

Application of Cell Painting at the Center for Computation Toxicology and Exposure

Johanna Nyffeler

ORISE postdoctoral grantee at USEPA Center for Computational Toxicology and Exposure (CCTE)

ORCiD 0000-0002-6155-9743

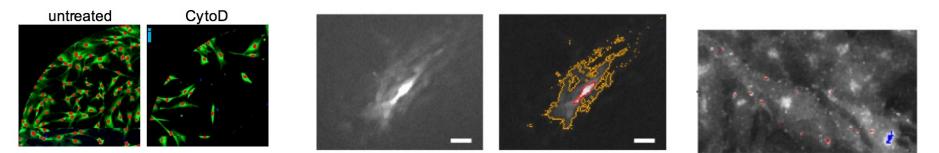
Nyffeler.Johanna@epa.gov

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

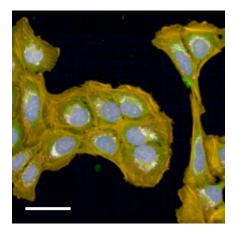
Presentation for Johnson & Johnson March 10th, 2021

Introduction: Dr. Johanna Nyffeler

- BSc in Biochemistry, MSc in Genetics
- PhD at University of Konstanz, Germany
 - group of Dr. Marcel Leist
 - development of high-content assays for in vitro developmental neurotoxicology



- PostDoc at Center for Computational Toxicology & Exposure (CCTE), US EPA
 - group of Dr. Joshua Harrill
 - high-throughput image-based profiling ('Cell Painting'), computational toxicology

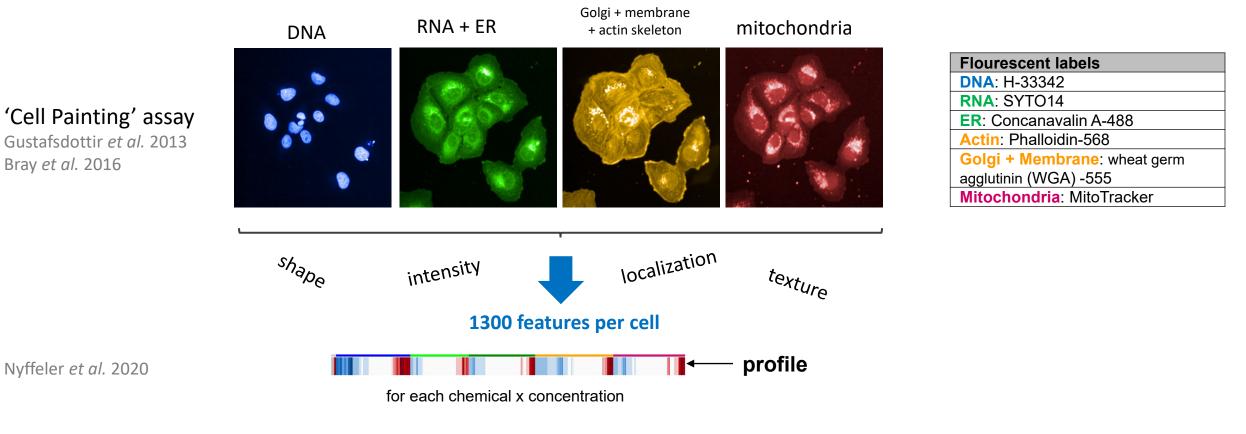


Overview

- **1.** What is imaging-based phenotypic profiling?
- 2. Implementation at CCTE/EPA
 - Workflow
 - Image analysis pipeline
 - QC reports
- 3. Aims/Focus for CCTE/EPA
- 4. Application 1: Potency estimation
- 5. Application 2: Mechanistic prediction

What is Imaging-Based Phenotypic Profiling?

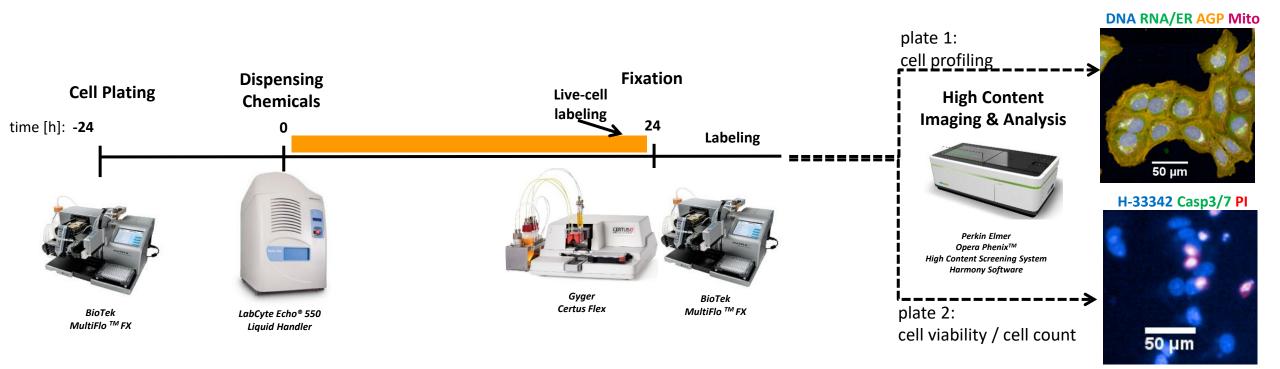
- labeling of various cell organelles with fluorescent probes in *in vitro* cultures
- assessing a large variety of morphological features on individual cells



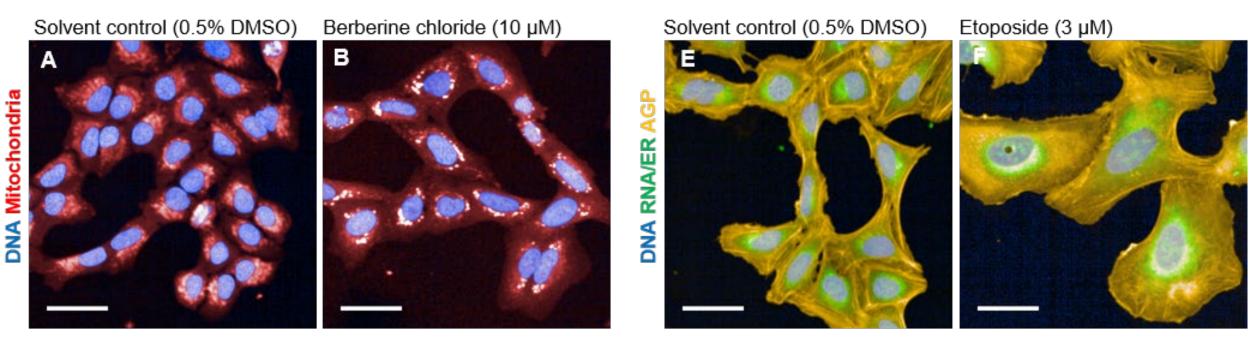
Cell Painting = Phenotypic Profiling High-Throughput Phenotypic Profiling = HTPP

Implementation at CCTE/EPA

Laboratory Workflow



Example Chemicals: Qualitative Observation

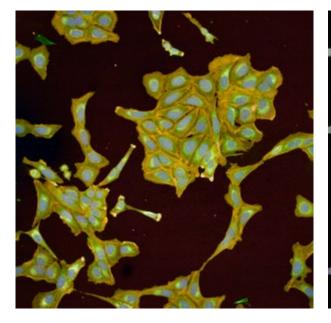


→ Mitochondrial compactness/texture

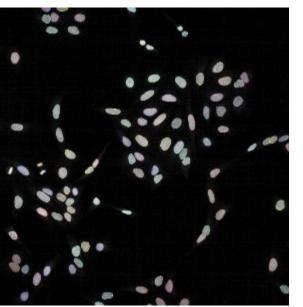
 \rightarrow Cells are larger

⇒ Strong phenotypes are observable qualitatively

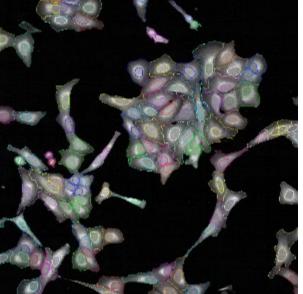
Image Analysis Workflow → Image Segmentation



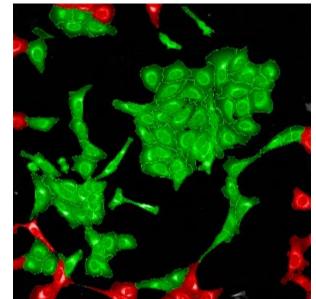
1. find nuclei

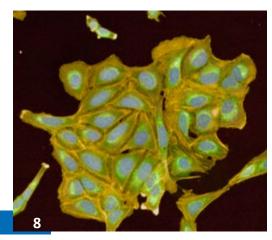


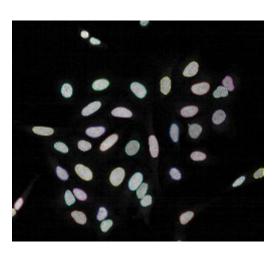
2. find cell outline

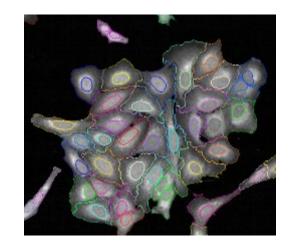


3. reject border objects



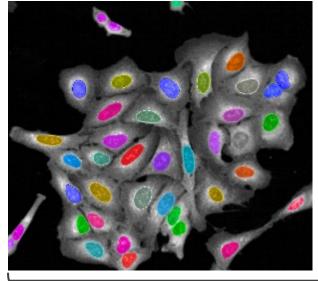


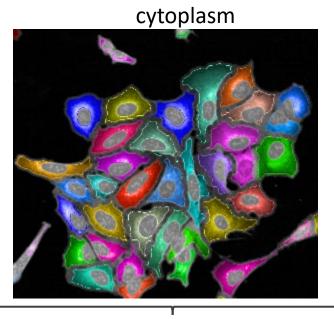




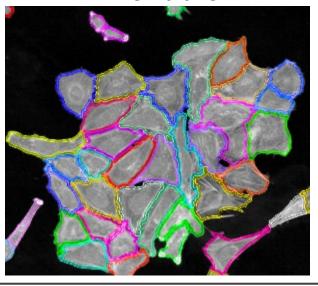
Define Cellular Compartments

nuclei

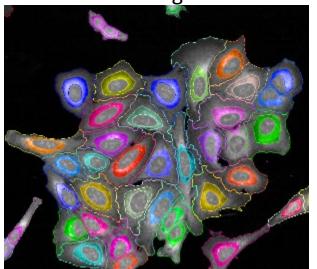




membrane



ring



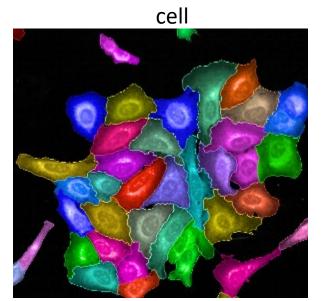
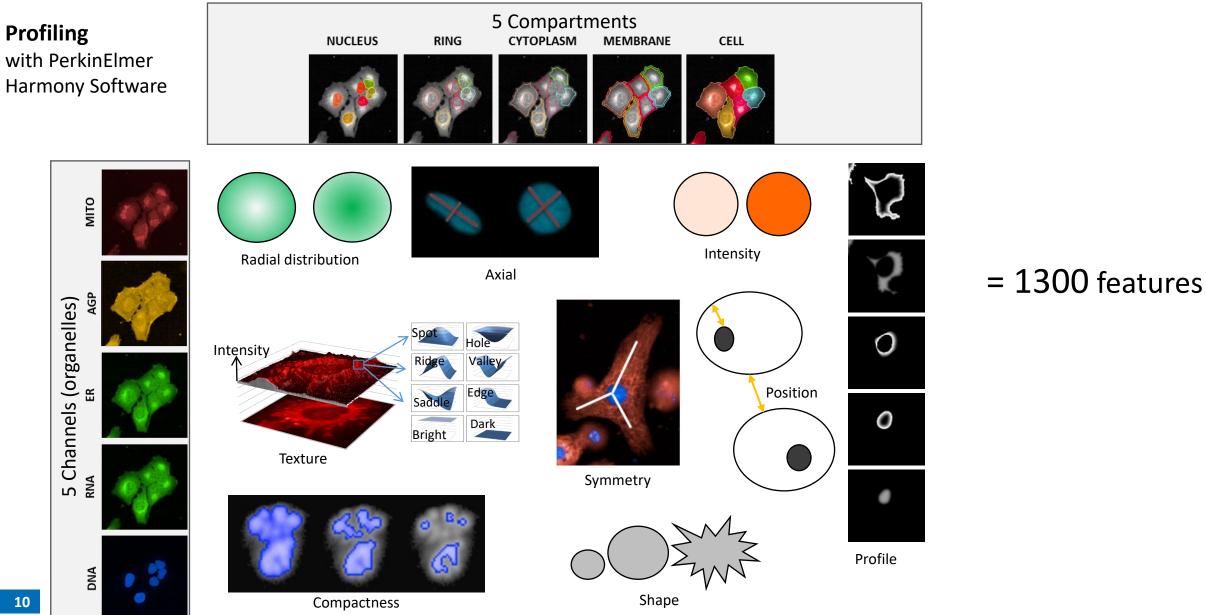


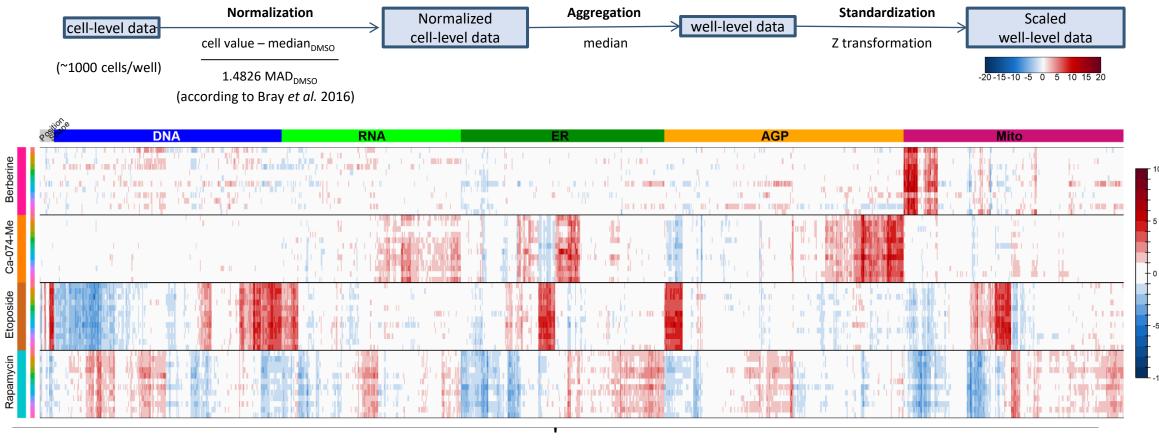
Image Processing



With illustrations from Perkin Elmer

11

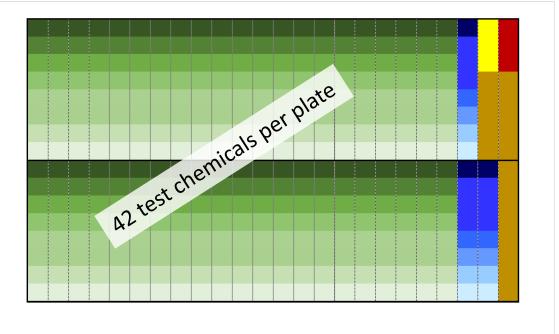
Example Chemicals: Quantitative Observation

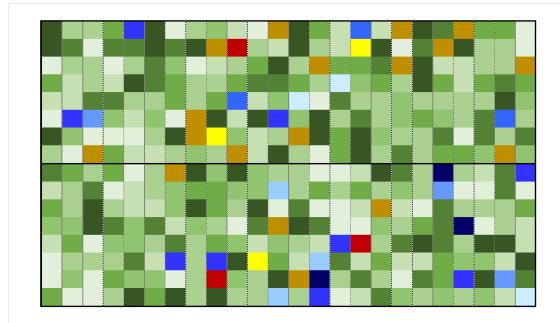


1300 features

Qualitative observations can be quantified

Example for Dose Plate Design





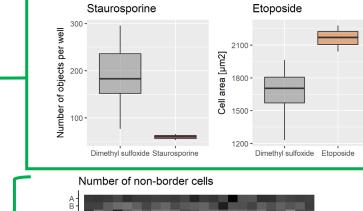
each test plate is uniquely randomized → no systematic edge effects

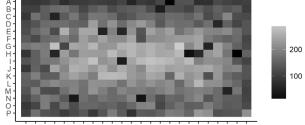
Color	Reference Chemicals:
	Phenotypic reference chemicals (concentration-response)
	Transcriptomics reference chemical (single concentration)
	Viability positive control Staurosporine
	Vehicle control (0.5% DMSO)

Quality Control Reports (1)

plate matched sample key

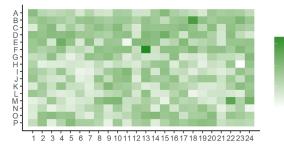
uniform intensity of labels across the plate





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

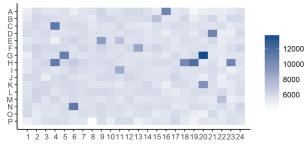
Median of mean cytoplasmic ER intensity



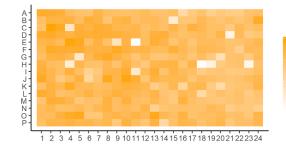
TC00000193

	Median
Number_of_Objects	180
DNA_Nuclei_Intensity_Mean	5600
RNA_Nuclei_Intensity_Mean	13000
ER_Cytoplasm_Intensity_Mean	4200
AGP_Cytoplasm_Intensity_Mean	4000
Mito_Cytoplasm_Intensity_Mean	3500

Median of mean nuclear DNA intensity



Median of mean cytoplasmic AGP intensity



8000

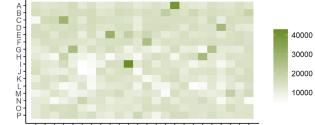
6000

4000

2000

2018-11-26

Median of mean nuclear RNA intensity



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

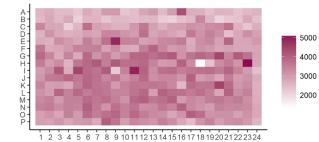
Median of mean cytoplasmic Mito intensity

5000

4000

3000

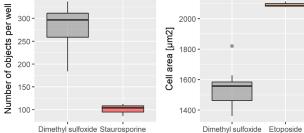
2000



Quality Control Reports (2)

Staurosporine Etoposide 300 - 300 -2000 -

Number of non-border cells



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

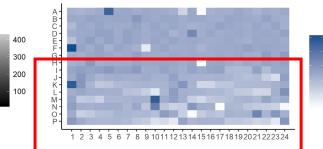
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Median of mean cytoplasmic ER intensity

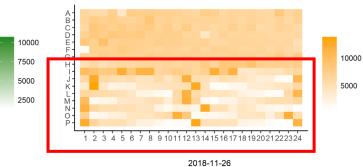
	Median
	Weulan
Number_of_Objects	300
DNA_Nuclei_Intensity_Mean	5500
RNA_Nuclei_Intensity_Mean	16000
ER_Cytoplasm_Intensity_Mean	6400
AGP_Cytoplasm_Intensity_Mean	4600
Mito_Cytoplasm_Intensity_Mean	3300

TC00000269

Median of mean nuclear DNA intensity



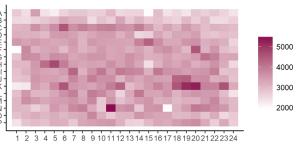
Median of mean cytoplasmic AGP intensity



Median of mean nuclear RNA intensity



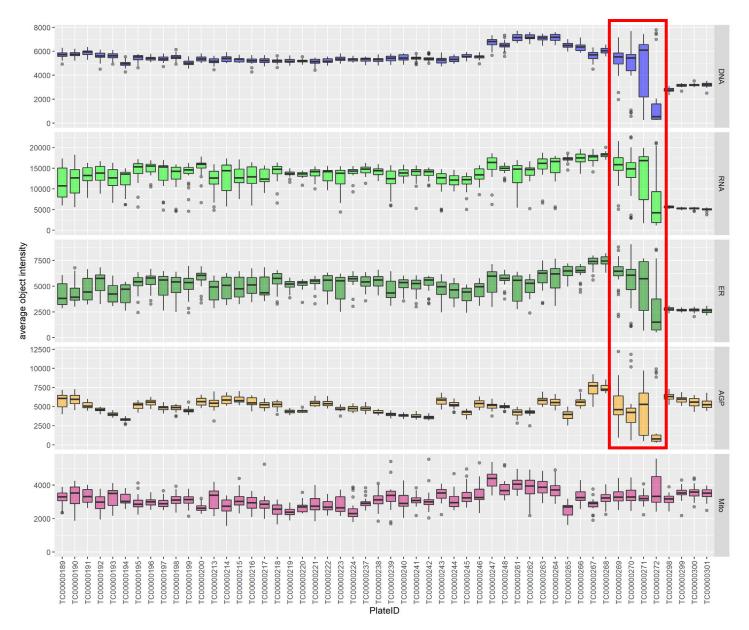
Median of mean cytoplasmic Mito intensity



failure during label dispensing

14

Quality Control Reports (3)



Aim for CCTE/EPA

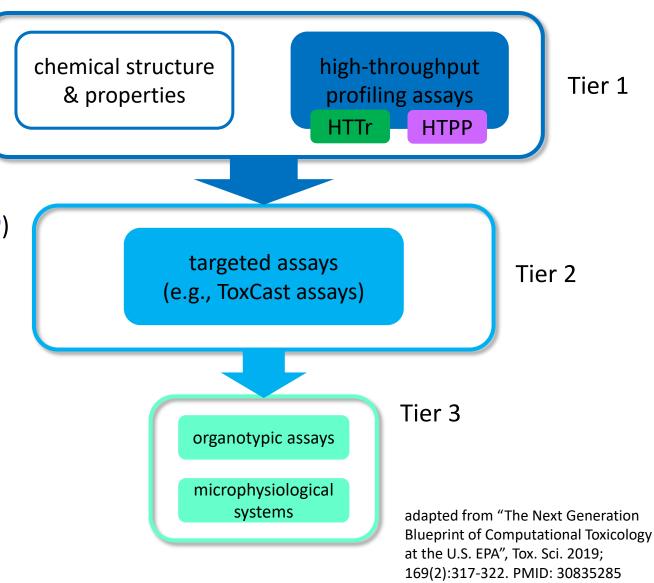
Tiered Hazard Evaluation Strategy based on New Approach Methods (NAMs)

Profiling Assays

- untargeted
- measure large number of endpoints (e.g., transcripts, phenotypic features)
- high-throughput transcriptomics (HTTr) (Harrill et al. 2021, PMID: 33538836)
- high-throughput phenotypic profiling (HTPP) (Nyffeler et al. 2020, PMID: 31899216)

Focus

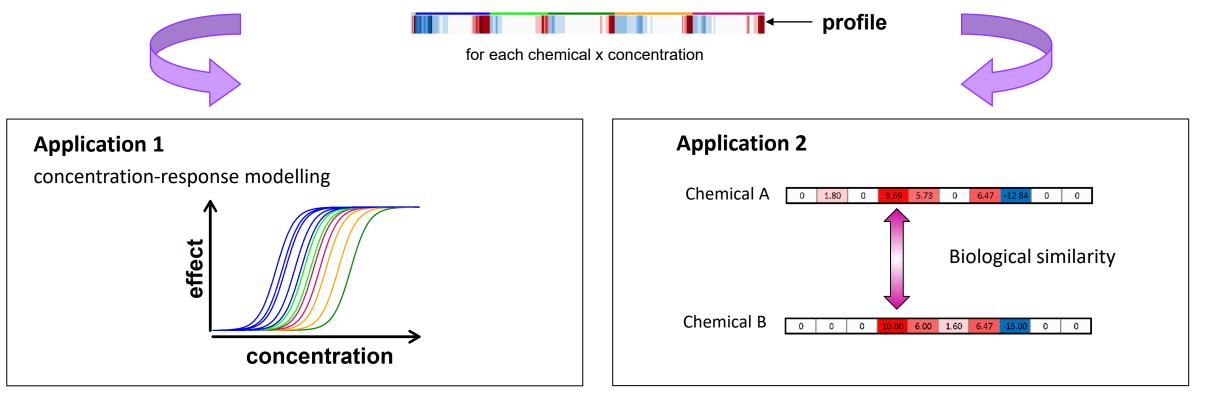
• Prioritization: False positives are preferred over false negatives



Challenges of Environmental Chemicals

- Often low expected bioactivity
- Often lack a specific molecular target in human-based cell models
- 'poly-pharmacology'
- Responses can be associated with general cell stress
- ⇒ more challenging for hit identification than drug-like chemicals

Two Applications



Potency estimation: *in vitro* point-of-departure (POD)

- Nyffeler *et al.* (2020) Toxicol Appl Pharmacol. PMID: 31899216
- Willis et al. (2020). SLAS Discov. PMID: 32546035
- Nyffeler *et al.* (2021). SLAS Discov. PMID: 32862757

Compare profiles with annotated reference chemicals

→ putative mechanisms

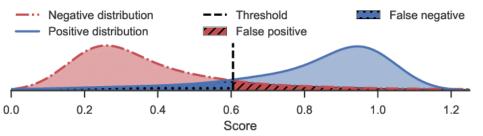
work in progress

Application 1: Potency Estimation

Challenges in Analysis of Profiling Data

Targeted Assays

- Response is predictable
- Often have a positive control
- Often have known negative controls
- ➔ Use of positive and negative controls to set a threshold for hit calls



https://www.researchgate.net/profile/Denis_Reis/publication/327847657/figure/fig1/AS:6744467633807 38@1537812047280/Threshold-and-score-distribution-for-a-binary-classification-process.png

Profiling Assays

- Measure 100s 1000s of features

 → not feasible to define a threshold for each feature in an analogous manner to targeted assays.
- Multiple diverse phenotypes can be observed
 → no single 'positive control'
- Multiple testing problem can lead to identification of false actives
- → How should thresholds be chosen to ensure reliable hit calls?

no widely accepted standard practices for hit identification from phenotypic profiling data profiling data potential barrier for regulatory applications

Screen of Environmental Chemicals

- 462 test chemicals
 - pesticides (~ 75%), drug-like chemicals, food additives, industrial chemicals
 - 448 chemical from the 'APCRA' list
 - available in vivo effect values
 - available toxicokinetic parameters for in vitro to in vivo extrapolation (IVIVE)

Kavlock et al. (2018) Chem. Res. Tox; 31(5): 287-290

Experimental design			
Cell type	U-2 OS		
Exposure time	24 h		
Cell seeding density per well	400		
# unique chemicals	462		
# concentrations	8		
Concentration spacing	1/2 log ₁₀		
# solvent controls/plate	24		
# replicates/plate	1		
# independent experiments	4		

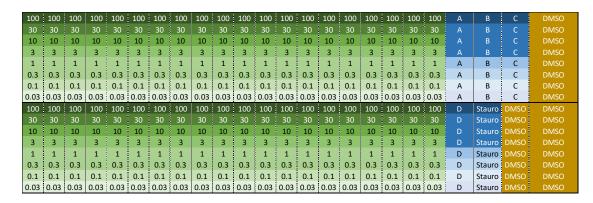
Reference chemicals run on each plate

	Specific	Broad
Subtle	Berberine chloride	Rapamycin
Strong	Ca-074-Me	Etoposide

Procedure

• Data from the APCRA set

- Well-level data for 478 chemicals
- 8 concentrations
- 4 biological replicates
- Constructed a null data set



- Sampling of well-level data from the lowest two tested concentrations of test chemicals
- 108 'null chemicals' were generated, with 8 concentrations and 4 biological replicates

 \rightarrow False positive rate

• Reference chemical berberine chloride

• 12 independent replicates

 \rightarrow True positive rate

• Test chemicals run in duplicates

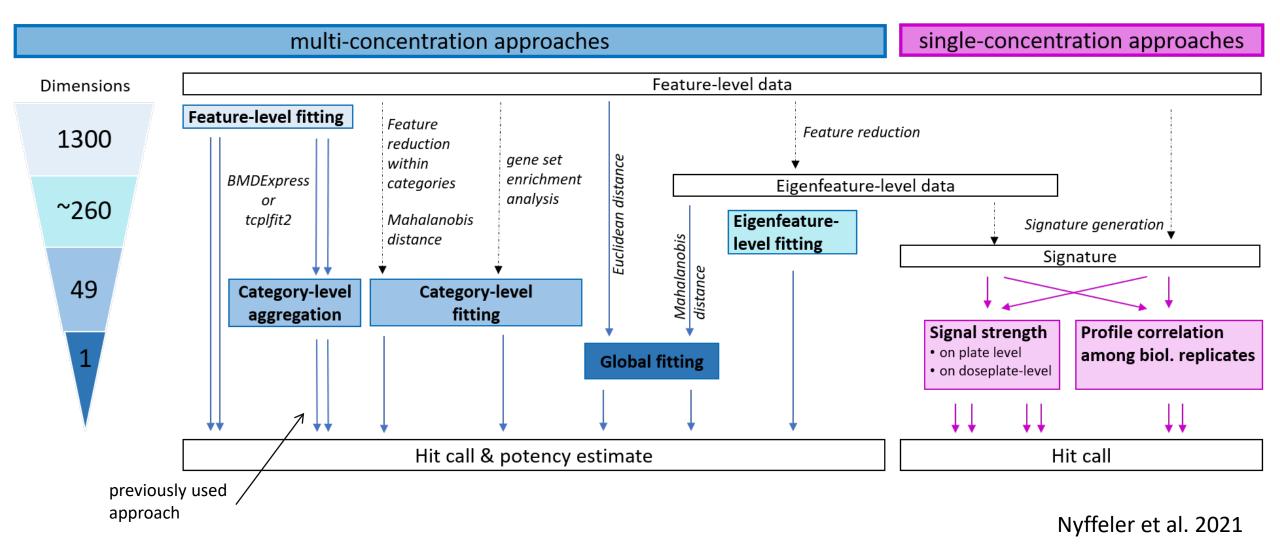
• 16 test chemicals were screened twice

 \rightarrow Concordance

24

15 different approaches were compared at a fixed false positive rate of ~10%

Different Approaches to Identify Hits



potency estimate = phenotype altering concentration = PAC

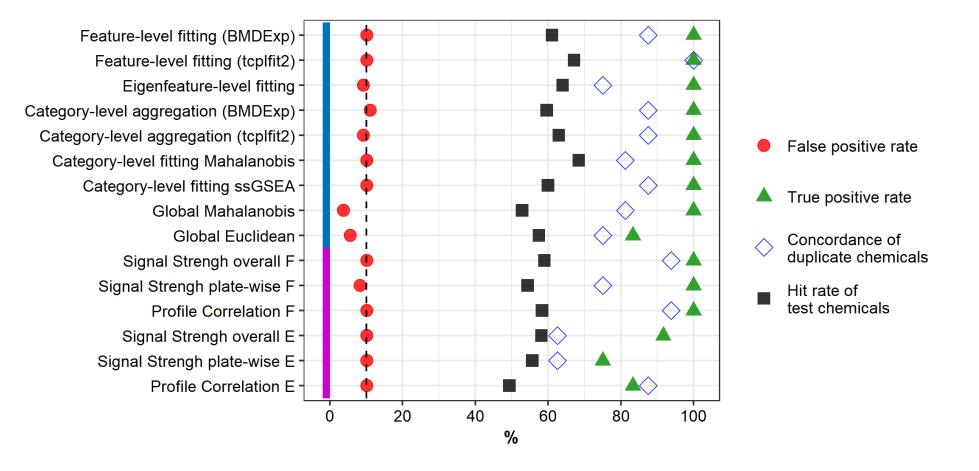
Metrics

- False positive rate (FPR) = % of null chemicals that are positive
 - Null sets are constructed from the lowest 2 concentration of all test chemicals
- True positive rate (TPR) = % of APCRA Berberine that are positive
 - Berberine chloride: weak chemical with specific effects in only 100-200 features
 → most closely resembles expected behavior from positive test chemicals
- Hit rate = % of test chemicals that are active
- Concordance:
 - % of test chemicals with concordant hit calls (all inactive or all active)
 - Number = # chemicals that are active

Thresholds for each approach were individually optimized for

- 1. False positive rate of ~ 10%
- 2. Highest true positive rate (100%)
- 3. Best possible concordance & high hit rate

Optimizing Approaches to Achieve Equivalent False Discovery Rate



Nyffeler et al. 2021

- ⇒ 11/15 approaches identified 100% of true positives
- ⇒ Hit rate is overall between 50-70%

28

В

Concordance of Hit Calls Across Approaches

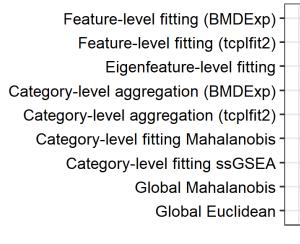
null chemicals

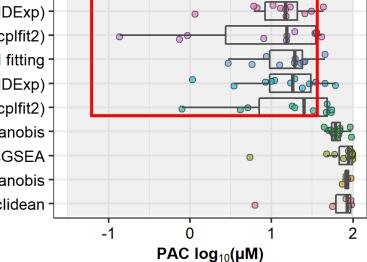
⇒ 87% of null chemicals were inactive in 9 or more approaches

Concordance of Potency Estimates

Null chemicals

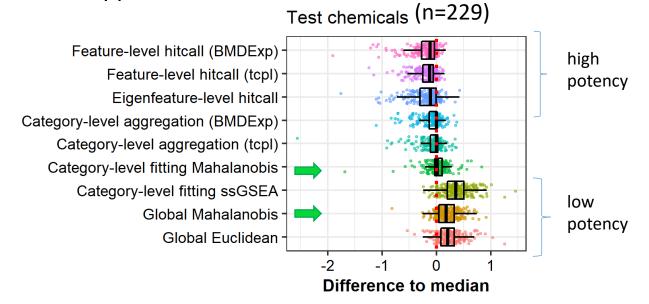
Does the approach produce many high-potency false positives?





Test chemicals

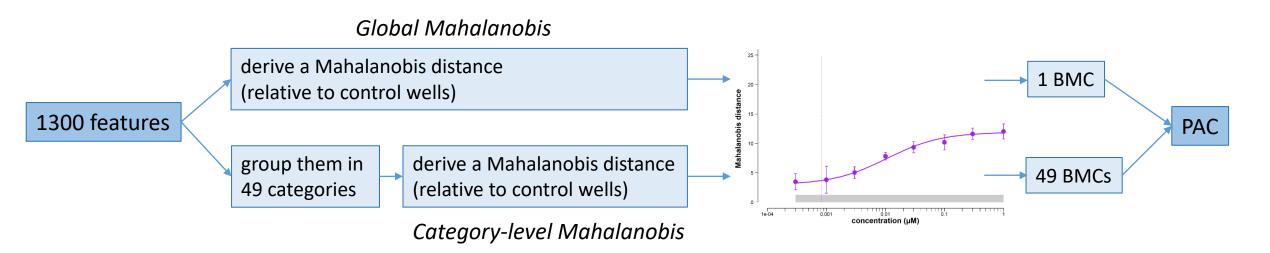
How sensitive is the approach relative to the other approaches?



Feature-based approaches (including category-level aggregation) have a higher risk of false positive, highly potent results

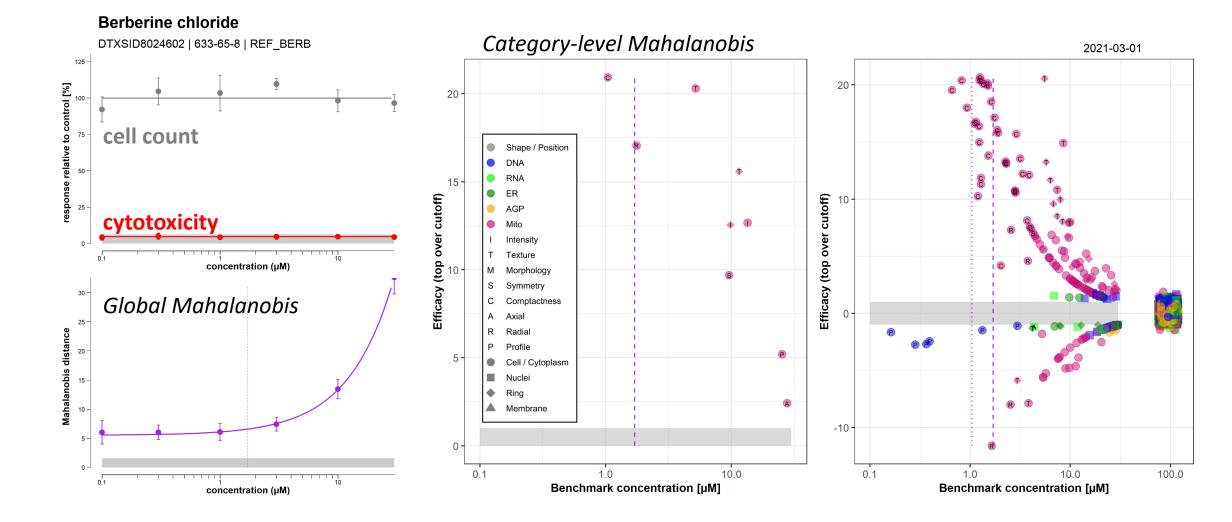
Final Choice of Analysis Approach

 Mahalanobis Distance (D_M): A multivariate distance metric that measures the distance between a point (vector) and a distribution.



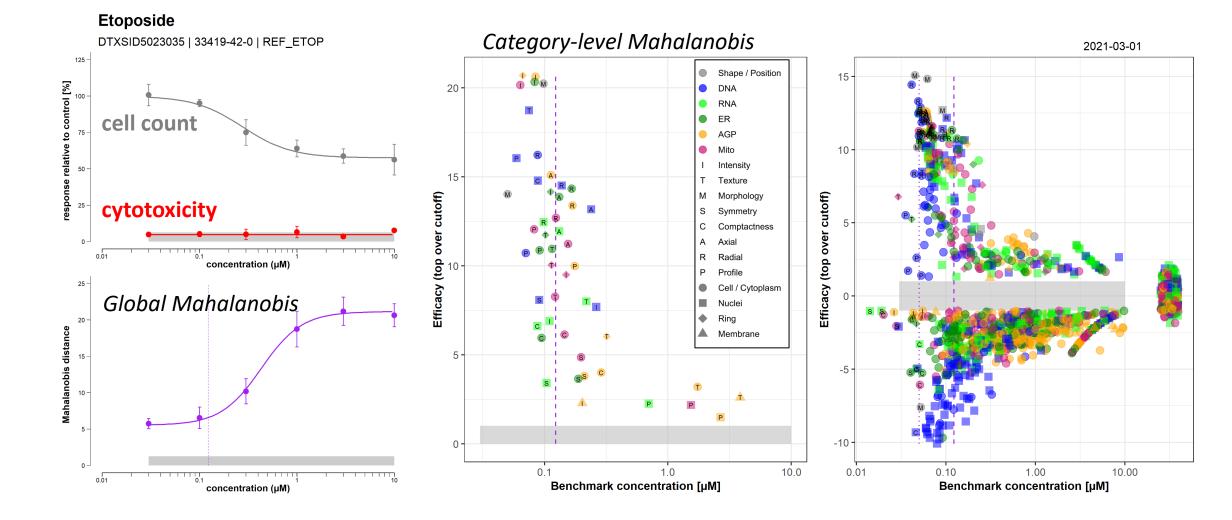
- Chemicals where a BMC can be determined using either the global or category D_M approach are considered active.
- The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC)

Visualization of High-Dimensional Data (1)



31

Visualization of High-Dimensional Data (2)



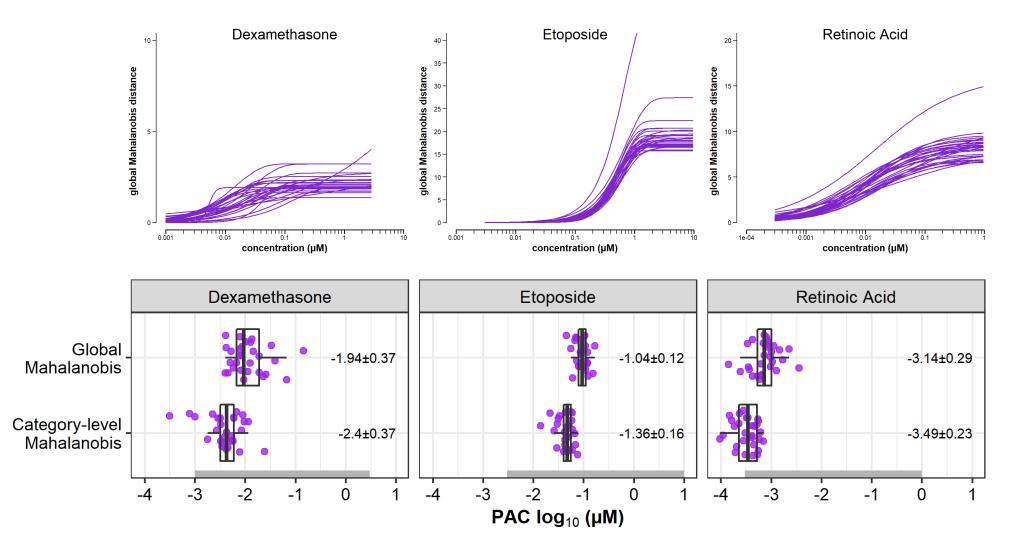
U-2 OS ToxCast Screen Experimental Design

Parameter	Multiplier	Notes
Cell Type(s)	1	U-2 OS
Time Points:	1	24 hours
Chemicals	1,202	 TSCA Chemicals of interest to US EPA Includes 462 APCRA case study chemicals Includes 179 chemicals with annotated molecular targets
Concentrations:	8	3.5 log ₁₀ units; ~half-log ₁₀ spacing
Biological Replicates:	4	

Reference chemicals run on each plate

	Chemical	Molecular Target	Tested Range
Weak	Dexamethasone	Glucocorticoid receptor agonist	$0.001 - 3 \ \mu M$
Medium	all-trans-Retinoic Acid	Retinoic acid receptor agonist	$0.0003 - 1 \mu\text{M}$
Strong	Etoposide	DNA topoisomerase inhibitor	0.03 - 10 μM
Extra strong	Trichostatin A	Histone deacetylase inhibitor	1 μΜ

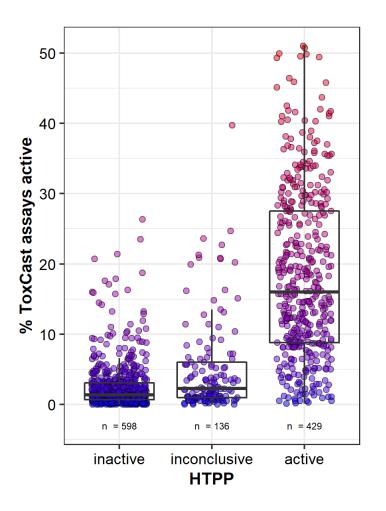
Reproducibility: Potencies



⇒ Potency estimates vary less than ½ an order of magnitude

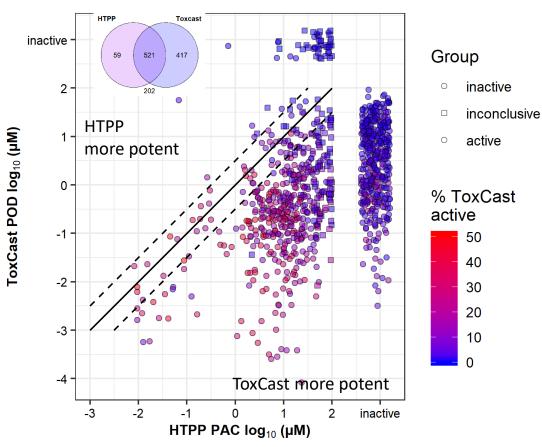
HTPP Screening Results (1)

Active chemicals: active 647 553 inactive



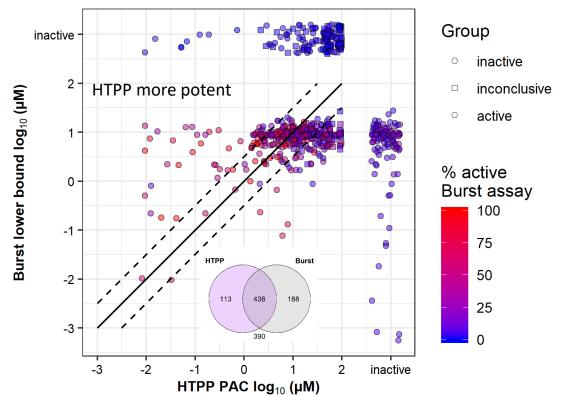
- → ~ 40% of chemicals were active
- \Rightarrow Most activity is > 10 μ M
- ⇒ Chemicals active in HTPP are more often 'promiscuous' in ToxCast

HTPP Screening Results (2)



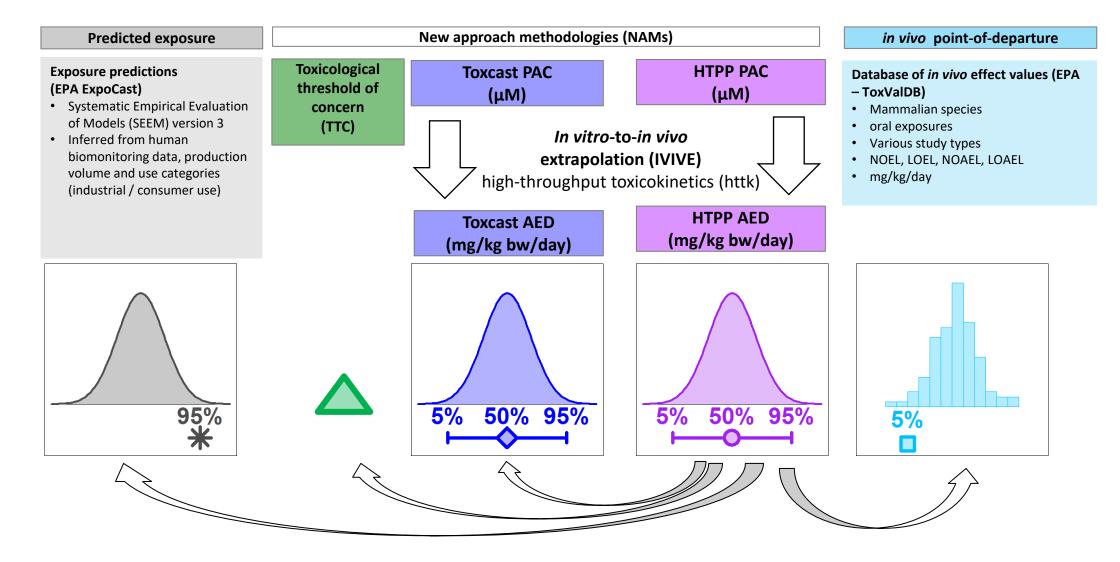
Comparison with ToxCast screening results:

Less potent than ToxCast POD



 More potent than the ToxCast cytotoxicity burst estimate

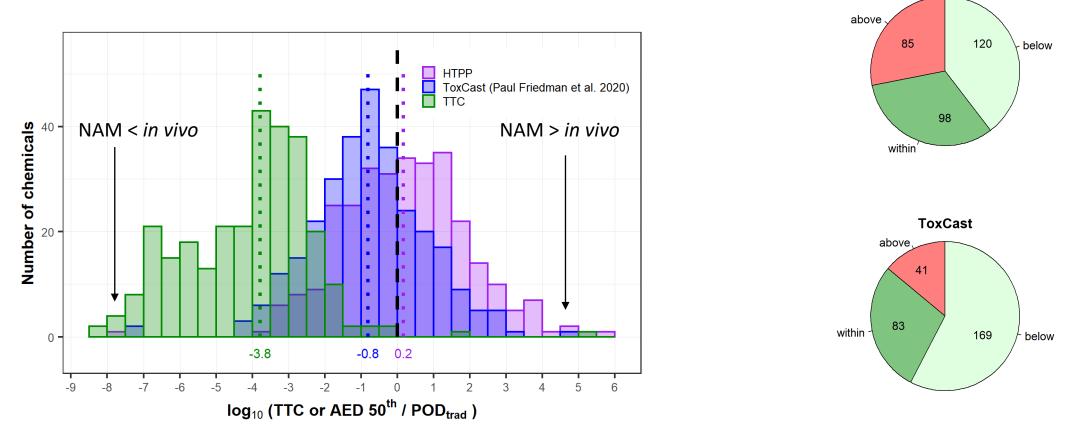
Comparison to in vivo data and exposure



PAC: phenotype altering concentration AED: administered equivalent dose

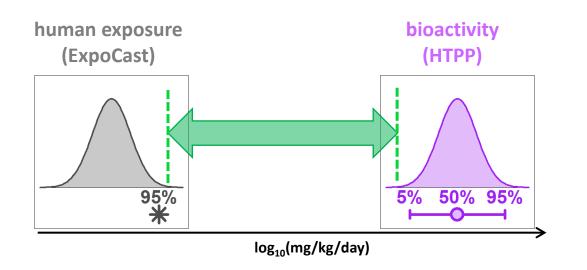
Comparison to in vivo Effect Values & other NAMs

HTPP

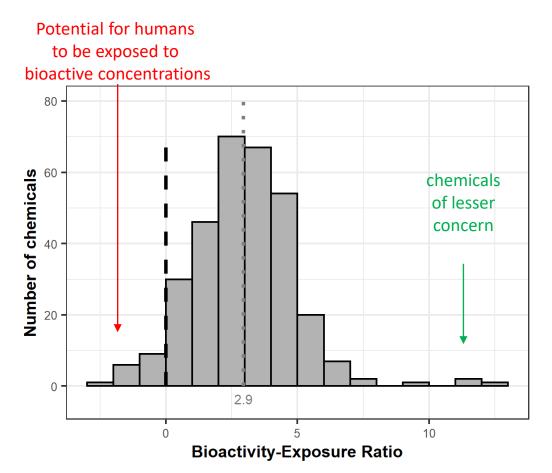


- → HTPP AEDs are higher than ToxCast-derived AEDs and TTC values
- ⇒ 78% of HTPP AED are within 2 orders of magnitude of the *in vivo* POD

Comparison to Exposure Estimates



- ⇒ for 49% of chemicals, predicted exposure is > 1000x lower than estimated bioactivity
- ⇒ for a small set of chemicals, the BER was negative, indicating a potential for humans to be exposed to bioactive concentrations of these chemicals



Application 2: Mechanistic Prediction

Feature Selection & Profile Comparison

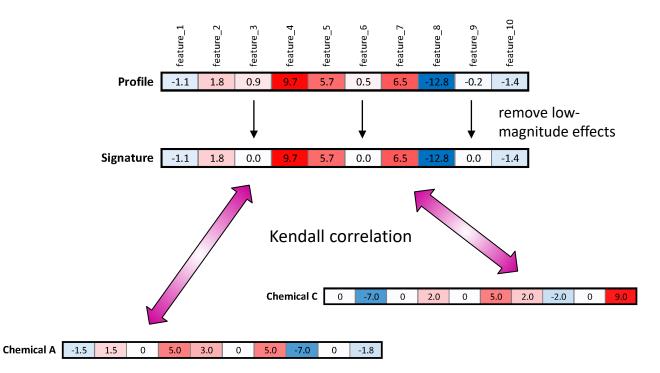
Feature Selection

1300 features

- **1.** remove features that do not provide any information (i.e. have 0 variance)
 - remove features that are not reproducible (high variation between treatments of different biological replicates)
- **3.** remove features that are highly correlated (using recursive feature elimination)

317 features

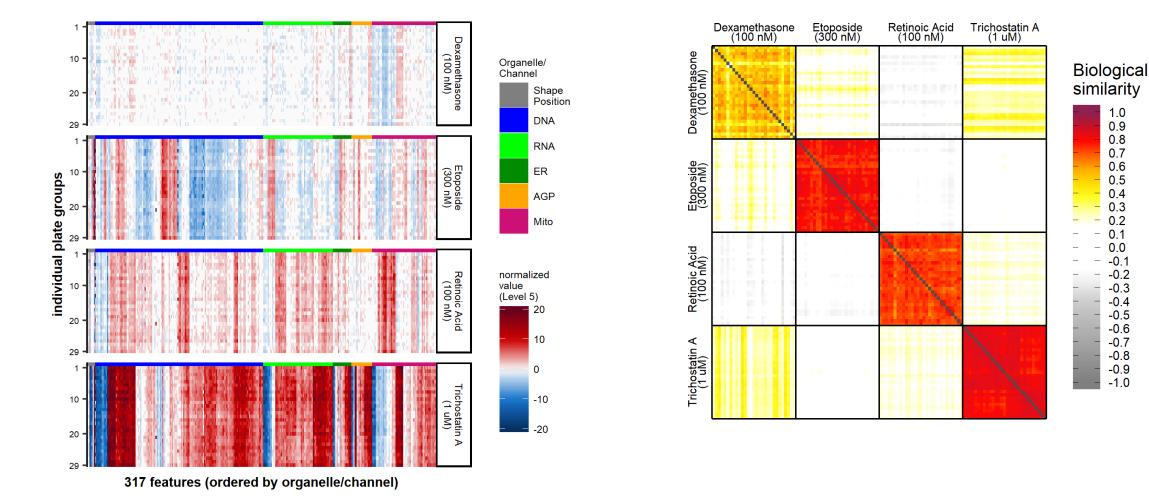
Profile Comparison



2.

42

Reproducibility: Phenotypic Profiles



⇒ Phenotypic profiles are highly reproducible across different plates

Hypothesis: Chemicals with similar mechanisms will display similar profiles.

Preliminary results. Do not cite or quote.

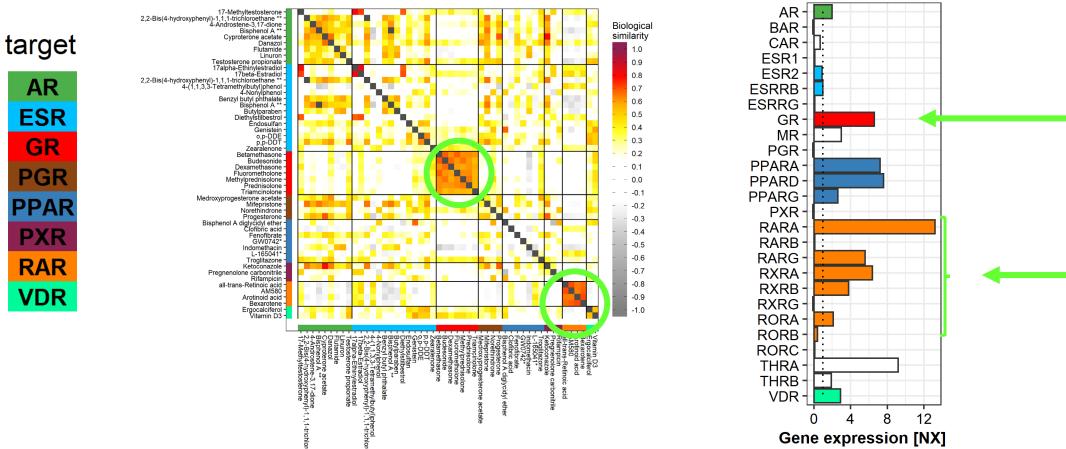
43

Example: Nuclear Receptor Modulators (I)

Gene expression in U-2 OS

52 chemicals were annotated as targeting a nuclear receptor

Preliminary results. Do not cite or quote.

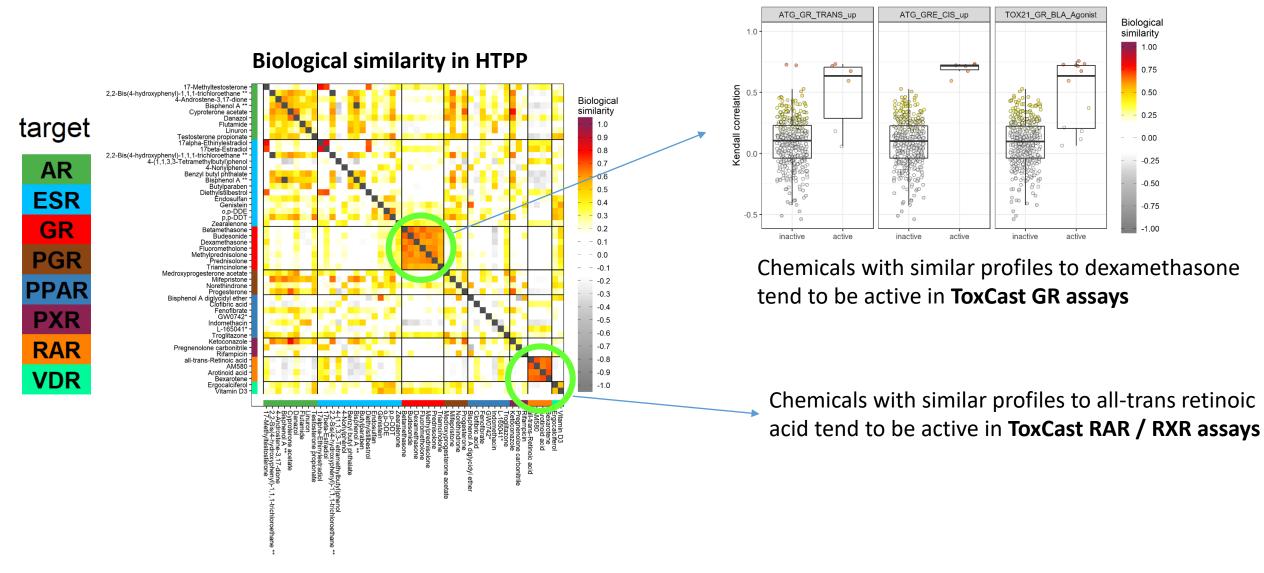


Biological similarity in HTPP

- Agonists of the GR and of RAR/RXR display characteristic profiles
- Expression of a target does not guarantee that characteristic profiles are observed (e.g., PPAR)

Preliminary results. Do not cite or quote.

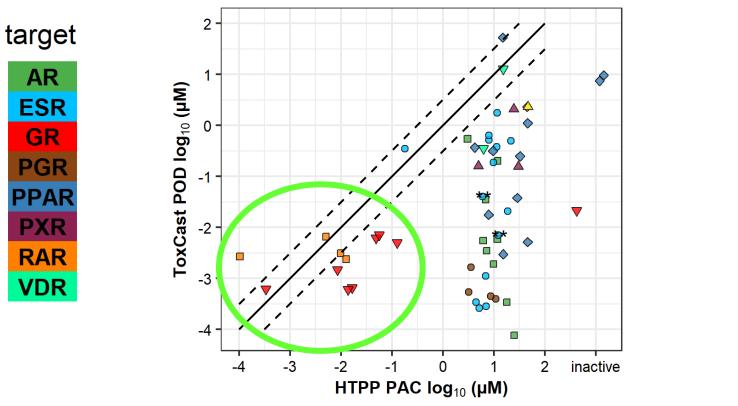
Example: Nuclear Receptor Modulators (II)



Certain molecular mechanisms result in characteristic phenotypic profiles

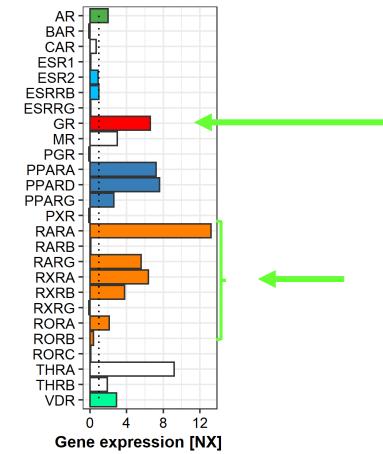
Example: Nuclear Receptor Modulators (III)

Preliminary results. Do not cite or quote.



Comparison to ToxCast potencies

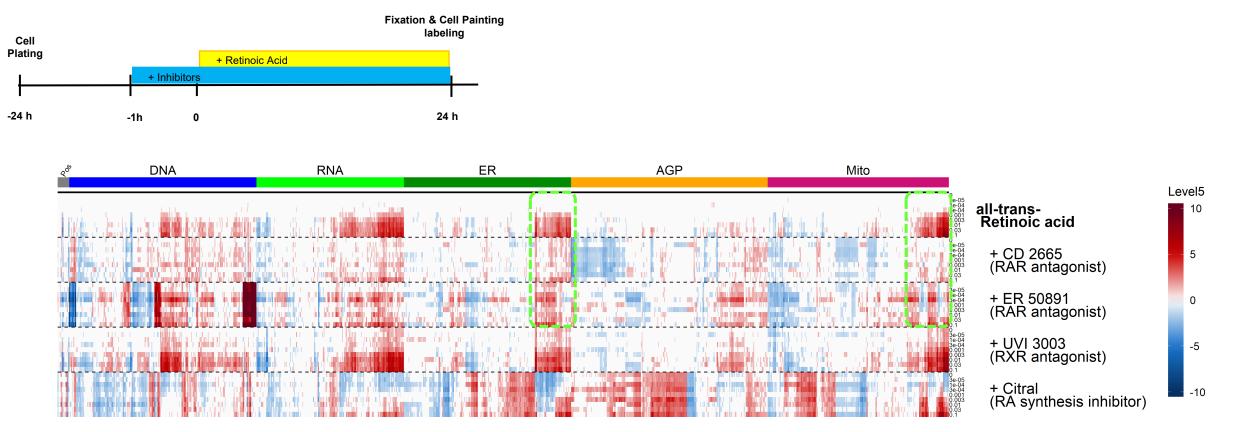
Gene expression in U-2 OS



- ➡ For two receptor systems that are expressed (GR, RAR/RXR) potencies were comparable with ToxCast
- 45 ⇒ For all other receptors, we are much less sensitive than ToxCast (off-target effects?)

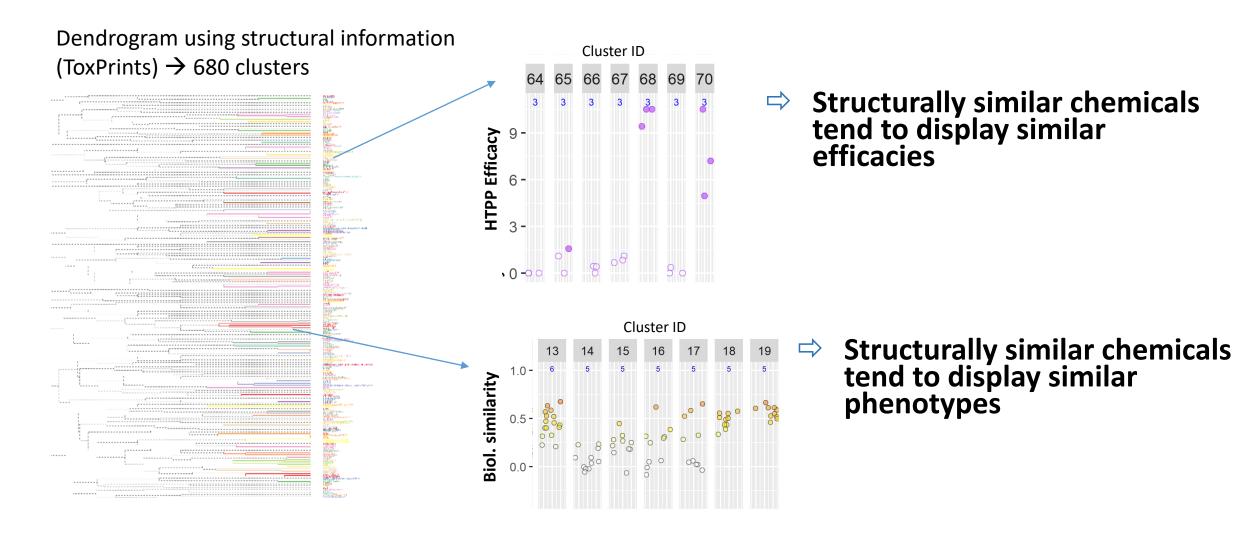
Preliminary results. Do not cite or quote.

Pharmacological Blockade of Phenotypic Effects



⇒ RAR but not RXR antagonists block the retinoid phenotype

Structural Similarity Translates to Biological Similarity

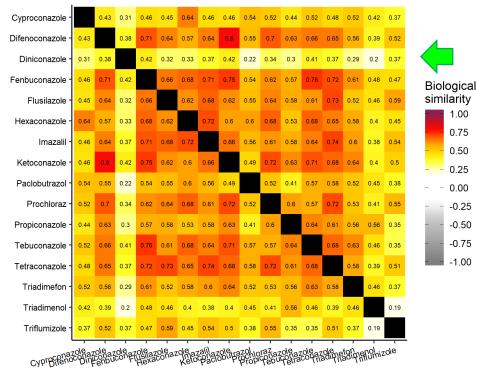


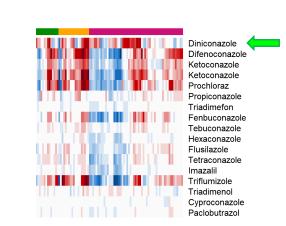
⇒ Structurally similar chemicals tend to be biologically similar

Application to Environmental Chemicals: Example: Conazoles

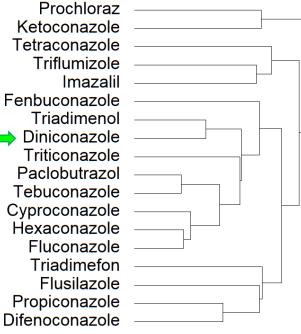
- group of fungicides
- disturb ergosterol synthesis via CYP51 and CYP61 ٠ (target absent in mammals)

biological similarity





structural similarity



- most conazoles are phenotypically similar
- Diniconazole is phenotypically different from the other active conazoles

1.00

0.75

0.50

0.25

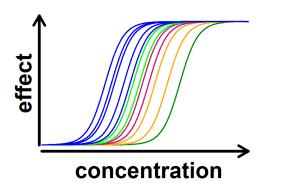
-0.25

-0.50

-0.75

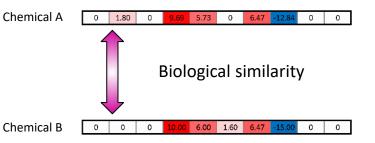
-1.00

Conclusions



Application 1: Potency estimation

- HTPP can be used to derive *in vitro* potency estimates
- These *in vitro* potency estimates are often comparable or more conservative than *in vivo* PODs



Application 2: Mechanistic prediction

- Structural similarity \rightarrow biological similarity
- Similar mechanisms \rightarrow biological similarity

Outlook

• Combine HTPP with HTTr

- compare results, both in terms of potencies and mechanisms
- increased potential to discern molecular mechanisms

• Expand Coverage of Biological Space

- deploy assay across diverse cell lines that express different receptors/pathways
- proof-of-concept (Gustafsdottir *et al.* 2013, Willis *et al.* 2020)
- expansion to other species

Acknowledgements

Office of Research and Development (ORD) Center for Computational Toxicology and Exposure (CCTE)

Harrill Lab team

- Joshua Harrill
- Clinton Willis
- Rick Brockway
- Megan Culbreth
- Felix Harris
- Dan Hallinger
- Terri Fairley

Data analysis

- Daniel Chang
- Kathy Coutros
- Logan Everett
- Derik Haggard
- Richard Judson
- Ryan Lougee
- Grace Patlewicz
- Katie Paul Friedman
- Ann Richard
- Woody Setzer
- Imran Shah
- John Wambaugh

• Scott Auerbach