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Introduction:  Dr. Johanna Nyffeler

• BSc in Biochemistry, MSc in Genetics

• PhD at University of Konstanz, Germany

• group of Dr. Marcel Leist

• development of high-content assays for in vitro developmental neurotoxicology

• PostDoc at Center for Computational Toxicology & Exposure (CCTE), US EPA

• group of Dr. Joshua Harrill

• high-throughput image-based profiling (‘Cell Painting’),
computational toxicology
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Overview

1. What is imaging-based phenotypic profiling?

2. Implementation at CCTE/EPA

• Workflow

• Image analysis pipeline

• QC reports

3. Aims/Focus for CCTE/EPA

4. Application 1: Potency estimation

5. Application 2: Mechanistic prediction
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What is Imaging-Based Phenotypic Profiling? 

• labeling of various cell organelles with fluorescent probes in in vitro cultures
• assessing a large variety of morphological features on individual cells

Golgi + membrane 
+ actin skeleton DNA RNA + ER mitochondria

1300 features per cell

Flourescent labels
DNA: H-33342
RNA: SYTO14
ER: Concanavalin A-488
Actin: Phalloidin-568
Golgi + Membrane: wheat germ 
agglutinin (WGA) -555
Mitochondria: MitoTracker

Cell Painting = Phenotypic Profiling 
High-Throughput Phenotypic Profiling = HTPP 

‘Cell Painting’ assay
Gustafsdottir et al. 2013
Bray et al. 2016

Nyffeler et al. 2020
for each chemical x concentration

profile

4



Implementation at CCTE/EPA
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Laboratory Workflow

time [h]:  -24

Cell Plating

BioTek
MultiFlo TM FX

0

Dispensing 
Chemicals

LabCyte Echo® 550 
Liquid Handler

plate 2: 
cell viability / cell count

H-33342 Casp3/7 PI

High Content 
Imaging & Analysis

Perkin Elmer 
Opera PhenixTM

High Content Screening System
Harmony Software

plate 1: 
cell profiling

DNA RNA/ER AGP Mito

24

Fixation

BioTek
MultiFlo TM FX

Gyger
Certus Flex

Live-cell 
labeling

Labeling
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 Strong phenotypes are observable qualitatively

adapted from Nyffeler et al. 2020

Mitochondrial 
compactness/texture

 Cells are larger 

Example Chemicals: Qualitative Observation

7



1. find nuclei 2. find cell outline 3. reject border objects

Image Analysis Workflow  Image Segmentation
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nuclei cytoplasm membrane

cellring

Define Cellular Compartments
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Image Processing

= 1300 features

Profiling
with PerkinElmer 
Harmony Software

5 Compartments

Symmetry

Compactness

Radial distribution

Profile

Intensity
Spot

Hole
Ridge Valley

Saddle
Edge

Bright
Dark

Texture

Intensity

Shape
With illustrations from Perkin Elmer

Axial

Position
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adapted from Nyffeler et al. 2020

Example Chemicals: Quantitative Observation

 Qualitative observations can be quantified

cell-level data well-level data
cell value – medianDMSO

1.4826 MADDMSO
(~1000 cells/well)

Scaled 
well-level data

Normalized 
cell-level data

Normalization Aggregation Standardization

median Z transformation

1300 features

(according to Bray et al. 2016)
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Color Reference Chemicals:

Phenotypic reference chemicals (concentration-response)

Transcriptomics reference chemical (single concentration)

Viability positive control Staurosporine

Vehicle control (0.5% DMSO)

Example for Dose Plate Design

each test plate is uniquely randomized
 no systematic edge effects
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Quality Control Reports (1)

plate matched 
sample key

uniform intensity of 
labels across the plate
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Quality Control Reports (2)

failure during label 
dispensing
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Quality Control Reports (3)
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Aim for CCTE/EPA 
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Tiered Hazard Evaluation Strategy based on New Approach 
Methods (NAMs)

adapted from “The Next Generation 
Blueprint of Computational Toxicology 
at the U.S. EPA”, Tox. Sci. 2019; 
169(2):317-322. PMID: 30835285

chemical structure 
& properties

high-throughput 
profiling assays

targeted assays
(e.g., ToxCast assays)

organotypic assays

microphysiological
systems

Profiling Assays 

• untargeted

• measure large number of endpoints
(e.g., transcripts, phenotypic features)

• high-throughput transcriptomics (HTTr) 
(Harrill et al. 2021, PMID: 33538836)

• high-throughput phenotypic profiling (HTPP)
(Nyffeler et al. 2020, PMID: 31899216)

Focus

• Prioritization: False positives are preferred 
over false negatives

Tier 1

Tier 2

Tier 3

HTPPHTTr

17



Challenges of Environmental Chemicals

• Often low expected bioactivity
• Often lack a specific molecular target in human-based cell models
• ‘poly-pharmacology’
• Responses can be associated with general cell stress

 more challenging for hit identification than drug-like chemicals
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Two Applications

for each chemical x concentration

profile

Potency estimation:
in vitro point-of-departure (POD)

Application 1
concentration-response modelling

Compare profiles with annotated reference 
chemicals 
 putative mechanisms

Biological similarity 

Chemical A

Chemical B

Application 2

work in progress

• Nyffeler et al. (2020) Toxicol Appl Pharmacol. PMID: 31899216
• Willis et al. (2020). SLAS Discov. PMID: 32546035
• Nyffeler et al. (2021). SLAS Discov. PMID: 32862757
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Application 1:
Potency Estimation
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Challenges in Analysis of Profiling Data
Targeted Assays

• Response is predictable
• Often have a positive control
• Often have known negative controls

 Use of positive and negative controls 
to set a threshold for hit calls

Profiling Assays
• Measure 100s – 1000s of features
 not feasible to define a threshold for 
each feature in an analogous manner to 
targeted assays.

• Multiple diverse phenotypes can be 
observed
 no single ‘positive control’

• Multiple testing problem can lead to 
identification of false actives

 How should thresholds be chosen to 
ensure reliable hit calls?

https://www.researchgate.net/profile/Denis_Reis/publication/327847657/figure/fig1/AS:6744467633807
38@1537812047280/Threshold-and-score-distribution-for-a-binary-classification-process.png

 no widely accepted standard practices for hit identification from phenotypic 
profiling data  potential barrier for regulatory applications22



Screen of Environmental Chemicals

• 462 test chemicals
• pesticides (~ 75%), drug-like chemicals, food additives, industrial chemicals
• 448 chemical from the ‘APCRA’ list

• available in vivo effect values
• available toxicokinetic parameters for in vitro to in vivo extrapolation (IVIVE)

Experimental design
Cell type U-2 OS
Exposure time 24 h
Cell seeding density per well 400
# unique chemicals 462
# concentrations 8
Concentration spacing ½ log10
# solvent controls/plate 24
# replicates/plate 1
# independent experiments 4

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

Specific Broad

Subtle Berberine chloride Rapamycin

Strong Ca-074-Me Etoposide

Reference chemicals run on each plate
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Procedure

• Data from the APCRA set
• Well-level data for 478 chemicals
• 8 concentrations
• 4 biological replicates

• Constructed a null data set
• Sampling of well-level data from the lowest two tested concentrations of test chemicals
• 108 ‘null chemicals’ were generated, with 8 concentrations and 4 biological replicates
 False positive rate

• Reference chemical berberine chloride
• 12 independent replicates
 True positive rate

• Test chemicals run in duplicates
• 16 test chemicals were screened twice
Concordance

• 15 different approaches were compared at a fixed false positive rate of ~10%

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 A B C DMSO
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 A B C DMSO
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 A B C DMSO
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 A B C DMSO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A B C DMSO

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 A B C DMSO
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 A B C DMSO

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 A B C DMSO
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 D Stauro DMSO DMSO
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 D Stauro DMSO DMSO
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 D Stauro DMSO DMSO
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 D Stauro DMSO DMSO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D Stauro DMSO DMSO

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 D Stauro DMSO DMSO
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 D Stauro DMSO DMSO

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 D Stauro DMSO DMSO
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Different Approaches to Identify Hits

Nyffeler et al. 2021

potency estimate = phenotype altering concentration = PAC

previously used 
approach
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Metrics

• False positive rate (FPR) = % of null chemicals that are positive
• Null sets are constructed from the lowest 2 concentration of all test chemicals

• True positive rate (TPR) = % of APCRA Berberine that are positive
• Berberine chloride: weak chemical with specific effects in only 100-200 features
most closely resembles expected behavior from positive test chemicals

• Hit  rate = % of test chemicals that are active
• Concordance: 

• % of test chemicals with concordant hit calls (all inactive or all active)
• Number = # chemicals that are active

Thresholds for each approach were individually optimized for
1. False positive rate of ~ 10%
2. Highest true positive rate (100%)
3. Best possible concordance & high hit rate
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Optimizing Approaches to Achieve Equivalent False Discovery Rate

 11/15 approaches identified 100% of true positives
 Hit rate is overall between 50-70%

Nyffeler et al. 2021
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Concordance of Hit Calls Across Approaches

 87% of null chemicals were 
inactive in 9 or more approaches

 51% of test chemicals were active in 
9 or more approaches

 30% of test chemicals were inactive 
in 9 or more approaches

Nyffeler et al. 202128



Concordance of Potency Estimates

Null chemicals Test chemicals

Does the approach produce many high-potency 
false positives?

 Feature-based approaches (including 
category-level aggregation) have a higher risk 
of false positive, highly potent results Nyffeler et al. 202129

How sensitive is the approach relative to the 
other approaches?

high 
potency

low 
potency

(n=229)



Final Choice of Analysis Approach

• Mahalanobis Distance (DM): A multivariate distance metric that measures the distance 
between a point (vector) and a distribution. 

• Chemicals where a BMC can be determined using either the global or category DM approach 
are considered active.

• The minimum of the global or most sensitive category BMC is the Phenotype Altering 
Concentration (PAC)

1300 features

group them in 
49 categories

derive a Mahalanobis distance
(relative to control wells)

derive a Mahalanobis distance
(relative to control wells)

1 BMC

49 BMCs

PAC

Global Mahalanobis

Category-level Mahalanobis
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Visualization of High-Dimensional Data (1)

cell count

cytotoxicity
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Category-level Mahalanobis

Global Mahalanobis



Visualization of High-Dimensional Data (2)

cell count

cytotoxicity
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Category-level Mahalanobis

Global Mahalanobis



Parameter Multiplier Notes

Cell Type(s) 1 U-2 OS

Time Points: 1 24 hours

Chemicals 1,202
TSCA Chemicals of interest to US EPA
• Includes 462 APCRA case study chemicals
• Includes 179 chemicals with annotated molecular targets

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: 4 --

U-2 OS ToxCast Screen Experimental Design

Chemical Molecular Target Tested Range

Weak Dexamethasone Glucocorticoid receptor agonist 0.001 – 3 µM

Medium all-trans-Retinoic Acid Retinoic acid receptor agonist 0.0003 – 1 µM

Strong Etoposide DNA topoisomerase inhibitor 0.03 - 10 µM

Extra strong Trichostatin A Histone deacetylase inhibitor 1 µM

Reference chemicals run on each plate
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Reproducibility: Potencies

 Potency estimates vary less than ½ an order of magnitude
Preliminary results. Do not cite or quote.
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HTPP Screening Results (1)

 ~ 40% of chemicals were active
 Most activity is > 10 µM
 Chemicals active in HTPP are more often ‘promiscuous’ in ToxCast

Active chemicals:

Preliminary results. Do not cite or quote.
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HTPP Screening Results (2)

Comparison with ToxCast screening results:

 Less potent than ToxCast POD
 More potent than the 

ToxCast cytotoxicity 
burst estimate

ToxCast more potent

HTPP more potent

HTPP 
more potent

Preliminary results. Do not cite or quote.
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Comparison to in vivo data and exposure

HTPP PAC 
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTPP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxcast PAC 
(µM)

Toxcast AED 
(mg/kg bw/day)

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

PAC: phenotype altering concentration
AED: administered equivalent dose37



Comparison to in vivo Effect Values & other NAMs

 HTPP AEDs are higher than ToxCast-derived AEDs and TTC values
 78% of HTPP AED are within 2 orders of magnitude of the in vivo POD

• 303 chemicals were active and had pharmacokinetic (PK) information

NAM < in vivo NAM > in vivo
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Comparison to Exposure Estimates

Preliminary results. Do not cite or quote.

chemicals 
of lesser 
concern

Potential for humans 
to be exposed to 

bioactive concentrations

log10(mg/kg/day)

human exposure
(ExpoCast)

bioactivity
(HTPP)

 for 49% of chemicals, predicted exposure 
is > 1000x lower than estimated 
bioactivity

 for a small set of chemicals, the BER was 
negative, indicating a potential for 
humans to be exposed to bioactive 
concentrations of these chemicals
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Application 2:
Mechanistic Prediction
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Feature Selection & Profile Comparison

Feature Selection Profile Comparison

1300 features

remove features that do not provide any information  
(i.e. have 0 variance)

remove features that are not reproducible
(high variation between treatments of different 
biological replicates)

remove features that are highly correlated
(using recursive feature elimination)

317 features

1.

2.

3.

remove low-
magnitude effects

Kendall correlation

Preliminary results. Do not cite or quote.
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Reproducibility: Phenotypic Profiles

 Phenotypic profiles are highly reproducible across different plates

Hypothesis: Chemicals with similar mechanisms will display similar profiles.
Preliminary results. Do not cite or quote.

42



Example: Nuclear Receptor Modulators (I)

 Agonists of the GR and of RAR/RXR display characteristic profiles
 Expression of a target does not guarantee that characteristic profiles are observed (e.g., PPAR)

Biological similarity in HTPP Gene expression in U-2 OS
Preliminary results. Do not cite or quote.

• 52 chemicals were annotated as targeting a nuclear receptor

Preliminary results. Do not cite or quote.
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Example: Nuclear Receptor Modulators (II)

 Certain molecular mechanisms result in characteristic phenotypic profiles

Biological similarity in HTPP

Chemicals with similar profiles to dexamethasone 
tend to be active in ToxCast GR assays

Chemicals with similar profiles to all-trans retinoic 
acid tend to be active in ToxCast RAR / RXR assays

Preliminary results. Do not cite or quote.
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Example: Nuclear Receptor Modulators (III)

 For two receptor systems that are expressed (GR, RAR/RXR) potencies were 
comparable with ToxCast

 For all other receptors, we are much less sensitive than ToxCast (off-target effects?)

Comparison to ToxCast potencies

Preliminary results. Do not cite or quote.

Gene expression in U-2 OS

Preliminary results. Do not cite or quote.
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Pharmacological Blockade of Phenotypic Effects

 RAR but not RXR antagonists block the retinoid phenotype

-24 h

Cell 
Plating

-1h 24 h

Fixation & Cell Painting
labeling

0

+ Retinoic Acid
+ Inhibitors

Preliminary results. Do not cite or quote.
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Structural Similarity Translates to Biological Similarity

 Structurally similar chemicals tend to be biologically similar

Dendrogram using structural information
(ToxPrints)  680 clusters

Cluster ID

HT
PP

 E
ff

ic
ac

y

 Structurally similar chemicals 
tend to display similar 
efficacies

Cluster ID

Bi
ol

. s
im

ila
rit

y

 Structurally similar chemicals 
tend to display similar 
phenotypes

Preliminary results. Do not cite or quote.
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Application to Environmental Chemicals: 
Example: Conazoles

• group of fungicides
• disturb ergosterol synthesis via CYP51 and CYP61 

(target absent in mammals)

biological similarity 

structural similarity 
(based on ToxPrints)

 most conazoles are phenotypically similar
 Diniconazole is phenotypically different from the other active conazoles

Preliminary results. Do not cite or quote.
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Conclusions

Application 1: Potency estimation
• HTPP can be used to derive in vitro potency estimates
• These in vitro potency estimates are often comparable or 

more conservative than in vivo PODs

Application 2: Mechanistic prediction
• Structural similarity  biological similarity
• Similar mechanisms  biological similarity

Biological similarity 

Chemical A

Chemical B
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Outlook

• Combine HTPP with HTTr
• compare results, both in terms of potencies and mechanisms

• increased potential to discern molecular mechanisms

• Expand Coverage of Biological Space
• deploy assay across diverse cell lines that express different receptors/pathways

• proof-of-concept (Gustafsdottir et al. 2013, Willis et al. 2020)

• expansion to other species
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