12	33359623	2020	Testing the validity of a proposed dermal cancer slo	pe fac	Magee; Forsberg	Regulatory toxicology and pharmacology: RTP	√
וכ	0	5	1	6	28477805	2017	Pollution characteristics, sources and lung cancer r	isk of	Wang; Xia; Wu; Zhang; Sun; Yin; Zhou; Yang	Journal of environmental sciences (China)	
	4	4	2	10	20888881	2010	Development and application of a skin cancer slope	factor	Knafla; Petrovic; Richardson; Campbell; Rowat	Regulatory toxicology and pharmacology : RTP	
	4	4	1	9	16307791	2005	Health risk assessment on human exposed to envir	onme	Chen; Liao	The Science of the total environment	
	2	4	1	7	11807932	2002	Cancer risk assessment for oral exposure to PAH r	nixtures.	Schneider; Roller; Kalberlah; Schuhmacher-Wolz	Journal of applied toxicology : JAT	
	2	3	1	6	32460055	2020	PAHs in Chinese atmosphere Part II: Health risk as	PAHs in Chinese atmosphere Part II: Health risk assessm		Ecotoxicology and environmental safety	
5	0	3	1	4	23379661	2013	Parent and halogenated polycyclic aromatic hydroc	Parent and halogenated polycyclic aromatic hydrocarbon		Journal of agricultural and food chemistry	
5	0	3	1	4	20800879	2010	Health risk assessment on dietary exposure to poly	cyclic	Xia; Duan; Qiu; Liu; Wang; Tao; Jiang; Lu; Song; H	Hu The Science of the total environment	
	2	3	1	6	16293284	2005	Probabilistic risk assessment for personal exposure	to car	Liao; Chiang	Chemosphere	
	0	2	1	3	17544483	2007	Health risk assessment for traffic policemen expose	ed to p	Hu; Bai; Zhang; Wang; Zhang; Yu; Zhu	The Science of the total environment	
	0	1	1	2	28795279	2017	Human health risk assessment and PAHs in a stret	Human health risk assessment and PAHs in a stretch of ri		Environmental monitoring and assessment	
	0	1	1	2	12634119	2003	Deviation from additivity in mixture toxicity: relevan-	Deviation from additivity in mixture toxicity: relevance of n		per Environmental health perspectives	
	0	1	2	3	3709501	1986	The adsorption of polyaromatic hydrocarbons on na	atural a	Menard; Noel; Khorami; Jouve; Dunnigan	Environmental research	
7	0	0	1	1	33136306	2020	Effects on Apical Outcomes of Regulatory Relevan-	e of F	Crump: Boulanger: Farhat: Williams: Basu: Hecke	r: Environmental toxicology and chemistry	

Development of a dermal cancer slope factor for benzo[a] pyrene.

Polycyclic aromatic hydrocarbons (PAHs) are commonly found at environmentally impacted sites in both Canada and the United States, and also occur naturally. Typically, benzo[a] pyrene (B[a]P) is selected as a standard to which the cancer potencies of other carcinogenic PAHs are compared. Cancer potency estimates for B[a]P have been published for the oral and inhalation routes of exposure, however, no such estimate has been established by a regulatory agency for dermal exposure. The main objectives of the current investigation were to: evaluate approaches used to examine the relative carcinogenicity of PAHs; to conduct a review of mammalian dermal carcinogenicity studies for B[a]P, and derive a cancer slope factor for dermal exposure to PAHs using B[a]P as a surrogate for other PAHs. The toxicological database of dermal B[a]P studies was examined for relevant animal bioassays. Seven relevant studies were identified. A cancer slope factor for B[a]P was developed using the benchmark dose approach and the linearized multistage model. The upper 95th Cl at the 5% effect level above background incidence was used as the point of departure for low-dose linear extrapolation. An average slope factor of 0.55 (microg/animal day)(-1) was calculated for mice, which was converted to a dose-equivalent slope factor of 25 (mg/kg day)(-1). This latter slope factor is proposed for application to human health risk assessment with no scaling adjustment. Dermal potency equivalency dermal cancer slope factor from mice to humans.

External Links – Also use Identifiers Names, CASRN, PubChem IDs, InChls.

Benzo(a)pyrene 50-32-8 | DTXSID2020139

Searched by DSSTox Substance Id.

General

- **EPA Substance Registry Service**
- PubChem
- Chemspider
- CPCat
- DrugBank
- W Wikipedia
- Q MSDS Lookup
- ChEMBL
- ToxPlanet
- ACS Reagent Chemicals
- ₩ Wolfram Alpha
- ECHA Infocard
- ChemAgora
- Consumer Product Information Database
- ChEBI
- NIST Chemistry Webbook
- **WEBWISER**
- PubChem Safety Sheet
- Consumer Product Information Database
- PubChem: Chemical Vendors

Toxicology

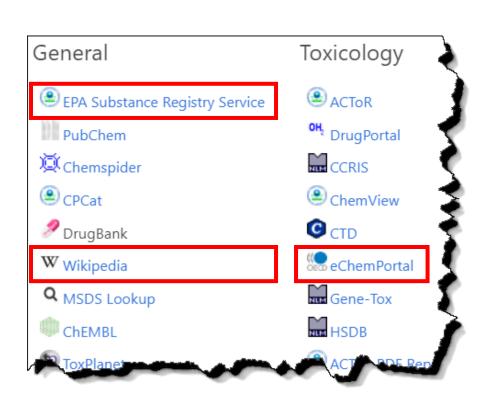
- ACToR
- он_е DrugPortal
- CCRIS
- ChemView
- **©** CTD
- eChemPortal
- Gene-Tox
- HSDB
- ACToR PDF Report
- CREST
- National Air Toxics Assessment
- ECOTOX
- ChemView
- Chemical Checker
- ☑ BindingDB
- CalEPA OEHHA
- MIOSH IDLH Values
- LactMed
- ECOTOX

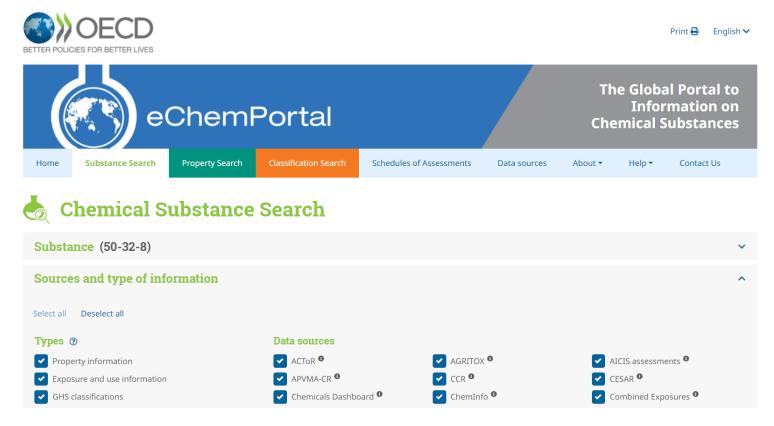
Publications

- Toxline
- PPRTVWFB
- NH) PubMed
- IRIS Assessments
- EPA HERO
- NIOSH Skin Notation Profiles
- NIOSH Pocket Guide
- RSC Publications
- BioCaddie DataMed
- Springer Materials
- Bielefeld Academic Search Engine
- CORE Literature Search
- Google Books (Text Search)
- Google Patents (Text search)
- G Google Scholar (Text search)
- Google Patents (Structure search)
- Google Books (Structure Search)
- Google Scholar (Structure search)
- Federal Register

Analytical

- RSC Analytical Abstracts
- ♠ Tox21 Analytical Data
- MONA: MassBank North America
- mzCloud
- NIST IR Spectrum
- NIST MS Spectrum
- MassBank
- NIST Antoine Constants
- IR Spectra on PubChem
- NIST Kovats Index values
- ☑ Protein DataBank
- National Environmental Methods Index


Prediction


- 2D NMR HSQC/HMBC Prediction
- Carbon-13 NMR Prediction
- Proton NMR Prediction
- ChemRTP Predictor
- **€** LSFRD

External Links

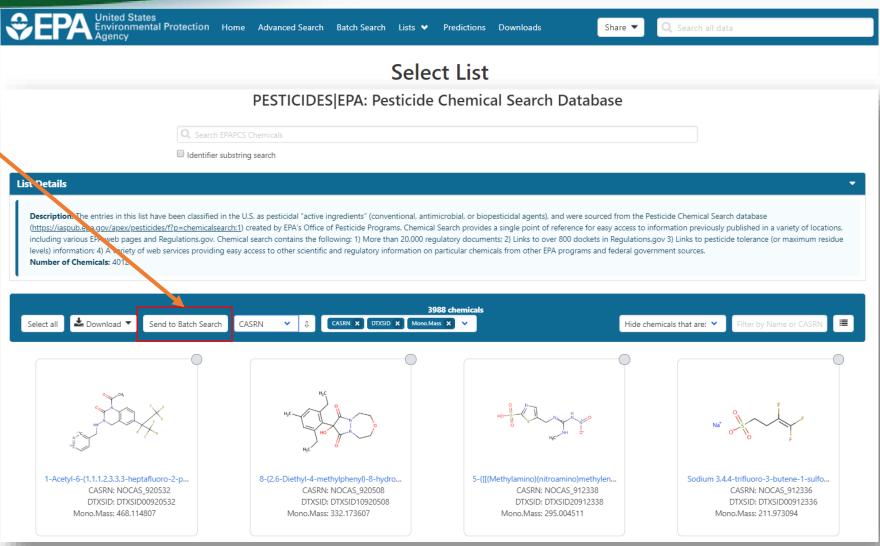
 Links to ~90 websites providing access to additional data on the chemical of interest

Chemical Lists and Categories

PFAS lists of Chemicals

Copy Filtered Lists URL

Select List

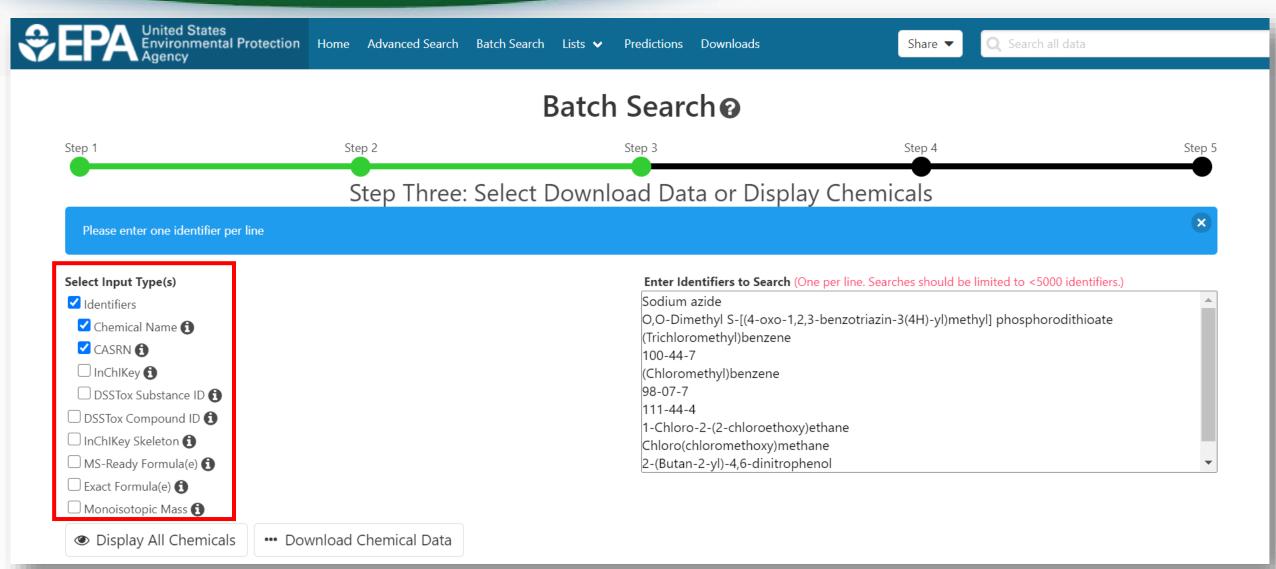

List Acronym	List Name	Last Updated 🕏	Number of Chemicals 🕏	List Description
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)

Curated List of Pesticides

Find list of interest

 Select list and send to batch

Batch Searching

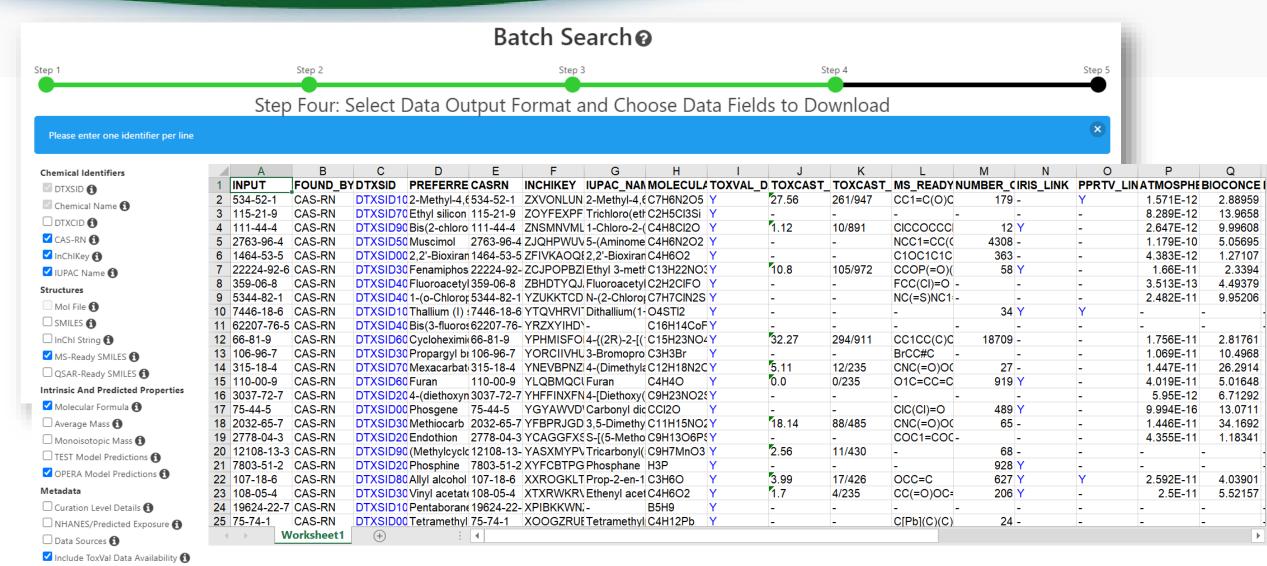


- Singleton searches are great but...
- ...we generally want data on LOTS of chemicals!

- Typical questions
 - What are the structures for a set of chemical names? Set of CASRNs?
 - Can I get chemical lists in Excel files? As a list of SMILES strings?
 Can I get an SDF file?
 - Can I include predicted properties in the download file? OPERA? TEST?
 - Are "these chemicals" screened in Toxcast?
 - I'm a mass spectrometrist and need masses and formulae for a list of chemicals

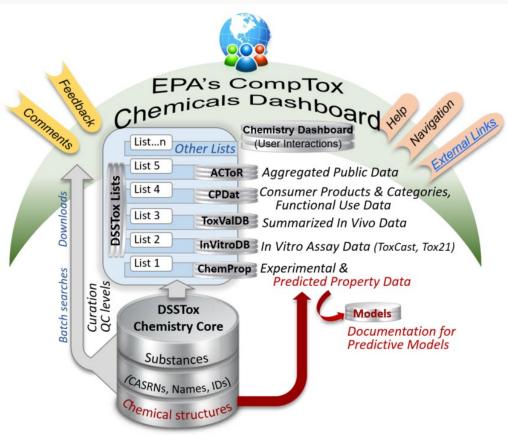
Access data en masse for thousands of chemicals....

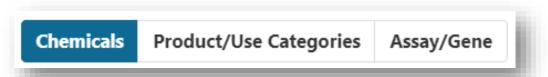
Select Output Format and Content


Step Four: Select Data Output Format and Choose Data Fields to Download

Batch Search CASRNs

✓ Assay Hit Count <a>6


✓ Number of PubMed Articles ♠

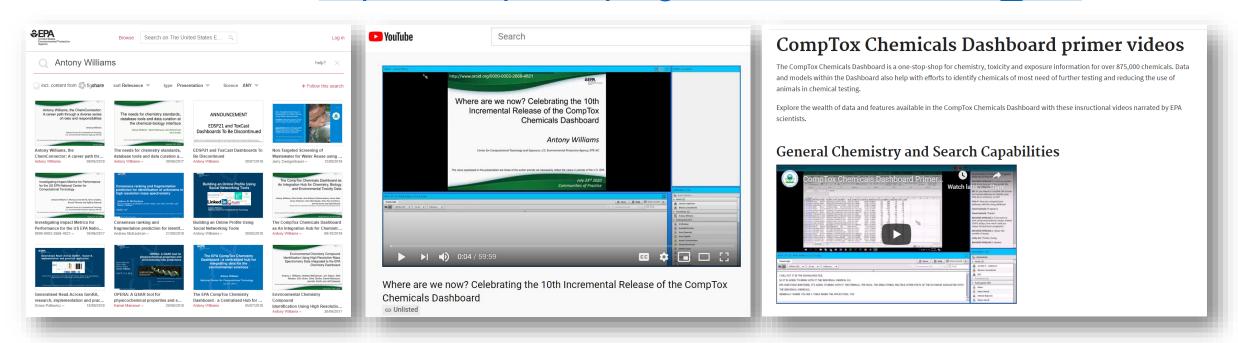


Summary and Conclusion

- CompTox Chemicals Dashboard a central hub for environmental data
 - ~900k chemical substances
 - Integrating property data, hazard data, exposure data, in vitro bioactivity data
 - Interrogation of bioactivity data -
 - Multiple types of searches

- Batch search for thousands of chemicals
- Real-time property and toxicity predictions
- Downloadable files CSV, TSV and Excel

References



- The CompTox Chemistry Dashboard: a community data resource for environmental chemistry, J. Cheminformatics, 9, 61 (2017)
- EPA's DSSTox database: History of development of a curated chemistry resource supporting computational toxicology research, *Comp. Tox.* **12**, 100096 (2019)
- OPERA models for predicting physicochemical properties and environmental fate endpoints, *J. Cheminformatics*, **10**, 10 (2018)
- Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model, Environ. Sci. Technol. 49, 8804-8814 (2015)
- ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology, Chem. Res. Toxicol. 29, 1225-51 (2016)
- Development and Validation of a Computational Model for Androgen Receptor Activity, Chem. Res. Toxicol. 30, 946-964 (2017)
- CERAPP: Collaborative Estrogen Receptor Activity Prediction Project, Environ. Health Perspect. 124, 1023 (2016)
- Abstract Sifter: a comprehensive front-end system to PubMed, *F1000*, **6**, 2164 (2017)

You want to know more...

- Lots of resources available
 - Presentations: https://tinyurl.com/w5hqs55
 - Communities of Practice Videos: https://rb.gy/qsbno1
 - Manual: https://rb.gy/4fgydc
 - Latest News: https://comptox.epa.gov/dashboard/news_info

Acknowledgments

- Contact: Williams.Antony@epa.gov
- Feedback and follow-up is welcomed! Your questions help
- The dashboard is based on the efforts of many more team members than us. Many collaborators provide data also.

EPA's Center for Computational Toxicology and Exposure