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Virtual Tissue Models

CSS 5.3— Computational VTMs V-Eilryo

The VTM Research Area will
provide physical models and
mathematical simulations of
specific organ systems and
developmental outcomes
informing risk-based assessments
of new and existing chemicals. This
research area expands
understanding of chemical effects
on developmental and
reproductive toxicology.
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Evaluating chemical effects on the developing embryo

TIMELINE OF THE HUMAN Week 8

“The first trimester is the most crucial to EMBRYONICPERIOD ~  Weeka (Carnegie Stage 20)
your baby’s development. During this Week ‘

(Carnegie Stage 8)

(Carnegie Stage 13)

period, your baby's body structure and

organ systems develop.”
www.ucsfhealth.org

peak sensitivity (37 — 8t wk)

Embryonic Period Fetal Period Fetal Period Complex Systems
9
T T2 T3 - gene networks = m
‘ ' Adverse Birth Outcomes (CDC) - multiscale -
855?;57;;1:700 - preterm birth rate (10%) -autopoiesis P
: > - low birth weight babies (11% ) - canalization
N - malformations (3-4% live births) - temporality 2
@i“{fo - functional deficits (17% children) - state trajectories
0 - mortality (1-2%) - and more ... ;




Shifting toxicity testing to animal-free alternatives

Unitog S
Environmentsl Protection

* June 2016: Lautenberg Chemical Safety Act advances chemical
safety evaluation with methods that reduce animal testing and
. . New Approach
are translatable to vulnerable populations & lifestages. Methods Work Plan

use of animals in chemical testin

U.S. Environmental Protection Agency
Office of Research and Development

* September 2019: directive issued by USEPA Administrator E -
Wheeler set a vision to reduce mammalian study requests 30%

by the year 2025 and eliminate them by 2035.

* June 2020: USEPA work plan to accelerate scientifically valid
New Approach Methods (NAMs) for assessing toxicity of large
numbers of chemicals with less reliance on animal testing.

-

https://www.epa.gov

In vitro data and in silico models that reflect key aspects of embryo-fetal development
will be indispensable for NAM-based detection of developmental hazard potential.
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Can the computer replace lab animal testing?

e I —— A 2019 technology feature in Nature - Lab Animal

Toxicology testing steps towards computers highlighted progress toward the animal-free zone.

Can the computer eliminate the lab animal? As computational methods become more advanced and data more
freely available, in silico modeling approaches have growing potential to help reduce the number of animals needed
to test chemical toxicity

JimKing * Mapping the (chemical) world: structural alerts based on
T, ‘black box’ and expert read-across.

originally passed in 1976, was meant
us:

* Opening the black box: performance-based weight of
evidence models from in vitro profiling.

] * A step further: ‘virtual embryo’ computer models that
gy e mem s 0 11 e by arine simulate cellular chan ges on development.

method

Nature (Lab Animal) 48: 40-42, February 2019

Understanding strengths and limitations for predictive toxicology:
1) in vitro testing with human pluripotent stem cell (hPSC) models;
2) expanding the 'virtual embryo’ toolbox for predictive toxicology.




1. Pluripotent stem cell (hPSC) models

An active area of investigation and one of the most promising in vitro alternatives to
pregnant animal testing for assessing developmental hazard potential; novel features:

 Self-renewal: cells replicate themselves indefinitely when
cultured under appropriate growth factor conditions.

* Pluripotency: cells have the potential to form most of the
H different cell types comprising the embryo/fetus.

* Autopoiesis: capacity to self-organize into rudimentary tissues
and more complex organoid structures.

Established hPSC lines can recapitulate some biology driving embryogenesis during the
period covered by guideline prenatal studies (e.g., OECD TG 414, OPPTS 870.3700).




A few milestones that set the stage for hPSC platforms ... H-‘

1975: the term ‘ESC’ was first coined by research pioneers to distinguish pluripotent cells
derived from an early mouse embryo versus pluripotent embryonal carcinoma cells.

1998: ESCs isolated from human blastocysts and cultured under conditions to maintain
self-renewal still form derivatives of all 3 embryonic germ layers after 4-5 months.

2001: ethical debate led POTUS to issue an executive order (EO 13505) limiting federally-
funded research on hESC lines to 21 cell lines established before August 9, 2001.

2006: discovery that dermal fibroblasts could be reprogrammed to a pluripotent state
(iPSCs) simply by altering expression of 4 genes (Oct3/4, Sox2, c-Myc, KIf).

https://stemcelldb.nih.gov/ NIH database of genomic profiling data on the 21 hESC lines
approved under GW Bush administration as well as registered human iPSC lines.
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Disclosures "-

L

Funding: our research with human pluripotent stem cell lines (hPSCs)
was performed under EPA’s Chemical Safety for Sustainability Research
Program, Research Area 5 “Virtual Tissue Models’ (VTMs).

. U.S. Department of Health & Human Services
m) National Institutes of Health i [ Search |
Turning Discovery Into Health Search Tips

Home Current Research

Compliance: CSS work involving established hPSC lines is compliant with
Executive Order 13505 (issued 2009) to ensure that is ethically
e responsible, scientifically worthy, and conducted in accordance with
o o ey st i o applicable law.

https://stemcells.nih.gov/research/registry.htm

Embryonic PSC lines are registered in the NIH Human Embryonic Stem Cell Registry: WA09 (H9) NIH Approval
Number NIHhESC-10-0062 (EPA contract EP-D-13-055 with Stemina Biomarker Discovery) and RUES2, NIH
Approval Number: NIHhESC-09-0013.

Other induced PSC lines: endodermal hPSC line from Allele Biotech #ABPSC-HDFAIPS (EPA contract EP-D-13-
054 with Vala Sciences, Inc.).



Conceptual and practical considerations H"

< Studies >

(Chemicals with MeSH Pharmaceutical

sssss

MeSH Name [hyperiinked)

Abstract Sifter, SWIFT, MeSH terms, Chemicals
Dashboard, ...

Piersma et al., manuscript in final preparation

* Detailed literature review: survey of extant ESC

assays used to classify developmental toxicants:
- chemical domain

- biological domain 1,533 records in PubMed
- standardized protocols reduced to 333 (Al for

- reproducibility relevance) and 192

- biomarker readouts (manual curation).

- predictive power.

e 1,250 annotated chemicals (through 2020):

- 18 publications tested > 10 compounds (primary)
- 174 publications tested 1-9 (evidentiary support)
- most frequently represented: ATRA, 5-FU, MTX.



devTOXdP dSSay: Stemina Biomarker Discovery, EPA contract EP-D-13-055 ‘

-y /

g | Do @& Pluripotent H9 hESC metabolomics assay “
— identified the potential developmental
Embryanis Stem Coll. Based Blomarker Aseay for toxicants in the test set with 77% accuracy
Developmental Toxicity Screening _

Jessica A. Palmer &, Alan M. Smith, Laura A. Egnash, Kevin R. Conard, V\(ﬂixggﬁ;ﬁi‘ (5 7% SenSitiVit)/, 1 00% SpeCI:fiCity)o,’

Paul R. West, Robert E. Burrier, Elizabeth L.R. Donley, Fred R. Kirchner August 2013
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. Ch0r0|d P mone : -§ pyrlmldlne synthesls' rEdOX CyC“ng. — _) i
'-poly aaaaaa =

ORN/CYSS
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devTOX profiling of the ToxCast chemical library

1065 ToxCast Ph I/Il chemicals
at single-conc. or multi-conc.;

data pipelined to in vitro-db_v3
database (>1125 features);

ToxCast_STM dataset includes
controls for data quality;

Dataset now available in EPA’s
CompTox Chemicals Dashboard.

https://comptox.epa.gov/dashboard
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CHID: 20822  CASRN: 59-05-2
SPID(S): TP0001302A08
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HILL MODEL (in red):

tp ga aw
val: 1.97 -1.08 3.96
sd:  0.0247 0.0229 1.06

GAIN-LOSS MODEL (in blue):

tp a aw la 1w
val: 1.98 -1.08 3.92 0.721 3.48
sd: 0.0529 0.0226 1.08 35.1 TTE:
CNST HILL GNLS
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Developmental Toxicity
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Profiling the ToxCast Library With a Pluripotent
Human (H9) Stem Cell Line-Based Biomarker Assay for
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ABSTRACT

The Stemina devTOX quickPredict platform
taxicity potential based on changes in celular mets

new human embryonic stem celkbas
Reprod Taxiol. 98, 343-363). Using th

TosCast STMdataset include (1) 19% of 1065

luripotent stem cell-bused 3
1 fallowing chemical ey
LA, Conard, K k., West, P. &, Burtier, R. E, Donley, E. L K, and Kirchner, F. k. (2013). Establishment and assessment of a
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et from the media). The
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biological domain. The results of thi

Key words: predictive toxeology; developmental toxic ity embryonic s tem cells.

1n 2007, the Nationa] Research Counci] published Taxiity Testing
in the 715t Century- A Visian and @ Stawgy [National Hesearch
Councll, 2007). This report addressed the pote
mated high-throughput screening (HTS) and high-cantent
screening (HCS) assays and technologies to identify chemically

i e

induced Widlogical activity in Tuman cells and 1o develop pre
dictive models ofin vivo Iislogical respanse that woul ignite 2
shift fram traditional animal endpoint-based testing to human
pathway-besed risk asssament (Callins &
with the NRC 2007 mepart, the US. Enviro

Cifrd Uives iy Fress o betll of (e Sty of Tamooiogy 1020 This welk & writien by U5 Government an ployess and & 1n e pubilc

19.2% positive response rate indicative of teratogenic potential

Zurlinden et al. (2020) Toxicol Sci
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Example 1: vitamin-A and its morphogenetic metabolite (all-trans Retinoic acid)

Targeted biomarker (TI)

Viable cell number (CV)

0

<5 E IIIIﬂ X "l!i:‘iilib
: g——e’gg 2 ;E, -8 : all trans Retinoic acid
S © @ o g g g g g B g
g 3 °© o TI=0.003 uM, CV = NA
o o - dLEL rat = 2.5 mg/kg/day
O.{I)OI 0_'01 011 ; 1'0 0.:)01 0.I01 011 ; 1I0 dLEL rabbit = 0.5 mg/kg/day
Concentration (uM) Concentration (uM)
= SRR (o
éo_eggaggg 50_08099989
g © g Retinol (vitamin-A)
o o TI=NA, CV=NA

0.003 0.03 0.3 1 3 10

Concentration (uM)

] ] I I ] ] 1 1
0.003 0.03 0.3 1 3 10

Concentration (uM)

(True Negative)
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Molecular characterization of a toxicological tipping point: "-
transcriptomic (RNAseq) signature of adaptation versus adversity ..‘

! oot et . What would a ‘toxicological tipping point” on hPSC differentiation look like
at the molecular level? Model = all trans retinoic acid (ATRA).

[eureal hamapaga: e w s

e  ATRA is an endogenous signal (< 10 nM) and human teratogen (> 30 nM);
tipping point computed at 17 nM @ 96 hr by imaging FOXA2 biomarker.

RNAseq showed dysregulation by EOMES that normally drives endodermal
specification and mesodermal delamination during gastrulation.

J endoderm
Mmesoderm

ATRA conc x time HCI (FOXA2) TP =17 nM x 96 hr

System
Trajectories

X1 2
S
e
20

perturbatio
)

Awarded best paper of the year in X
Reproductive Toxicology . .
' conczntratio:[uM] i 13




Example 2: pharmacological angiogenesis inhibitors

2

Targeted biomarker (TI) Viable cell number (CV)
0]
HO . . .
\mm synthetic thalidomide analog
!
: SHPP-33
3 3 TI=10.5, CV = 16.4
. " (no rat or rabbit data)
o.(l)m I Ofl i 1Io 1:10

Concentration (uM) Concentration (uUM)
. s ] g 8 . -
g . synthetic fumagillin analog
v 8
A [a]
9w / 5
E;] e a N :81
S o8 | = L TNP-470

3e104 ' o.(l)oa ' o.'oa I of3 ; 3e104 ' o.cl)oa ' o.'os 013 ; TI = 0017’ CV = 0020
Concentration (UM) Concentration (uUM) (nO rat or rabb|t data)
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Case study: checking forward predictivity of the hPSC assay o ‘

Colleagues at Dow Chemical, led by Ed Carney, tested T.l. predictions for two structurally
diverse potential vascular disrupters (pVDCs) in rat whole embryo culture (WEC):

HOOiE“ S5HPP-33: synthetic thalidomide analog
{ * T.I. predicted by hESC 10.5 uM

* AC50 observed in WEC 21.2 uM (embryo viability)

TNP-470: synthetic fumagillin analog
* T.l. predicted by hESC 0.02 uM
* AC50 observed in WEC 0.04 uM (dysmorphogenesis)

> H
SE
o b 0

Ellis-Hutchings et al. (2017) Reprod Toxicol
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Example 3: R-enantiomer (Fluazifop-P-butyl) is the active herbicide

Targeted biomarker (TI)

Viable cell number (CV)

-

0

§ " E ) \7J| 0 iilll
o nm o 8 © 9756
0 o o 8 0 o - 8 . o .
T ETEoges T8 8o g 0 6 Fluazifop butyl
- . Tl = not active, CV = no effect
— 7 ———— dLEL rat = 10 mg/kg/day (< mLEL)
0.3 0.2 13 1030 100 0.03 0.3 1 3 10 30 100 dLEL rabbit = 90 mg/kg/day (mLEL)
Concentration (uM) Concentration (uM)
o] ™ 0
& o & F:><;Iiit:1\ 0//\\//\\C%
? 988 ge 8 ; ) -Q—B—n_g—g—fJ
. Fluazifop-P-butyl
. ; Tl =26 uM, CV =40.8 uM
11— " dLEL rat = 5 mg/kg/day (< mLEL)
0.03 0.3 1 3 10 2320 100 ' l : X ' ' ' '

Concentration (uUM)

0.03 0.3 1 3 10 30 100

Concentration (UM)

dLEL rabbit = 50 mg/kg/day (mLEL)
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Example 4: false negatives (not detected in ToxCast STM)

Targeted biomarker (TI)

Viable cell number (CV)

OH

e
g - g ] HO
3 3
5o oo o . .
O 2 v S -5 - 87, Diethylstilbestrol (DES)
3 S TI=NA, CV=NA

T - 9 dLEL rat = 0.03 mg/kg/day (= mLEL)

T T T T T L UL AL RS B (no rabbit data in ToxRefDB)
0.003 0.03 0.3 1 3 10 0.003 0.03 0.3 1 3 10
Concentration (uUM) Concentration (UM)

o 7T ?
ke ks
: 88 80 o8 38 8 83 : o8 88
~— [=J - = 9 g
; 3§§ oo st égics - §otielof o8 gS
= =]

o n Cyclopamine

I 1 1 1
0.01 0.1 1 10

Concentration (UM)

1 1 1 1
0.01 0.1 1 10

Concentration (uM)

TI=NA, CV =NA
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What human relevant pathways are detected or missed?

o,
-

WorkﬂOW to mine the hPSC mOdEI againSt 337 Sensitive Domain Insensitive Domain
biOChemicaI assays in the ToxcaSt_NVS platform Annotation System Keystone Pathway /Process #MIEs Class

GOTERM_BP_DIRECT G0:0014066"~regulation of phosphatidylinositol 3-kinase signaling 6 TP
KEGG_PATHWAY hsa04068:FoxO signaling pathway 8 TP
n KEGG_PATHWAY hsa04510:Focal adhesion 13 TP
E ToxCast_NVS ToxCast_STM GOTERM_BP_DIRECT G0:0007200~phos pholipase C-activating G-protein coupled receptor signaling pathway 10 FN
:f.’ biochemical AC50 X binary hit calls INTERPRO IPR0O01723:Steroid hormone receptor 7 FN
IE 337 inhibited features 183 STM-positive GOTERM_MF_DIRECT G0:0005496~steroid binding 5 FN
o 83 activated features 882 STM-negative -
RTK | GPCR
o Ligands Ligands
joal )
> L ] L ] L ] L ] L ]
38 FOXO signalin redicted as the most sensitive pathwa |
ggt g gp P Y |
(positivity in the hPSC model dr/ ven to pro teasome ub:qu:t/natlon )
~ T T =7 = T e )
i g Lo |
<z> Phenotype Weighting ) sT™(-) —| ( glfs i gnpz
w E HMDC database j=rr- L prepe
E S * 28 phenotype systems s
O a3 * 233 GPS bins (0,1,2,3) ks gAS-RAP .
w * log2 normalization s o Signaling Calcium
o * top 40 weighted correlations = Signaling
ﬂ MAPK-ERK1
V.
Pathways and Processes @
2‘ g DAVID 6.8 bioinformatics resources
g E * GO Direct, KEGG, Reactome, INTERPRO pr >
E = * Bonferroni adjusted p < 0.05 -3- § Nuclear Receptor
(o] « redundancies resolved manually by FDR > mitochondrion Ligands
% § * 60 category Spearman correlation matrix A !
o< « discuss keystone pathways/processes

Zurlinden et al. (2020) Toxicol Sci 18
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Performance check for hPSC-based classification of DevTox

« Qualification on 42 well-curated reference compounds
often used to validate alternative DevTox platforms?.

- True Positive

- Balanced Accuracy (BAC) = 82% (0.65 sensitivity, 1.00
specificity) for these reference chemicals.

- Metrics are consistent with the original pharma-trained
model [Palmer et al. 2013].

- False Negative

Many alternative assays have been validated with a limited
set of data-rich chemicals, inflating predictive capacity of
>80%; this has hampered regulatory acceptance.

- True Negative

1 Genschow et al. 2002; West et al. 2010; Daston et al. 2014; . _ _
Augustine-Rauch et al. 2016; Wise et al. 2016 Zurlinden et al. (2020), Toxicol Sci
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¥

Scaling Criteria (ToxRefDB)

ringency of criteriaforDeVI% == - BM-42 reference
00% — :

- dLEL < mLEL, rat OR rabbit
- dLEL < 200 mg/kg/day

Chemical landsca Pe: hPSC biomarker (in vitro) and ToxRefDB (in vivo)

~ 80%
% - LEL for any study type
S 60%
S Predictivity of the hPSC
§ A0% = I biomarker declined as fetal
* e == outcome gained less
20% = ==
= | -- concordance between rat-

rabbit and concurrent
maternal toxicity.

0% A A
model ToxVal Low Medium High
# chems 1040 432 285 127

Zurlinden et al. (2020), Toxcol Sci
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* Although positivity rate (19.2%) of the hPSC assay was similar to concordant rat-rabbit
studies (18.7%), only a subset of positives was detected by both platforms;

Bridging animal-human studies

* challenge for holistic understanding of the applicability domain and blind spots of in vitro
platforms, as well as mechanisms against which bioactivity data may be qualified.

hPSC Al

:Zj—“?j - | — U e
 — TP
=
a;;: _i_ - --.- 5TM score i
o ~~:;=__ L FN
T : — —o— -

e

g == . . - - TN
E_"_G ] Data-driven model Mechanistic model Forward prediction

Preliminary: Al model built solely from in vitro readouts (~1125 features) improved
sensitivity over the hPSC biomarker alone (BAC = 86.8% vs 83.3%), but still misses a few.

Zurlinden et al., manuscript in preparation 21



g
Can a hPSC assay live up to the NAM challenge? Eo‘

Motivation for a building a more synoptic view to
improve mechanistic understanding of developmental
processes and toxicities around hPSCs.

does not encompass the full complexity of anatomical development;

blind to the precise spatial-temporal control of cell-cell interactions in vivo ;
misses developmental effects secondary to maternal or placental toxicity;
uncertainty of post-organogenesis vulnerability and post-natal manifestations;
* cross-species extrapolation (mESC to human, hPSC to animals);

limited xenobiotic metabolism and other ADME considerations (toxicokinetics);
uncertainties in translatability to the intact embryo (toxicodynamics).

22



2. A more synoptic view ...

Available online at ww

ScienceDirect

Computational biology and in silico toxicodynamics m
Thomas B. Knudsen', Richard M. Spencer”, =
Jocylin D. Pierro’ and Nancy C. Baker®

Abstract

New approach methodologies (NAMs) refer to any non-animal
technology, methodolagy, approach, or combination thereaf
that can be used to provids information on chemical hazard
and risk assessment that avoids the use of intact animals, A
spectrum of in sifico models is needed for the integrated
analysis of various domains In toxicolagy to improve pradic-
tivity and reduce animal testing. This review focuses on Jn silica
approaches, computer madsls, and computational intalligence
for developmental and reproductive toxiclty (pradictive DART),
providing a means to measure toxicodynamics in simulated
systems for quantitative prediction of adverse oulcomes
phenatypes.

Addresses
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1. Introduction

Automated high-throughput screening (HTS) and high-

content sereening (HCS s and technologies are

duced biological
an p predictive models

of in vica biological response [1]. These platforms have

been applied to thousands of cf
commerce or potentially entering the environment,
producing a vast array of dara that will be used 1o decade
“the tavicological bueprine of active substances that interact with
fvsug syseenss” [2]. Publicly available HTS/HCS data have
been produced for predictive toxicology. Coupling this
vast amount of mechanistic data with a deeper under-
standing of biological processes lays the groundwork for
new approach methodologies (NAMs) 1o evaluate
chemical oxicity, drug efficacy, and hazard identific
tion. NAM is a term recently adopred by rhe Unit
States Environmental Protec Agency (US EPA) in
refer to any non-animal technology, methodology,
approach, or combination thereof that can be used o
provide informarion on chemical hazard and risk
assessment that avoids the use of intact animals
spectrum of i sifirs models will be needed for the in-
tegrared analysis of various domains in toxicology ro
avaid animal testing

smical compounds in

2. Domain spectrum
Chemical exposures during pregnancy can have a pro-
found and liflong impacts on human health; however,
ific challenges to implementing NAMs
that reflect developmental toxicity. The present review
focuses on i sifics approaches, computer models, and
computational intelligence for  developmental and
reproductive toxicity (pred DART). Potential
developmental toxicants have been successfully classi-
fied by various in sifics models across the domain spec-
al pathways and processes (Iigt

trum of toxicol

2.1. Computational chemistry

\ decision tree was built that effectively classified po-
tential developmental toxicants based on chemical
structure—activity relationships (SAR) for compounds
with weak noncovalent interacrions h biological rar-
aets for developmental hazard [4]. Recently, an expan-
sive database with more than 866K chemical properties/
hazards was constructed that automates chemical read-
across SAR models (RASAR) for inregrated  dara
mining. RASAR-hased machine learing predicred
known d data with 70—80% balanced accuraci
and created large feature vecrors from all available
property data (rather than hazard alone) showing
balanced acc
therefore possible to mine RASAR for current data on
maternal  exposure  and  the potential  health

acies

Current Opinion in Toxicology 2020, 23-24:119-126

Knudsen et al. (2020) Curr Opin Toxicol

Computational biology and computer simulation can
extend data-driven models for mechanistic prediction.

Enablers of virtual tissue models (VTMSs):

- synthetic microsystems: recapitulate the microphysiology,
cellular behaviors and spatial dynamics of the physical system.

- computational intelligence: biology-inspired algorithms use
fuzzy logic to fill in missing or incomplete information.

- artificial life: computer simulation of biological processes
evolved through automation, control networks.

“Molecular biology took Humpty Dumpty apart ...
mathematical modeling is required to put him back
together again.” — Schnell et al. (2007) Amer Scientist
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Gastrulating embryo:
remarkable example of a self-organizing system

 The molecular biology and behavior of hPSCs in culture most closely

Embryoid resembles the epiblast of an early embryo during ‘gastrulation’.

Body

» Gastrulation ‘decodes the genomic blueprint of the fetal body plan’
through complex signaling pathways (e.g, FOX, SOX, HOX).

Epiblast §
3| e Cell migration through the primitive streak is essential for regional
organization but cultured hPSCs lack this positional information.
Primitive AQ‘;_ "It is not birth, marriage, or death,
Streak

|| but gastrulation which is truly the

most important time in your life.”
- Lewis Wolpert

S

Luo et al. (201:9)
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Engineered in vitro microsystems
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iPSC-derived microsystems can self-organize
at least some positional information.

Example: colinear Hox expression in
‘gastruloids’ forming from mESC-aggregate.

DAPI

BRACHYURY BRACHYURY DAPI NANOG

BRACHYURY

Zheng etal. (2019), Nature

Properties come naturally to the epiblast via
positional cell-cell signaling.

Example: restoring FGF2-BMP4 signaling
polarizes a synthetic epiblast from hPSCs.
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Computational (in silico) microsystems

Anatomical homeostasis in a
self-regulating ‘Virtual Embryo’

Step: 598

Spheres 1273

Cells: 21

Copyright (c) 2003-2007, Crowley Davis Research, Inc. All Rights Reserved.

SOURCE: Andersen, Newman and Otter
(2006) Am. Assoc. Artif. Intel.

Morphological programming

logic of the epiblast

BMP4 <
R NODAL l
; ] |
A Epiblast ] PS
v
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AVE Hypoblast

osterior
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Agent-Based Models (ABMs) E

* nature-inspired agents (cells) and rules (behaviors) are set into motion as a self-organizing
virtual system, using an open-source modeling environment (CompuCell3d.org).

* soft-computing uses fuzzy logic to simulate forces or properties governing cell fate and
behavior where rules are inexact or knowledge incomplete (computational intelligence).

* can change course in response to a particular situation or stimulus, such as genetic errors
or biomolecular lesions introduced from real world data (dynamic translation).

* probabilistic rendering of where, when and how a particular condition might lead to an
adverse developmental outcome (cybermorphs).



Quasi-gastrulation in silico

chordo-mesoderm Relative Cell Proportions
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e Cellular systems agent-based model for the epiblast (ESABM) built in
CompucCell3D.org to recapitulate cell movements and positional information.

* This virtual embryo model can be used to ‘recode the genomic blueprint of the
fetal body plan’ for in silico translation of hPSC chemical effects data.

R Spencer, EMVL (work in progress 28



Synoptic manifold for toxicodynamics

In vivo - knowledge In vitro - MPS In silico - ABM

B dea

Bioactivity profiling: high-throughput screening of hPSCs (e.g., ToxCast/Tox21)

Synthetic microsystems: recapitulate the microphysiology of a physical system.
Computational intelligence: fuzzy logic to fill in missing or incomplete information.
Artificial life: biological plausibility evolved through automation, control networks.
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EXAMPLE: perturbing the synthetic Hox clock (in silico)

Temporal colinearity

3500 migrating epiblast cells
(5000 MCS)
R Spencer, EMVL (work in progress)

J FGF signaling slows the Hox clock (4_9 11 @5000 MCS)

Deletions in the HOXD cluster that remove HOXD13
are associated with severe limb and genital defects
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Example: genetic regulation of early limb-bud development outgrowth

Neural tube NVU/BBB
Somite : !
Vasculature i i
Heart
e | Palate Liver / GI
- - 9_/ Testis / BTB
N l"’ml\( Em H Genital Tubercle —
& L[ Renal
~—— HOXD13
control hyper-RAR
i
>
o
Cybermorph T
Simulated cell signal foreshadows limb
gradients encoded from reduction defects
gene expression (ISH) following hyper-
activation of RARs <
<

EPA/ORD/CCTE systems model, work in progress



Challenges for animal-free developmental prediction

Computational intelligence: how complex must cellular
systems models be for accurate phenotypic translation?

Performance-based case studies: what best practices
are best suited for NAM implementation, circa 20257

Quantitative simulation: how far can artificial life go
towards replacing animal testing, circa 20357

Somite

Vasculature

Palate

Genital Tubercle

Heart
Limb-bud — ——— U"LHILIyY &
J -

______________

i

Liver / Gl

Testis / BTB

Thank you!
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