Incorporating New Approach
Methodologies in Risk Assessments

Federal State Toxicology Risk Assessment Committee (FSTRAC)
April 21,2021

Dr. Maureen R. Gwinn (gwinn.maureen@epa.gov)
Center for Computational Toxicology and Exposure
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, NC

The views presented are those of the author and do not necessarily reflect the views of the US EPA.


mailto:gwinn.maureen@epa.gov

\‘&’EPA Definition(s) of New Approach Methods (NAMs)

* Commonly defined to include in silico
approaches, in chemico and in vitro assays, as well

as the inclusion of information from the
MECHA

M M o United States
exposure of chemicals in the context of hazard o e —
New Approach Methodologig
in Regulatory Science assessment.
Proceedings of a seientific works Strategic Plan t}) Promote the De \‘ P! t and Impl tation of
Alternative Test Methods Within the TSCA Program
Helsinki, 19—20 April 2016

* Recently defined in the EPA’s TSCA Alternative
Toxicity Strategy as:

* a broadly descriptive reference to any
technology, methodology, approach, or
combination thereof that can be used to
provide information on chemical hazard

June 22, 2018

and risk assessment that avoids the use of
intact animals.

https://echa.europa.eu/documents/10162/22816069/scientific_ ws proceedings en.pdf

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-
reduce




v EPA Examples of NAMs

\ * Insilico (e.g. QSAR and Read-across) |
' — Estimate effects and doses S
. Detector Oligo Annealing ﬁ% =
" - " — Consensus exposure modeling s
—0— * |n vitro assays S D
— Broad / screening (transcriptomics, cell painting) TS

— Targeted (receptors, enzymes)
— In vitro PODs, modes / mechanisms of action
* Invitro Toxicokinetics
— Allow conversion of an in vitro POD to in vivo (IVIVE)
* High-throughput Exposure Measurements
— To fill data gaps in monitoring data
e Computer models

— Hazard models to integrate multiple in silico and in vitro data
streams

— Exposure models to increase information on different
pathways of exposure




\QIEPA Where can NAMs ““fit”’ in Risk Assessment?

Provide Mechanistic Support for Tiered testing with High-
Hazard ID throughput screening

* Hazard characterization

D6 aceumiiticn
w0

* Dose-Response

° Exposure assessment

IARC Monographs ...and

110, 112, 113
Bundy et al unpublished more!

Prioritization of Chemicals for
Further Testing

In vitro point-of-departure
development from NAMs

A

High-throughput toxicokinetic
component

EPA ToxCast Phase |
and Il Chemicals

° . ,{{J;j;’;f;f

Human Liver  Human Plasma
Metabolism Protein Binding
Required to Achieve

Population-Based
IVIVE Model
Steady State Plasma

ATG TRANS "
ATG Cis R — -
ﬂm —,  Plasma Exposure Concentrations

In Vitro Potency
Value

Administered Dose

Concentration Route Equivalent to In Vitro
I Tox21BLA Upper 95% Percentile Css Bioactivity
- inding y . JoLiue Among 100 Healthy
= n - i Individuals of Both Sexes Roverse
Tox21 BLA WS En A ED Vs El Dosimetry
Tox21 LUC ERinduced N SEE Rotroff et al., Tox Sci., 2010
Prolferation o Wetrmore et al., Tox Sci,, 2012
Lo Wetmore et al., Tox Sci., 2015

Judson et al., 2015 Paul-Friedman et al, 2020



Tiered Hazard Evaluation Approach

<vEPA

Tier 1
Chemical Structure Broad Coverage, Multiple cell types
and Properties High Content Assay(s) +{- metabolic competence
l L 4
Mo Defined Biological Defined Biological Target
Target or Pathway | or Pathway ‘
+ Tier 2
LI Orthogonal confirmation
Assays

Tier 3 :

g ]

Existing AOP MNo AOP
In Vitro COrganotypic Assays and Identify Likely Tissue,
Assays for other KEs Microphysiological Organ, or Organism Effect
and Systems Modeling Systems and Susceptible Populations
' y
¥ Y Y

Estimate Point-of-Departure
Based on Likely Tissue- or
Organ-level Effect without AOP

Estimate Point-of-Departure
Based on AOP

Estimate Point-of-Departure
Based on Biological Pathway or
Cellular Phenotype Perturbation

The NexGen Blueprint of CompTox at USEPA
Tox. Sci. 2019; 169(2):317-322



Potential Challenges with New Approach Methods

‘Incomplete coverage of important
pathways (i.e., biological space)

*Limited higher order biological
interactions (i.e., cell-cell, tissue, and
organ-level)

Limited or lack of relevant
metabolism

*Addressing uncertainties
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&n Incorporating High-Content Technologies
i’IEIDA to Increase Biological Coverage

Whole Genome Transcriptomics

R M s
<y ¥ . .
A T e purihed RNA o Lystes Mode-of-Action Identification
I;/\qm 3 _RNA * 5
[ Concentration R —— 8 —
Res ponse Excess Oligo Removal P:_ — Amiodarone hydrochboride Reserpine \
Thousands of Screening Detector Ol Ligation v < Vi .
Chemicals . - ‘ N 1S =~ 9
= - with Tagged Primers - o sampeTag 1 i i - .
+ m‘» AF"‘{\&H‘
Samplelagz.—’ / . "

+ j
Pool Library, Concentrate/Purify
4

Sequence

Concentration Response Modeling

Multi-Parameter Cellular Phenotypic
Profiling

Multiple Cell Types

DNA RNA/ER Mito H-33342 Casp3/7 PI

Log(Expression)

Doss

* 384-well, laboratory automation compatible

* Relatively inexpensive ($2.50 - $1,500 per chemical)

* Broad complementary coverage of molecular and
phenotypic responses

4 Datal2 — Model

Nyffeler et al. SLAS Discov. 2021 Feb;26(2):292-308. doi: 10.1177/2472555220950245

* Integration of reference materials and controls for Harrill et al. Toxicol Sci. 2021 Feb 4;kfab009. doi: 10.1093/toxsci/kfab009. Online ahead of print
performance standards



<vEPA

Orthogonal InVitro Assays and Computational Modeling

= Developed multiple high-throughput

screening assays

* Use multiple assays per pathway

— Different technologies

— Different points in pathway

* No assay is perfect
— Assay Interference
— Noise

= Use a computational model to

integrate assays

* Model creates a composite dose-response
curve for each chemical to summarize

results from all assays

MIE Key Events Adverse Outcome

Cellular
‘ ’ »

MIE

Key Events

Adverse Outcomes

Molecular Cellular Organ
interaction = Response = Organ =» System '::>-» Population

Increased AR Altered Gene
Increased ER -
ER Agonism - > uterine > - Antagonism = Regulation =) = = =
Activation weight
Cell -
“MOrgan weight /
" z
Receptor ranslocation ey
and co-activator "
Uterotrophic Binding i e ‘Transcription
o oEco TG40
) NVS_NR_hAR OT_AR_ARSRC1_0480 OECDTG 458
NVS_NR_cAR GT_AR_ARSRC1_0960
‘ R fasa H acen NVS_NR_AR UPITT_HCI_U20S_AR_TIF2_Nucleoli Antagonist TOX21_AR_BLA_Antagonist_ratio

[ ER Model |

Estrogen Receptor Computational
Model

Judson et al., Envi Health Pers (2015)

R agonist pathway
tagonist pathway

receptor pathway

Tox21 BLA
Tox21 LUC

ACEA

TOX21_AR_LUC_MDAKB2_Antagonist_0 5n\_R1881

Androgen Receptor
Computational Model

Kleinstreuer et al., Chem Res Toxicol (2017)

T nesmy
() Koy Event Node
. Agenist pathway

. Antagonist pathway
O Shared pathway

U Interference process @ N6
(assay or node-specific |

N

fae} .
examples) | Muclear Translocation/ | )
i Coactivator interaction |
& @ . RNA - @) m
“ = Transeription 8
@ Inacti i ﬁ
Transc

ive RNA
ription Protein
Production

cell g

Proliferation (G @



< EPA

Normal Human
Thyroid Gland

)t

100 pm

Developing Organotypic Culture Models to ldentify Tissue/Organ
Effects

Attachment and
Outgrowth of Cells

Harvest Follicle
Fragments

100pm

Blue, Hoechst 33342 /DNA
Green, Phalloidin/Actin

% DMSO

% DMSO

200

200

T4 Hormone: Control

2D Cell Expansion

T4 Hormone: Sodium Perchlorate

ICso(uM): 3.233

< 3BMAD

log10 [M]

% DMSO

% DMSO

2D Monolayer
Culture

T4 Hormone: Methimazole

2007 16, (1M): 0.129
150
100
50
nl T T T T 1
42 0 8 ] 4 2
log10 [M]
T4 Hormone: VA-K-14
2007 1c5(1M): 5.614
150 o
100 °
]
g 3BMAD
50
42 40 8 & 4 2

log10 [M]

% DMSO

% DMSO

3D Sandwich
Culture

T4 Hormone: 6-Propyl-2-thiouracil
2007 ¢, (uM): 0.172

150

100

0+ T T T T 1
12 -10 -8 ] 4 -2
log10 [M]
T4 Hormone: Benzophenone 3
200
150 o
e ° b °
100 ° l o ®
o
o0 8 g88 .2
o SRR -ogreeee 3BMAD
50
0+ -
A2 10 E ] 4 2
log10 [M]

Deisenroth et al. Toxicological Sciences, Volume 174, Issue 1, March 2020, Pages 63-78,
https://doi.org/10.1093/toxsci/kfz238



Metabolic Competence

Retrofitting Metabolism:AIME method suitable for biochemical- and cell-based HTS
assays

* Screening Throughput: Adaptable to 96- and 384-well screening platforms

* Regulatory Relevance: Integration of phase | liver metabolism for hazard identification
of parent and metabolite endocrine activity

* Results: Evaluation of a 63 chemical test set supports metabolic screening for -
* Refinement of prioritization for ER-active substances based on metabolite effects
* In some cases, supports more accurate prediction of in vivo effects for
biotransformed substances

A Ethylparaben B trans-Stilbene
MEIE I .‘ T ‘ THIE -O-Parentr 1507
TTT1TTTTT1TTTTHTTWTHTJ : 3 & Vetabolism 3
o ® 1004
Alginate Immobilization of b 5 & sl
Metabolic Enzymes (AIME) = #
Method: S9 fraction immobilization VM7LUC4E2 :
. . - -10 -8 -6 -4 -2 10 -8 6 4 2
in algmat3e8r:|crospheres on 96- or Log Compound (M) Log Compound (M)
-well peg lids
Bioinactivation Bioactivation

Parallel evaluation of parent compound and metabolites identifies false positive and false negative effects

Collaboration with Unilever Deisenroth et al. Toxicological Sciences, Volume 178, Issue 2, December 2020, Pages 281-301,
https://doi.org/10.1093/toxsci/kfaal47

-
-+

Parent
Metabolism

10



< EPA Uncertainty Analysis

Major sources of uncertainty:
I. Qualitative: is an assay “hit” really due to ER/AR activity, or assay interference?
2. Quantitative: uncertainty around the true potency value (AC50)

Both are now incorporated into the ER and AR model results through the development of statistical methods have been
developed to establish uncertainty bounds around potency and efficacy values. These statistical methods involve resampling
the data and refitting the concentration response curves thousands of times to quantitatively estimate the uncertainty.

Bootstrap Uncertainty in In Vitro Potency Computational Modeling Propagation of Uncertainty in Modeling
Values Output
,._/ Yt ¥ © ] Cem
! - i 1__1, . " E o8- .
T . O i coarn e : P 5 |
i S s -
= et F o % = e . (=] #4s
P ' B e ‘ = o e,
I / __f 74 o “aensi
‘:i ’ l& ﬁ i i I T T tteitesee]esneribesssasses
. fi: . / F : ER Pathway Model Chemical Rank

18 ER In Vitro Assays

Watt and Judson, PLOS One 2018 doi.org/10.137/journal.pone.0196963 1


https://doi.org/10.1371/journal.pone.0196963

o Linking Bioactivity and Exposure (i.e. Risk
SEPA g y p ( )

(mg/kglday)

 High throughput risk
characterization relies on three
components:

lent or Predicted Exposure

1. High throughput hazard (i.e.
bioactivity) characterization

Estimated Oral Equiva

2. High throughput exposure

Potential Hazard

forecasts >

3. High throughput %
toxicocokinetics (i.e. e >
dosimetry)

OWer  pedium Risk ~ Higher
sk Risk

SAP Dec 2014: http://www?2.epa.gov/sap/meeting-materials-december-2-4-2014-scientific-advisory-panel
ExpoCast: http://www2.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research
Wambaugh 2015. “A Systems Approach to Exposure Modeling (ExpoCast)”
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http://www2.epa.gov/sap/meeting-materials-december-2-4-2014-scientific-advisory-panel
http://www2.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research

a2 Adding the High-Throughput Toxicokinetic
- EPA g g ghp

Component
EPA ToxCast Phase |
and Il Chemicals
I e Currently evaluated ~700 ToxCast Phase | and Il
¥ - chemicals
s _ * Models available through ‘“httk” R package
w < { . (https://cran.r-project.org/web/packages/httk/)
I \_
Human Liver Human Plasma
Metabolism Protein Binding

l | In Vitro Potency

Value

Population-Based

IVIVE Model Administered Dose

Required to Achieve
Steady State Plasma
Concentrations
Equivalent to In Vitro

Upper 95t Percentile Css Bioactivity
Among 100 Healthy
Individuals of Both Sexes
from 20 to 50 Yrs Old

Plasma Exposure T

Concentration Route

Reverse Dosimetry

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2015
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https://cran.r-project.org/web/packages/httk/

<vEPA

Development of a PODy M

ToxCast AC50s
(uM)

ASTAR HIPPTox
EC10s (uM)

~~

Apply high-
throughput
toxicokinetics
(httk) to get

mg/kg/day

5

EPA - ToxValDB

EPA - ExpoCast

Health Canada

Bioactivity-exposure POD, _, : POD,, ratio

Health Canada ratio

EFSA

Exposure

ECHA

Is BER useful for prioritization? Is log10-POD ratio > 0 for most chemicals?

Are there addressable weaknesses? Can we learn from log10-POD ratio < 0? 0 OIS, e

NOAEL, or
LOAEL
* Oral exposures

* Mg/kg/day
Paul Friedman et al. 2020 Toxicol Sci. 2020 Jan 1;173(1):202-225. doi: 10.1093/toxsci/kfz201.



Chemical

POD ratio >0

Triphenyltin hydroxide
Rhodamine 6G
Propoxycarbazone-sodium
Perfluorohexanoic acid
Penoxsulam

Bt
Octylbicycloheptenedicarboximi

Octrizole
Naphthalene
Mifepristone

Maleic hydrazide
Flumetralin
Fenpyroximate (Z,E)
Disulfiram
Diflubenzuron
Diallyl phthalate
Coumarin
Clopyralid
Chloramben
Bispyribac-sodium
Bensulfuron-methyl
Aspirin

Anthracene

17.

3 2 4 0 1 2
log10 mg/kg-bw/day

Trifloxystrobin 4
Spirodiclofen 4
Reserpine -
Pyraclostrobin -
Propetamphos -
Piperonyl butoxide 4
Pentachlorophenol -
ovaluron 4

Nicotine 4
N,N-Diethylaniline -

N thglperf
N-Ethylperfluorooctanesulfonam 4
Metolachlor 4
Isoxaflutole 4
Fluazifop-butyl 4
Fenamidone -
Etoxazole -
Ethoxyquin -
ndrin 4
Docusate sodium 4
Diethylstilbestrol 4
Candoxatril 4
Zoxystrobin -
Acibenzolar-S-methyl 4
3‘-Azid0-3‘;de0xythymid§ne )

3 2 4 0o 1 2
log10 mg/kg-bw/day

Trichlorfon 4
Tribufos 4
Thiamethoxam 4
Tefluthrin -
Tebuthiuron -
Strychnine 1
Pymetrozine 4
Profenofos 4
p-Cresol 4

Oxamyl 4

Norflurazon -
Nitrobenzene
Mevinphos 4

Methyl parathion 4
Methamidophos -
Malaoxon -
Hexazinone 4
Heptachlor 4
Fosthiazate 4
Formetanate hydrochloride 4
Flufenacet -

Fenthion q
Fenamiphos -
Ethoprop -

Diuron 4
Dimethylarsinic acid 4
Dimethoate 1
Dicrotophos -
Dichlorodiphenyitrichloroethane -
Dichlorodiphenyltrichloroethan 4
Dazomet 1
Daminozide 4
Codeine -

400/448 chemicals =
89% of the time this
naive approach appears
conservative

POD, v
POD

(most of the time

traditiona

POD ratio

<0

8 -7 6 5 4 3 -2 1 0 1 2 3 4 5
log10 mg/kg-bw/day

© ExpoCast ® POD-NAM 4 maxAED = POD-traditional

Carboxin -
Carbosulfan 4
Carbendazim -
Carbaryl 4
Bromoxynil 4
Bisphenol A
Bendiocarb -
Azinphos-methyl 4
Azamethiphos -
Alachlor 1
Acephate
2,6-Dinitrotoluene 4
2,6-Dimethylphenol 4

3 2 4 0 1
log10 mg/kg-bw/day

A
IN

48/448 chemicals =

11% where PODy,y, > PODy,gitional 15

Paul Friedman et al. 2020 Toxicol Sci. 2020 Jan 1;173(1):202-225. doi: 10.1093/toxsci/kfz201.



Public Information Curation and Synthesis (PICS)
Approach

Chemicals to be Evaluated

/ Human Health-to-Exposure Ratio \
Carcinogenicity
Genotoxicity
Ecological Hazard
Susceptible Populations
Persistence and Bioaccumulation

K Skin Sensitization Skin/Eye Irritation/

Scientific Domain Metric
(SDM)

A

v

/

Relevant Studies and
Information

\

o

)

[ Modifying criteria

)

!

%

Information Availability Metric
(1AM)

60 80 100

Scientific Domain Metric
40

20

Proof of Concept

A
o o 2 4
7 Ao o &
K°B
1 e ., 8.7cdp 3
. . 28,8908t
9& 9 o @ V]
- o o o % kv o
AV v% ovﬁ o
o
o 4
I I T I I I
0 20 40 60 80 100

Information Availability Metric
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Summary

Incorporating new technologies and innovations in
toxicology can more rapidly and inexpensively screen
chemicals for potential adverse biological effects.

EPA has made great advances in the development of NAMs
for filling information gaps for decision-making and
integrating those tools and data streams into chemical risk
assessment.

EPA has worked with other stakeholders to leverage
resources and develop NAMs that can support different
regulatory contexts.

Building confidence in the use of NAMs for regulatory
decision-making is key to the increased implementation of
these methods.
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Questions?
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