Multisector Engagement for Addressing Emerging Environmental Exposures

Developing scientific workflows for exposure assessments: a case study with 1,4-dioxane exposure

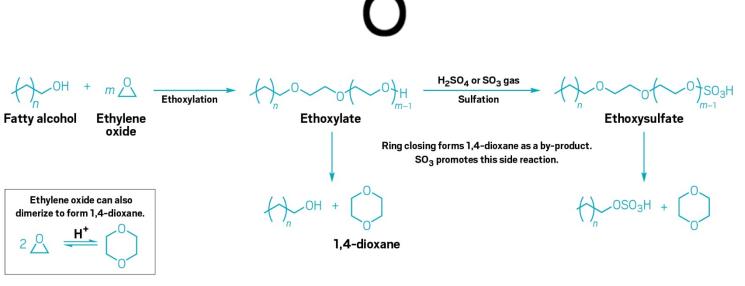
Daniel Dawson¹, Hunter Fisher^{1,2}, Abigail E. Noble³, Qingyu Meng³, Anne-Cooper Doherty³, Dan Vallero¹, Rogelio Tornero-Velez¹, Elaine Cohen-Hubal¹

¹U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709

²Oak Ridge Institutes for Science and Education, Oak Ridge, TN 37830

³California Department of Toxic Substances Control, Safer Consumer Products Program, 1001 | Street, Sacramento, CA 95814

Conflict of Interest: The authors declare no conflicts of interest

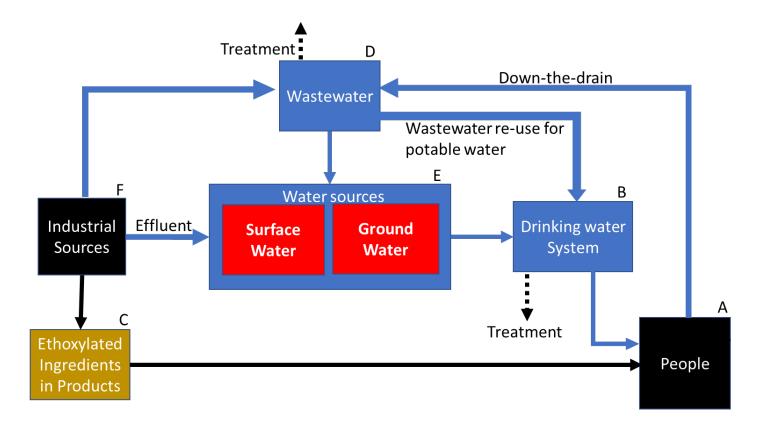

Funding: This research was funded internally by EPA

Multisector Engagement for Addressing Emerging Environmental Exposures

1,4-Dioxane: workflow case study

- Used in industrial applications
 - Solvent
 - Anti-fouling agent
 - Industrial reagent
- Created as un-intentional byproduct in some consumer products due to ethoxylation/sulfation of surfactants
 - Soaps/shampoos
 - Laundry detergent
 - Dish detergent
- Health concerns
 - Probable human carcinogen
 - Acute toxicity
 - Persistent, mobile and Toxic (ECHA)

#ISES2021virtual



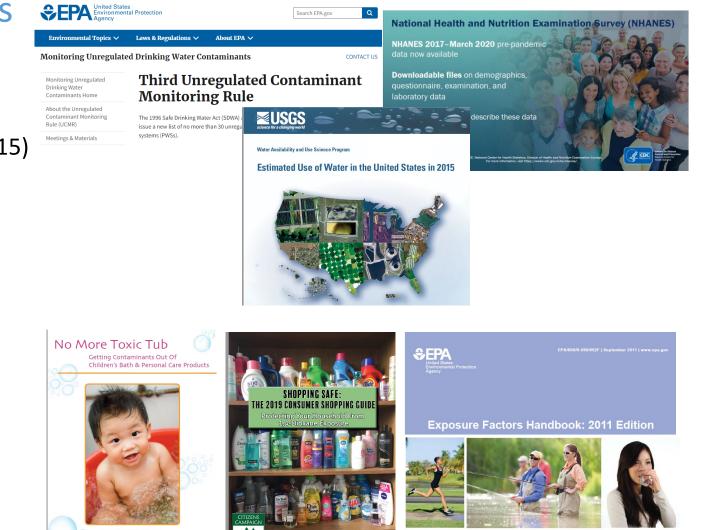
m = 1–12 n = 12–18

Multisector Engagement for Addressing Emerging Environmental Exposures

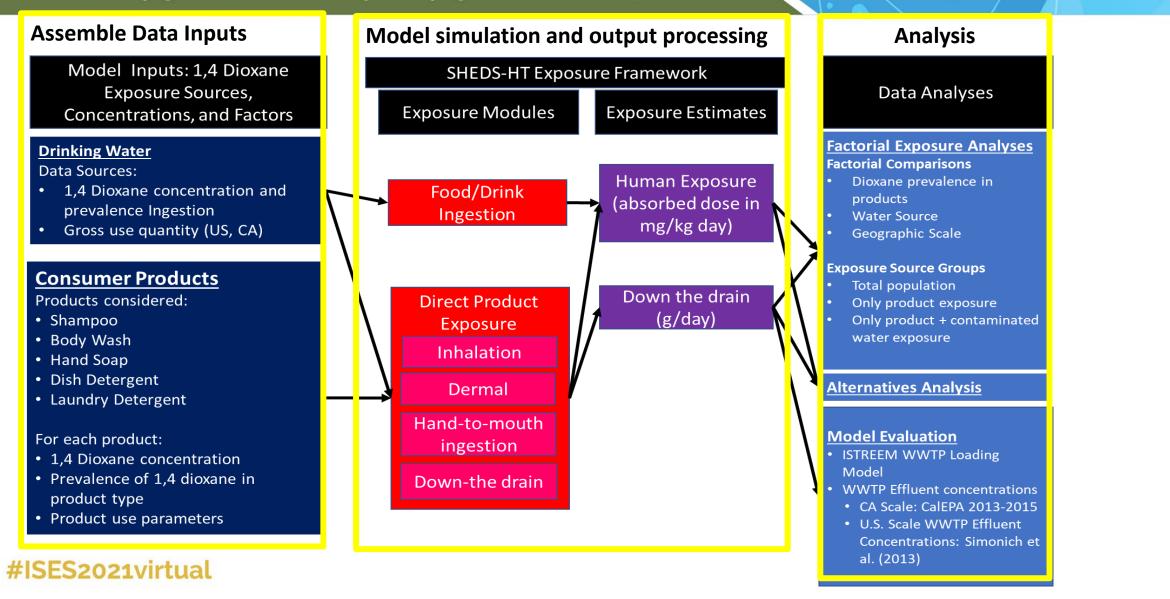
Exposure Pathways

- Complex exposure scenario
 - Primary Sources
 - Contaminated drinking water
 - Legacy
 - Industrial release
 - Down-the-drain
 - Direct consumer use of contaminated products
 - Routes: Dermal, inhalation, ingestion

Multisector Engagement for Addressing Emerging Environmental Exposures

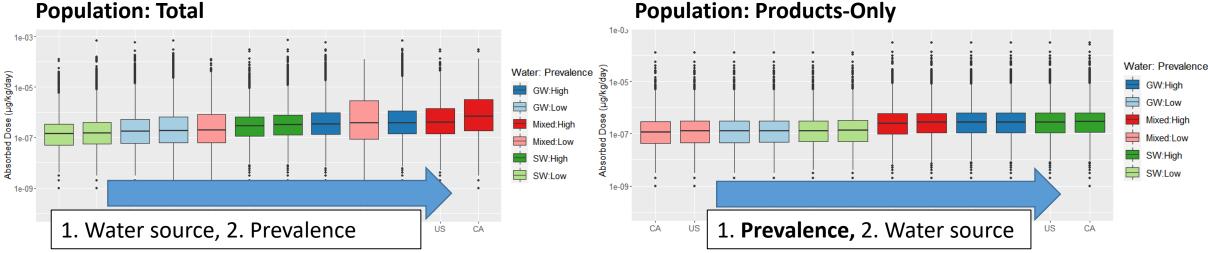

Study Objectives

- 1. Conduct exposure and down-the-drain (DTD) assessment: water ingestion and product use
 - SHEDS-HT: Probabilistic, population-level exposure modeling platform
 - Factorial comparison of Human Exposure and DTD
 - Spatial (US or CA)
 - Water Source (Groundwater, Surface water, Mixed sources)
 - Product_{prevalence}(High, Low)
 - Subpopulations
 - Total population
 - Products Only
 - Both Products and contaminated water
 - Model Evaluation
 - Convert DTD predictions to predicted wastewater effluent concentrations
 - Compare against empirical wastewater concentrations
- 2. Simulate regulatory action
 - 1. Simulate 1ppm threshold in consumer products
- 2. Compare exposure/DTD between scenarios


Multisector Engagement for Addressing Emerging Environmental Exposures

Model Parameterization Sources

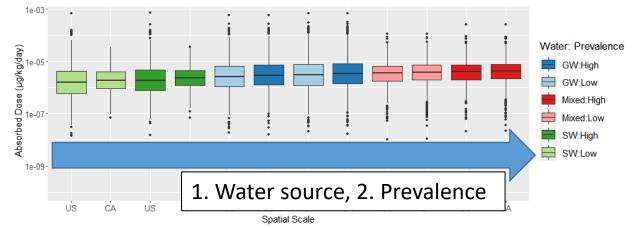
- Drinking water
 - 1,4-Dioxane concentrations:
 - Monitored as part of UCMR3(2013-2015)
 - Consumption: NHANES
 - General Use: USGS
- Consumer products
 - 1,4-Dioxane concentrations
 - Consumer advocacy groups
 - Primary literature
 - Use and exposure factors
 - Exposure factors handbook
 - Literature-based usage parameters



Multisector Engagement for Addressing Emerging Environmental Exposures

Multisector Engagement for Addressing Emerging Environmental Exposures

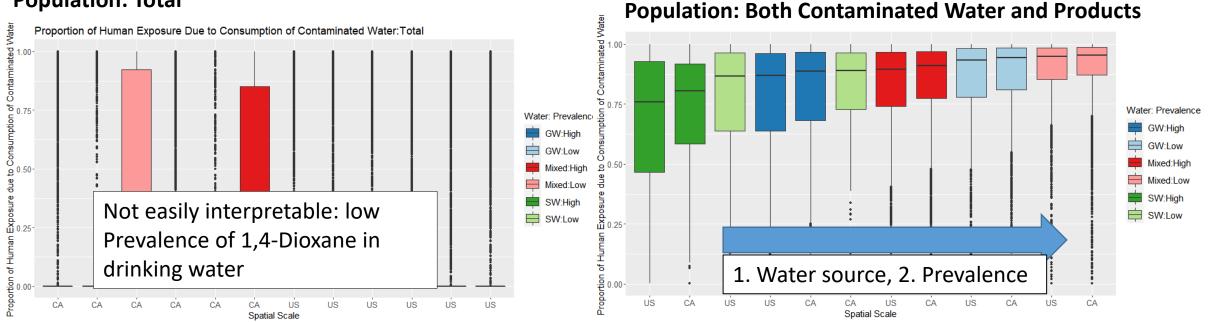
Results: Population Exposures


GW⁻Low

Mixed:Hiah

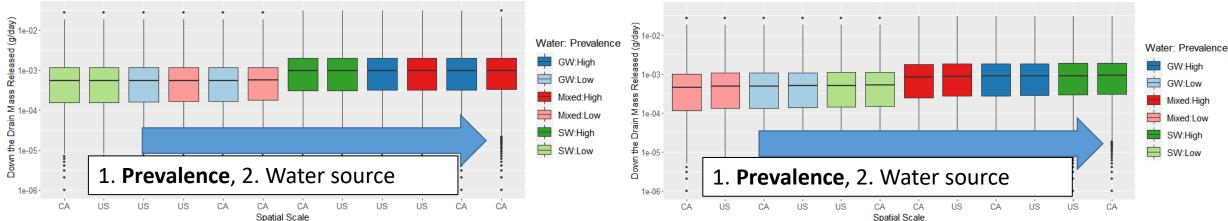
Mixed:Low

Population: Total

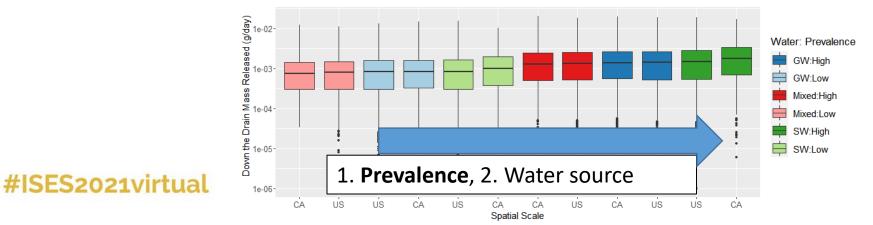

Population: Both Contaminated Water and Products

Multisector Engagement for Addressing Emerging Environmental Exposures

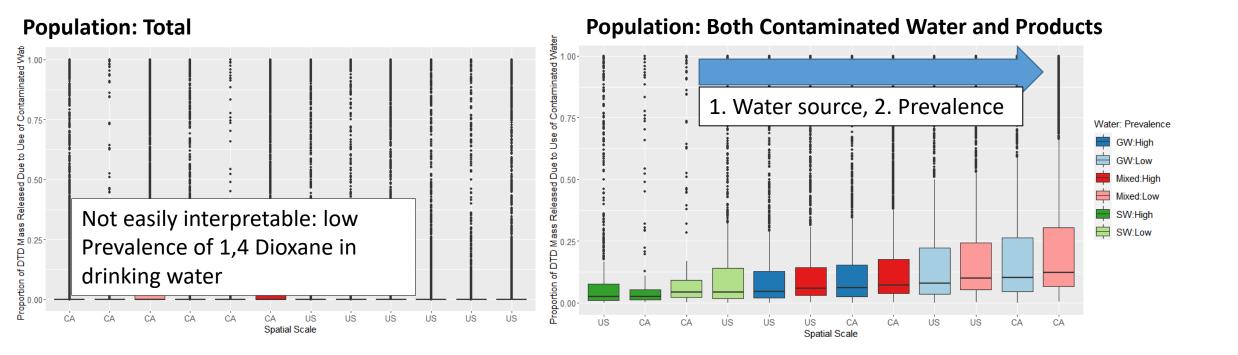
Results: Proportion of exposure due to contaminated drinking water


Population: Total

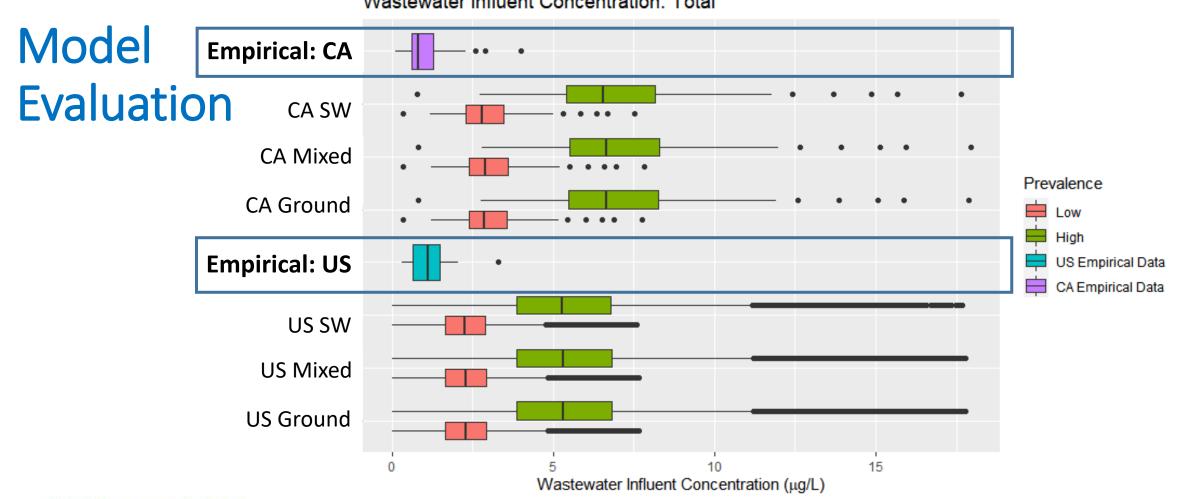
Population: Total


Multisector Engagement for Addressing Emerging Environmental Exposures

Results: Mass released down-the-drain by population


Population: Products-Only

Population: Both Contaminated Water & Products



Multisector Engagement for Addressing Emerging Environmental Exposures

Results: DTD Source Attribution

Multisector Engagement for Addressing Emerging Environmental Exposures

Wastewater Influent Concentration: Total

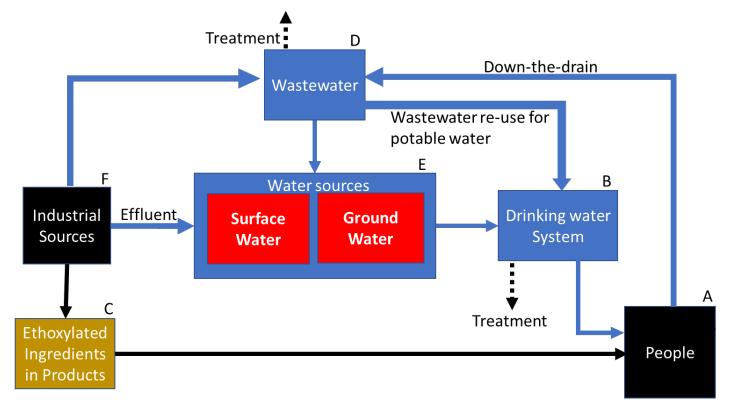
Multisector Engagement for Addressing Emerging Environmental Exposures

Simulated 1 ppm threshold

		Human E	xposure (m	ng/kg/day)	-			
Water	Subpopulation	No Action: Mean	No Action: SD	1 ug/L Threshold: Mean	1 ug/L Threshold: SD	Proportion Reduction of mean exposure	t-statistic	p-value
Ground	Total	2.420E-06	1.229E-05	1.758E-06	1.122E-05	0.274	-45.277	<0.001
Mixed		2.825E-06	6.638E-06	2.162E-06	4.451E-06	0.235	-31.849	
Surface		8.528E-07	4.987E-06	1.901E-07	1.029E-06	0.777	-70.883	
Ground	Products-Only	7.380E-07	4.452E-06	1.166E-07	4.455E-07	0.842	-66.709	
Mixed		7.205E-07	4.952E-06	1.113E-07	4.545E-07	0.846	-57.448	
Surface		7.872E-07	4.961E-06	1.241E-07	5.812E-07	0.842	-73.919	
Ground	Both Contaminated Water & Products	9.201E-06	2.495E-05	8.372E-06	2.404E-05	0.090	-5.525	
Mixed		6.132E-06	7.541E-06	5.385E-06	5.798E-06	0.122	-8.101	
Surface		3.910E-06	5.239E-06	3.267E-06	5.016E-06	0.164	-2.909	0.002
	Down the Drain mass released (g/day)							
						Proportion		
Water	Subpopulation	No Action: Mean	No Action: SD	1 ug/L Threshold: Mean	1 ug/L Threshold: SD	Reduction of mean DTD mass released	t-statistic	p-value
Ground	Total	1.483E-03	1.884E-03	2.410E-04	2.867E-04	0.837	-57.980	
Mixed		1.492E-03	1.866E-03	2.501E-04	2.314E-04	0.832	-59.096	<0.001
Surface		1.456E-03	1.858E-03	2.135E-04	2.177E-04	0.853	-56.579	
Ground	Products-Only	1.356E-03	1.768E-03	1.983E-04	2.012E-04	0.854	-51.133	
Mixed		1.275E-03	1.717E-03	1.881E-04	1.936E-04	0.852	-43.679	
Surface		1.435E-03	1.828E-03	2.097E-04	2.135E-04	0.854	-55.843	
Ground	Both Contaminated Water & Products	1.995E-03	2.223E-03	4.135E-04	4.617E-04	0.793	-37.193	
Mixed		1.833E-03	2.032E-03	3.476E-04	2.514E-04	0.810	-59.101	
Surface		2.434E-03	2.768E-03	3.881E-04	3.184E-04	0.841	-12.027	

Human Exposure (mg/kg/day)

Multisector Engagement for Addressing Emerging Environmental Exposures


Summary and Discussion

- Small effects of factorial conditions; most variance due to population variability
 - Monte Carlo selection
- Human exposure primarily influenced by water source
 - SW < GW < Mix; how is this possible?
 - Mix could be made up of GW and SW sources with higher concentration than included either GW or SW-specific sources
 - Drinking water pathway via oral route
 - 2020 EPA Risk Evaluation: Oral vs Dermal
- DTD primarily influenced by Prevalence_{products}:High vs Low
- Subpopulation important consideration for source attribution
 - Low Prevalence_{water} of Total population obfuscates role of water source in both human exposure and DTD mass released.
- 1 ppm product concentration threshold regulatory action
 - Variable exposure reduction
 - Broadly reduced DTD mass released across all factorial groups

Multisector Engagement for Addressing Emerging Environmental Exposures

Workflow limitations and future applications

- How do exposure sources influence drinking water concentrations?
- Workflow cannot parse influence of exposure sources on finished drinking water
 - SHEDS-HT uses static inputs (A-D) to produce a snapshot
 - Depend on location, watershed, and water system
 - Water source (E)
 - Proportion of treated water re-use (E)
 - Industrial inputs (F)
- Potential solution: mass-balance modeling framework
 - Existing platforms
 - ISTREEM
 - E-FAST
 - SHEDS-HT provides critical link
 - Exposure different scenarios

Multisector Engagement for Addressing Emerging Environmental Exposures

Acknowledgement and Questions

- Co-authors and contributors
 - California Department of Toxic Substance Control
 - EPA
 - Ping Sung, Proctor and Gamble
- Reviewers
 - Jeff Minucci
 - Jacob Kvasnicka

•QUESTIONS?