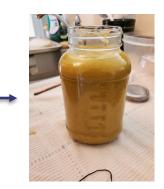
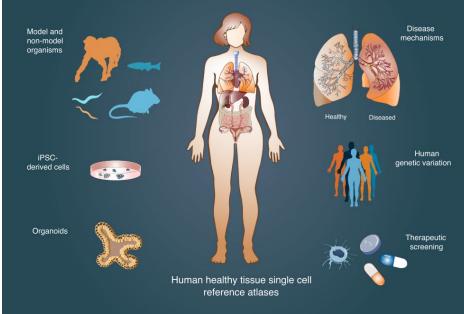


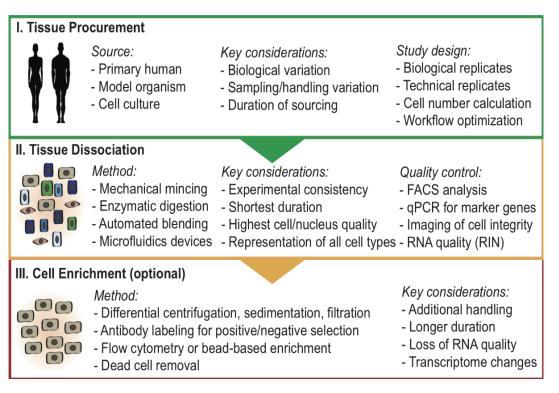
DISCLOSURES

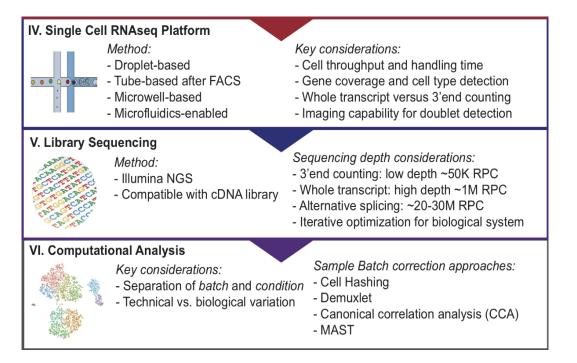
Presenter has no conflicts of interest


This presentation does not necessarily reflect EPA policy. Mention of trade names is not an endorsement or recommendation for use.


SINGLE-CELL SEQUENCING CONCEPTUAL UTILITY

Input Substrate


Amplification/Analysis Substrate


Application of single cell transcriptomics

PRINCIPLES AND STEPS OF SINGLE-CELL RNA-SEQ WORKFLOW

PRINCIPLES AND STEPS OF SINGLE-CELL RNA-SEQ WORKFLOW

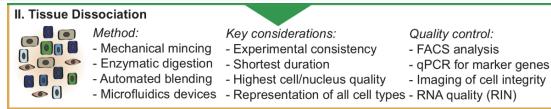
Ø

TISSUE/SAMPLE PROCUREMENT

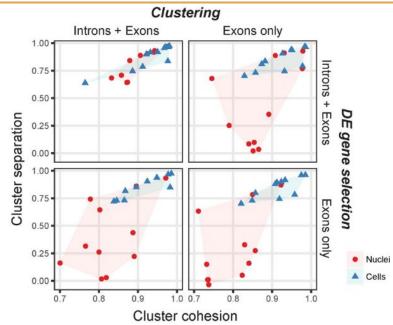
I. Tissue Procurement

- Source:
- Primary human
- Model organism
- Cell culture

Key considerations:


- Biological variation
- Sampling/handling variation
- Duration of sourcing

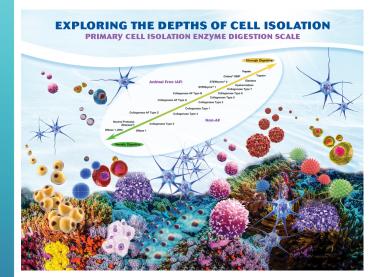
Study design:

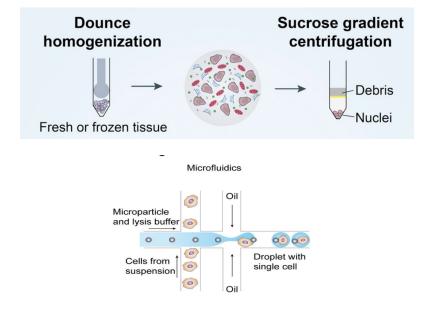

- Biological replicates
- Technical replicates
- Cell number calculation
- Workflow optimization

SINGLE CELLS VS. SINGLE NUCLEI

- Cell State and Harvest Limitations
- Frozen/Post-Mortem Tissue
- Total Detectable Transcripts
- Intronic Sequences
- Nuclear Sequence Proportion

CELL AND NUCLEUS DISSOCIATION


II. Tissue Dissociation


- Method:
- Mechanical mincing
- Enzymatic digestion - Shortest duration
- Automated blending
- Highest cell/nucleus quality

Key considerations:

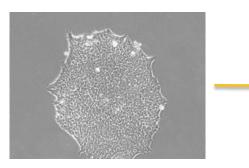
- Experimental consistency

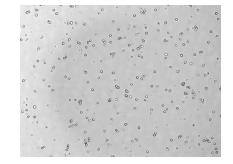
- Quality control:
- FACS analysis
- qPCR for marker genes
- Imaging of cell integrity
- Microfluidics devices Representation of all cell types RNA quality (RIN)

Hu et al, Molecular Cell, 2017

CELL AND NUCLEUS DISSOCIATION

II. Tissue Dissociation


Method:


- Mechanical mincing
- Enzymatic digestion
- Automated blending

- Key considerations:
- Experimental consistency
- Shortest duration
- Highest cell/nucleus quality

Quality control:

- FACS analysis
- qPCR for marker genes
- Imaging of cell integrity
- Microfluidics devices Representation of all cell types RNA quality (RIN)

Results:

Mean Diamete 18.1 micron 11.9 micron

Suspension Buffer Options

Basic: 1XPBS +0.04% BSA

Enhanced for Transcript Stasis: 1XPBS +0.04% BSA +100 mM D-AP5, 5 mg ml⁻¹ of actinomycin D, 20 mM Triptolide, 10 mg ml⁻¹ of anisomycin

Enhanced for Cell Suspension and Separation: 1X PBS + 0.6% BSA + 15% Optiprep Density Gradient Medium

Other Possible Reagents and Changes: 1 nM tetrodotoxin citrate, Kyneurinic Acid, Itraconazole

Key Considerations: Viscosity

Downstream Platforms Transcriptional/Translational Pausing Minimizing Processing Artifacts Cell Clumping

CELL AND NUCLEUS DISSOCIATION

II. Tissue Dissociation

Method:

- Mechanical mincing
- Automated blending

Key considerations: - Experimental consistency

- Highest cell/nucleus quality

- Enzymatic digestion Shortest duration
- FACS analysis
 - qPCR for marker genes

Brain

- Imaging of cell integrity

Quality control:

- Microfluidics devices - Representation of all cell types - RNA quality (RIN)

Tissue Tables (references, arouped by tissue type and species)

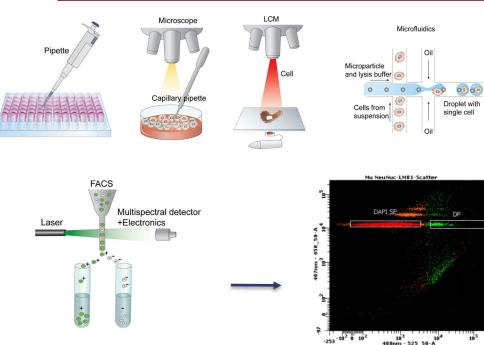
	inter lands (lefeleness, gropped by inter lype and species)				
	Adipose/Fat	Adrenal	Bone	Brain	
0	Cartilage	Colon	Endothelial	Epithelial	
	Eye	Heart	Intestine	Kidney	
	Liver	Lung	Lymph nodes	Mammary	
	Miscellaneous	Muscle	Neural	Pancreas	
SE E	Parotid	Pituitary	Prostate	Reproductive	
	Scales	Skin	Spleen	Stem	
S. C.	Thymus	Thyroid/Parathyroid	Tonsil	Tumor	
Carlot and Carlot					

Vorthingto

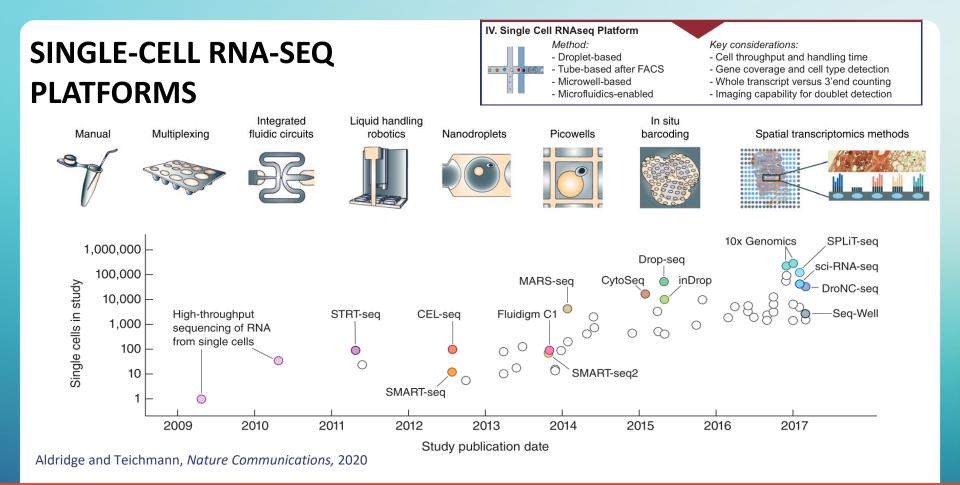
Species	Species Detail	Cell(s)	Enzyme(s)	Medium	Reference	
Human	Human	Microglia	Collagenase Type 1: 300 u/ml Trypsin: 0.125%	DMEM	Mizee, M., Miedema, S., van der Poel, M., Adelia, S., van Strien, M., Melief, J., Smolders, J., Hendrickx, D., Heutinck, K., Harnann, J. and Huitinga, I.: Isolation of Primary Microglia from the Human Post-Mortem Brain: Effects of Ante- and Post- Mortem Variables., Acta Neuropathol 5, 16, 2017 (11604)	
	Human, adult	Neuronal	Papain: 20 u/ml	Neurobasal	Spaethling, J., Na, Y., Lee, J., Ulyanova, A., Baltuch, G., Bell, T., Brem, S., Chen, H., Dueck, H., Fisher, S., Garcia, M., Khaladkar, M., Kung, D., Lucas, T., O'Rourke, D. and Stefanik, D.: Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics., Cell Rep 18, 791-803, 2017 (11673)	
	Human, fetal and mature	Astrocytes and neurons	Papain: 7.5-20 u/ml	RPMI	Zhang, Y., Sloan, S., Clarke, L., Caneda, C., Plaza, C., Blumenthal, P., Vogel, H., Steinberg, G., Edwards, M., Li, G., Duncan, J., Cheshier, S., Shuer, L., Chang, E., Grant, G., Gephart, M. and Barres, B.: Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse., <i>Neuron</i> 89, 37-53, 2016 (11490)	

CELL ENRICHMENT AND ISOLATION

- Limiting Dilution
- Differential Centrifugation
 - Debris Removal and Cell-Size Separation
- Flow Cytometry/Fluorescent Activated Sorting (FACS)
 - Debris Removal
 - Cell-Type Targeting
 - Doublet/Multiplet Filtering
- Immunoprecipitation (IP)
 - Cell-Type Targeting
- Concern: Time
- Goals:
 - Increase Purity/Viability
 - Decrease Debris
 - Target Specific Cell/Nuclei Populations


III. Cell Enrichment (optional)

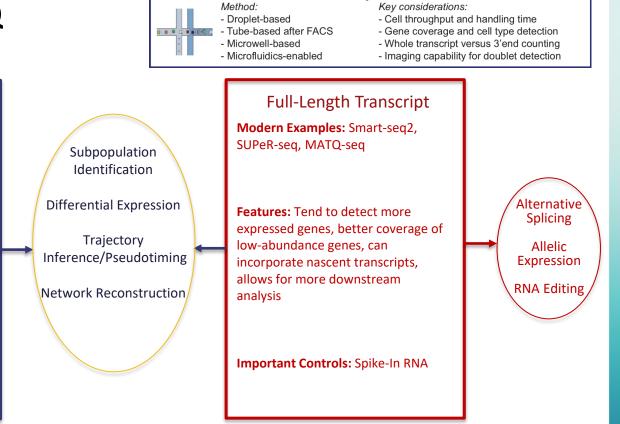
Method:


Differential centrifugation, sedimentation, filtration
Antibody labeling for positive/negative selection
Flow cytometry or bead-based enrichment
Dead cell removal

- Key considerations:
- Additional handling
- Longer duration
- Loss of RNA quality
- Transcriptome changes

Hwang et al, Experimental & Molecular Medicine, 2018

Ø

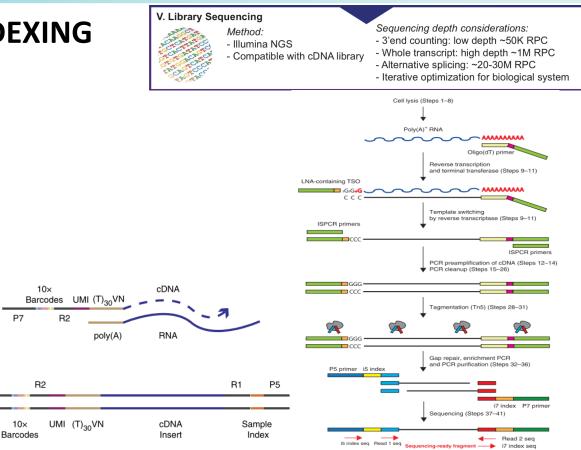


SINGLE-CELL RNA-SEQ PLATFORMS

3' (and 5') End Modern Examples: CEL-seq2, MARS-seq, Drop-seq, InDrop, 10X Chromium, SPLiT-seq, Quartz-Seq2, sci-RNA-seq

Features: Generally higherthroughput, higher scalability, lower cost per cell, require lower sequencing depth

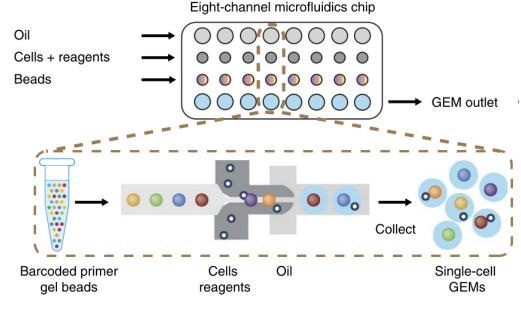
Important Controls: Unique Molecular Identifiers (UMIs)


IV. Single Cell RNAseq Platform

BASIC SC-RNASEQ INDEXING PRINCIPLES

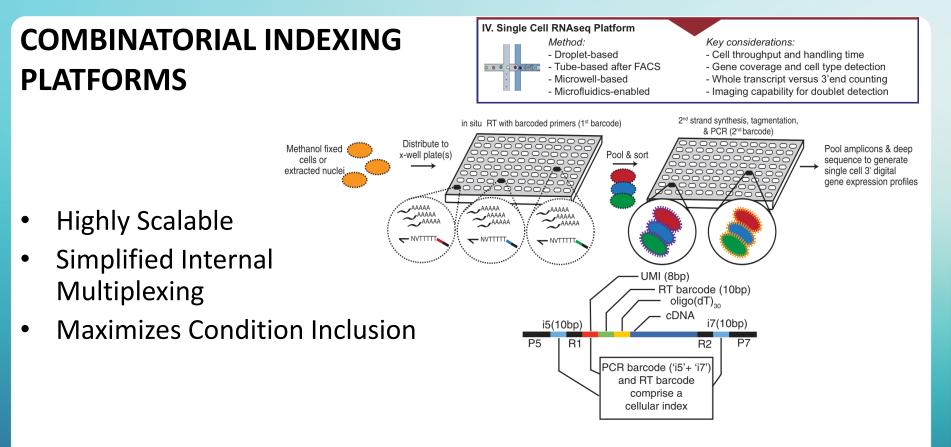
P7

- Applying Barcodes
- UMI use
- Template-Switching


DROPLET-BASED PLATFORMS

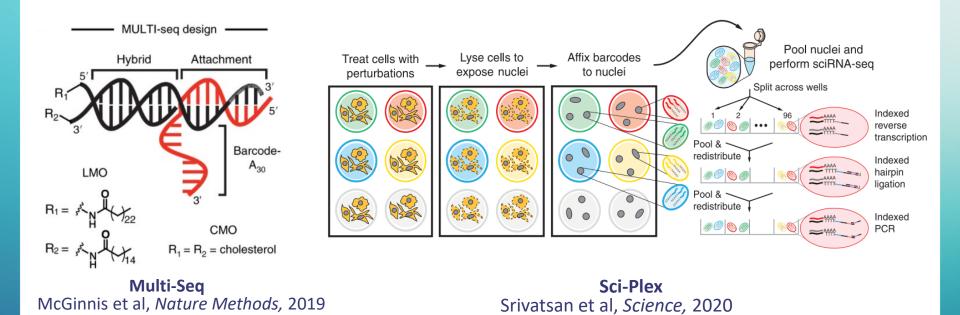
- IV. Single Cell RNAseq Platform
 - Method:
 - Droplet-based
- - Microwell-based
 - Microfluidics-enabled

Key considerations:


- Cell throughput and handling time
- Gene coverage and cell type detection
- Whole transcript versus 3'end counting
- Imaging capability for doublet detection

- Reaction Specificity
- Poisson Inclusion
- Ambient RNA correction

Zheng et al, Nature Communications, 2017

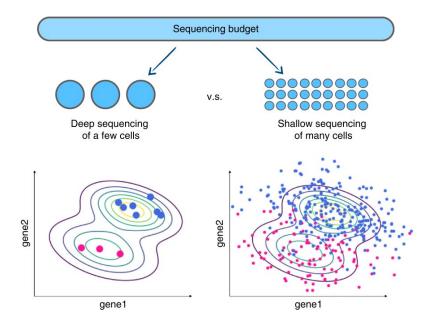


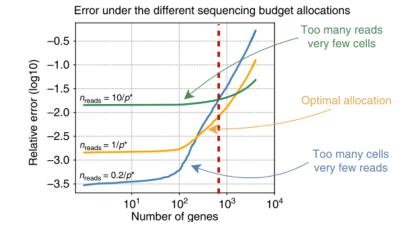
Cao et al, Science, 2017

PLATFORM CONSIDERATIONS: STRATEGIC MULTIPLEXING ADVANCES

Ø

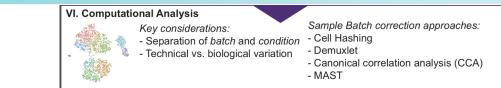
SEQUENCING DEPTH CONSIDERATIONS

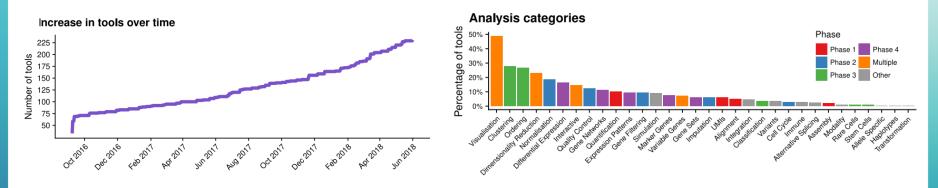

V. Library Sequencing


Method:

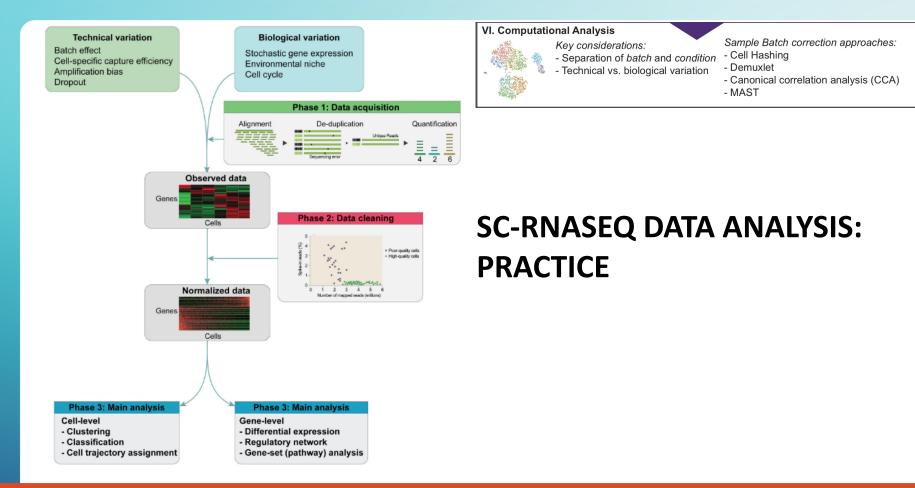
Illumina NGS
 Compatible with cDNA library

Sequencing depth considerations:


- 3'end counting: low depth ~50K RPC
- Whole transcript: high depth ~1M RPC
- Alternative splicing: ~20-30M RPC
- Iterative optimization for biological system

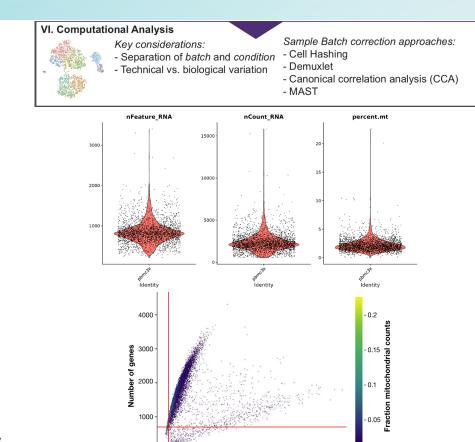


Zhang et al, *Nature Communications*, 2020



SC-RNASEQ DATA ANALYSIS: TOOLS

Zappia et al, PLOS Computational Biology, 2018



Ø

PRE- PROCESSING: QUALITY CONTROL COVARIATES

- Counts per Barcode (Cell)
- Genes per Barcode (Cell)
- Fraction of Mitochondrial Reads
- Batch Effect Corrections
- Multi-Variate Assessment
 - Permissive vs Conservative

Luecken & Theis, *Molecular Systems Biology*, 2019

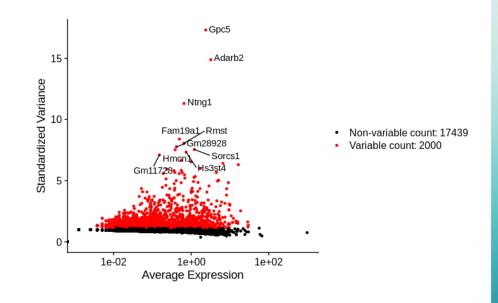
10000

20000

30000

Count depth

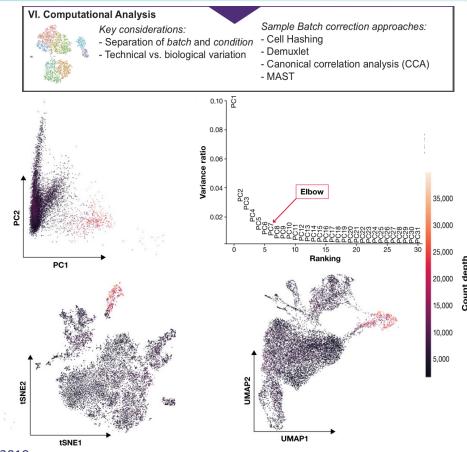

40000


50000

Ø

PRE-PROCESSING: NORMALIZATION AND SCALING

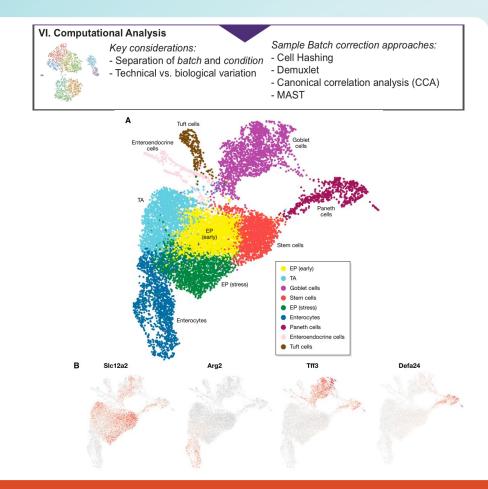
- Critical to obtaining relative gene expression between cells
- Account for variability in count depth and gene dropout
- Within Sample Normalization
 - CPM/C Normalization scran
 - TPM full length vs non
 - Non-Linear Normalization
- Scaling Mean and Variance



DIMENSIONALITY REDUCTION AND VISUALIZATION

- Feature Selection
- Principal Component Analysis
- Diffusion Maps

- T-Distributed Stochastic Neighbor Embedding
- Uniform Approximation and Projection

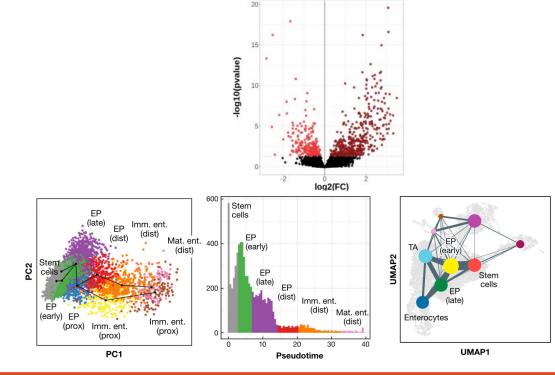


Luecken & Theis, *Molecular Systems Biology*, 2019

Ø

FEATURE DETECTION AND CLUSTERING

- Unsupervised Feature Detection
 - Highest Variable Genes (Seurat FVG)
 - Spike-In Based (BASiCS)
 - Dropout Based (M3Drop)
- Clustering vs Community Detection
 - K-means
 - K-Nearest Neighbor
- "Marker" Genes and "Cell Types"


DIFFERENTIAL EXPRESSION AND TRAJECTORY INFERENCE

- Differential Expression
 - Bulk Tools vs SC Tools
 - MAST
- Trajectory Inference/Pseudotiming
 - Differentiation and Progressive Cell Change
 - Linear Minimum variability
 - Monocole

- Key considerations:
- Separation of *batch* and *condition* - Technical vs. biological variation
- Sample Batch correction approaches:
- Cell Hashing
- Demuxlet
- Canonical correlation analysis (CCA)
- MAST

Luecken & Theis, Molecular Systems Biology, 2019

COMMON PLATFORMS AND ANALYSIS TOOLS

Methods	Transcript coverage	UMI possibility	Strand specific	References
Tang method	Nearly full-length	No	No	Tang et al., 2009
Quartz-Seq	Full-length	No	No	Sasagawa et al., 2013
SUPeR-seq	Full-length	No	No	Fan X. et al., 2015
Smart-seq	Full-length	No	No	Ramskold et al., 2012
Smart-seq2	Full-length	No	No	Picelli et al., 2013
MATQ-seq	Full-length	Yes	Yes	Sheng et al., 2017
STRT-seq and STRT/C1	5'-only	Yes	Yes	Islam et al., 2011, 2012
CEL-seq	3'-only	Yes	Yes	Hashimshony et al., 2012
CEL-seq2	3'-only	Yes	Yes	Hashimshony et al., 2016
MARS-seq	3'-only	Yes	Yes	Jaitin et al., 2014
CytoSeq	3'-only	Yes	Yes	Fan H.C. et al., 2015
Drop-seq	3'-only	Yes	Yes	Macosko et al., 2015
InDrop	3'-only	Yes	Yes	Klein et al., 2015
Chromium	3'-only	Yes	Yes	Zheng et al., 2017
SPLiT-seq	3'-only	Yes	Yes	Rosenberg et al., 2018
sci-RNA-seq	3'-only	Yes	Yes	Cao et al., 2017
Seq-Well	3'-only	Yes	Yes	Gierahn et al., 2017
DroNC-seq	3'-only	Yes	Yes	Habib et al., 2017
Quartz-Seq2	3'-only	Yes	Yes	Sasagawa et al., 2018

Tools	Category	URL	References	
TopHat2	Read mapping	https://ccb.jhu.edu/ software/tophat/ index.shtml	Kim et al., 2013	
STAR	Read mapping	https://github.com/ alexdobin/STAR	Dobin and Gingeras 2015	
HISAT2	Read mapping	https://ccb.jhu.edu/ software/hisat2/ index.shtml	Kim et al., 2015	
Cufflinks	Expression quantification	https: //github.com/cole- trapnell-lab/cufflinks	Trapnell et al., 2010	
RSEM	Expression quantification	https://github.com/ deweylab/RSEM	Li and Dewey, 2011	
StringTie	Expression quantification	https://github.com/ gpertea/stringtie	Pertea et al., 2015	

Chen et al, Frontiers in Genetics, 2019

COMMON PLATFORMS AND ANALYSIS TOOLS

Methods	URL	References
SC3	http://bioconductor.org/packages/SC3	Kiselev et al., 2017
ZIFA	https://github.com/epierson9/ZIFA	Pierson and Yau, 2015
Destiny	https://github.com/theislab/destiny	Angerer et al., 2016
SNN-Cliq	http://bioinfo.uncc.edu/SNNCliq/	Xu and Su, 2015
RaceID	https://github.com/dgrun/RaceID	Grun et al., 2015
SCUBA	https://github.com/gcyuan/SCUBA	Marco et al., 2014
BackSPIN	https:	Zeisel et al., 2015
	//github.com/linnarsson-lab/BackSPIN	
PAGODA	http://hms-dbmi.github.io/scde/	Fan et al., 2016
CIDR	https://github.com/VCCRI/CIDR	Lin et al., 2017
pcaReduce	https:	Zurauskiene and Yau,
	//github.com/JustinaZ/pcaReduce	2016
Seurat	https://github.com/satijalab/seurat	Satija et al., 2015
TSCAN	https://github.com/zji90/TSCAN	Ji and Ji, 2016

Methods	Category	URL	Referenes	Tools	Dimensionality	URL	References
ROTS	Single cell	https:	Seyednasrollah		reduction		
		//bioconductor.org/packages/ release/bioc/html/ROTS.html	et al., 2016	Monocle	ICA	http://cole-trapnell-lab. github.io/monocle-release/	Trapnell et al., 2014
- MAST	Single cell	https: //github.com/RGLab/MAST	Finak et al., 2015	Waterfall	PCA	https: //www.cell.com/cms/10.	Shin et al., 2015
BCseq	Single cell	https: //bioconductor.org/packages/ devel/bioc/html/bcSeq.html	Chen and Zheng, 2018			1016/j.stem.2015.07.013/ attachment/3e966901- 034f-418a-a439- 996c50292a11/mmc9.zip	
SCDE	Single cell	http: //hms-dbmi.github.io/scde/	Kharchenko et al., 2014	Wishbone	Diffusion maps	https://github.com/ ManuSetty/wishbone	Setty et al., 2016
DEsingle	Single cell	https://bioconductor.org/ packages/DEsingle	Miao et al., 2018	GrandPrix	Gaussian Process Latent	https://github.com/ ManchesterBioinference/	Ahmed et al., 2019
Cencus	Single cell	http://cole-trapnell-lab.github.	Qiu et al., 2017		Variable Model	GrandPrix	
D3E	Single cell	io/monocle-release/ https:	Delmans and	SCUBA	t-SNE	https://github.com/gcyuan/ SCUBA	Marco et al., 2014
		//github.com/hemberg-lab/D3E	Hemberg, 2016	DPT	Diffusion maps	https://media.nature.com/	Haghverdi et al.,
BPSC	Single cell	https: //github.com/nghiavtr/BPSC	Vu et al., 2016			original/nature-assets/ nmeth/journal/v13/n10/	2016
DESeq2	Bulk	https: //bioconductor.org/packages/ release/bioc/html/DESeg2.html	Love et al., 2014	TSCAN	PCA	extref/nmeth.3971-S3.zip https: //github.com/zji90/TSCAN	Ji and Ji, 2016
edgeR	Bulk	https: //bioconductor.org/packages/	Robinson et al., 2010	Monocle2	RGE	http://cole-trapnell-lab. github.io/monocle-release/	Qiu et al., 2017
		release/bioc/html/edgeR.html		Slingshot	Any	https://github.com/ kstreet13/slingshot	Street et al., 2018
Limma	Bulk	http: //bioconductor.org/packages/ release/bioc/html/limma.html	Ritchie et al., 2015	CellRouter	Any	https://github.com/ edroaldo/cellrouter	Lummertz da Rocha et al., 2018
Ballgown	Bulk	http://www.bioconductor.org/ packages/release/bioc/html/ ballgown.html	Frazee et al., 2015				

Ø

ACKNOWLEDGMENTS

- US EPA Chorley Lab
 - Dr. Brian Chorley
 - Gleta Carswell
 - Gail Nelson
 - Nyssa Tucker
- US EPA Hunter Lab
 - Dr. Sid Hunter
 - Susan Jeffay
 - Sarah Park
 - Jessica Conley
- Duke University West Lab
 - Dr. Anne West
 - Melyssa Minto
 - Luke Bartelt

QUESTIONS

Ø