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Overview

 New Approach Methods (NAMs) and 
Toxicokinetic NAMs
 Introducing in vitro-in vivo extrapolation (IVIVE)
 In vitro toxicokinetic assays
 types, by tissue or parameter
 experimental considerations
 Incorporating population variability
Wrap-Up
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Abbreviations
ADR: adverse drug reaction
AF: aqueous fraction
BBB: blood brain barrier
Css: steady-state concentration
Clh: hepatic clearance
Clint: intrinsic clearance
Clr: renal clearance
Fu: fraction unbound
CNS: central nervous system
GFR: glomerular filtration rate
HKAF: human toxicokinetic 

adjustment factor
HT: high throughput
HTTK: high throughput toxicokinetics
IV: intravenous
IVIVC: in vitro-in vivo correlation

IVIVE: in vitro-in vivo extrapolation
NAMs: new approach methods
NHANES: National Health and Nutrition 

Examination Survey
Papp: apparent permeability
PFAS: per and polyfluoroalkyl substances
PO: per os (i.e., by mouth)
POD: point of departure
PTFE: polytetrafluoroethylene
QSAR: quantitative structure-activity 

relationship
Ql: hepatic blood flow
RED: rapid equilibrium dialysis
TSCA: Toxic Substances Control Act
TK: toxicokinetics
Vd: Volume of distribution
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New Approach Methods (NAMs)

 Commonly defined to include in silico 
approaches,  in chemico and in vitro 
assays, as well as inclusion of information 
from the exposure of chemicals in the 
context of hazard assessment.

 Recently defined in the EPA’s TSCA 
Alternative Toxicity Strategy as:
 “A broadly descriptive reference to any 

technology, methodology, approach, or 
combination thereof that can be used to 
provide information on chemical hazard and 
risk assessment that avoids the use of intact 
animals.”

https://echa.europa.eu/documents/10162/22816069/scientific_ws_proceedings_en.pdf

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-
reduce
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NAMs in Risk Evaluation

In silico (e.g., QSAR and Read-across)
- Estimate effects and doses
- Consensus exposure modeling

In vitro assays
- Broad / screening (transcriptomics, phenotypic 

profiling)
- Targeted (receptors, enzymes)
- In vitro PODs, modes/mechanisms of action

In vitro Toxicokinetics
- Allows conversion of an in vitro POD to in vivo

High-Throughput Exposure Measurements
- To fill data gaps in monitoring data

Computer modeling
- Hazard models to integrate multiple in silico and in 

vitro data streams
- Exposure models to increase information on 

different pathways of exposure
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Where can NAMs “fit” in Risk Assessment?

6

• Hazard characterization

• Dose-Response

• Exposure assessment

Provide Mechanistic Support for 
Hazard Identification

Prioritization of Chemicals for 
Further Testing 

IARC Monographs 
110, 112, 113

Judson et al., 2015

In vitro point-of-departure 
development from NAMs

Paul-Friedman et al, 2020

Tiered testing with High-
throughput screening

Bundy et al unpublished

High-throughput toxicokinetic 
component

…and 
more!
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Many in vitro systems:
• lack consideration of biotransformation capabilities

• Overestimation of hazard for chemicals rapidly cleared in vivo
• Underestimation of hazard for chemicals bioactivated in vivo

• lack consideration of exposure route
• lack consideration of susceptible populations / life stages
• In vitro potency estimates are often not adjusted for chemical availability 

in the in vitro system (ie, in vitro disposition)

Toxicokinetic NAMs

Risk
Toxico-
kinetics Exposure

Hazard

“Acceptance and use of in vitro data for hazard identification
is limited by uncertainties associated with exposure 

characterization and metabolism”

*“A Proof-of-Concept Case Study Integrating Publicly Available 
Information to Screen Candidates for Chemical Prioritization under TSCA”
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High throughput in vitro 
screening can be used to  
estimate doses needed to
cause bioactivity

Exposure intake rates  can 
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Wambaugh et al., 2014
Wetmore et al.,  2015
Ring et al. (2017)
And others…

NAMs for Prioritization
Integrating Hazard, TK, and Exposure
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Integrating Human Dosimetry and Exposure with the 
ToxCast In Vitro Assays

Reverse Dosimetry

ExposurePlasma 
Concentration

In Vitro Potency 
Value

Administered Dose 
Required to Achieve 
Steady State Plasma 

Concentrations 
Equivalent to In Vitro

Bioactivity (mg/kg/day)

Hundreds of In Vitro 
ToxCast Assays

Least Sensitive 
Assay

Most
Sensitive 

Assay

Human Liver 
Metabolism

Human Plasma 
Protein Binding

Population-Based  
IVIVE Model

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012

Upper 95th Percentile Css 
Among 10,000 Healthy 

Individuals of Both Sexes 
from 20 to 50 Yrs Old

Chemicals Of
Interest

Population-Based  
IVIVE Model
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Integrating Human Dosimetry and Exposure with the 
ToxCast In Vitro Assays

Oral Dose Required to 
Achieve Steady State 

Plasma Concentrations 
Equivalent to In Vitro

Bioactivity

Least Sensitive 
Assay
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What are humans 
exposed to?

?

?

?

Chemical

Most Sensitive 
Assay

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
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So…how do we get from here…

Chemicals Of
Interest

Human Liver 
Metabolism

Human Plasma 
Protein Binding
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So…how do we get from here…

Chemicals Of
Interest

Human Liver 
Metabolism

Human Plasma 
Protein Binding

(which really is evolving to this…)

Apical

+

Basolateral

Hepatic Clearance (Clint)Hepatocytes

Plasma

Plasma Protein 
Binding (fu)

Caco-2 cells

Apparent 
permeability (Papp)

Renal clearance
Renal reuptake

Transporter assays

Isozyme-specific 
clearance 

(hepatic, renal, intestinal)

Kidney
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To here?…

Population-Based  
IVIVE Model

Upper 95th Percentile 
Css Among 10,000 

Healthy Individuals of 
Both Sexes from 20 to 

50 Yrs Old
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In Vitro-In Vivo Extrapolation (IVIVE)
In VitroToxicokinetic Assays
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Caco-2 cells

Apparent 
permeability (Papp)

Apical

Basolateral

Renal clearance
Renal reuptake

Transporter assays

Isozyme-specific 
clearance 

(hepatic, renal, intestinal)

+

IVIVE Incorporates:

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2014

Wetmore et al., Tox Sci., 2015
Wambaugh et al.,Tox Sci., 2015
Wambaugh et al., Tox Sci. 2019
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In Vitro-In Vivo Extrapolation (IVIVE)
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+
Physiology
Organ-specific info
- (in vitro and in vivo -> for scaling/extrapolation)
Population
- Incorporation of physiologic and TK differences to
quantitate population and life-stage TK variability

IVIVE Incorporates:

Underpinned by:
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-- IVIVE in a HT Environment --
Modeling In Vivo Pharmacokinetics Using In Vitro Assays

In Vitro - In Vivo
Extrapolation

CLR CLH+

CLR = FUB * GFR              where GFR ≈ 6.7 L/hr

CLH =    where QL ≈ 90 L/hr
FUB * QL * CLInt

QL + FUB * CLInt

CLInt = HPGL * VL * CLinvitro where HPGL ≈ 137 million cells/g

VL ≈ 1820 g

• 100% Oral bioavailability assumed 
for both CLR and CLH

• Kinetics are assumed to be linear

[Conc]SS =
Dose Rate * Body Weight

CLWholeBody

• CLR: renal clearance (L/hr)
• CLH: hepatic clearance (L/hr)
• Clint: intrinsic clearance (L/hr)
• GFR: glomerular filtration rate (L/hr)
• FuB: fraction unbound in blood
• QL: hepatic blood flow (L/hr)
• HPGL: hepatocytes per gram liver
• VL: volume of liver (g)
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In Vitro-In Vivo Extrapolation (IVIVE)
In VitroToxicokinetic Assays
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Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2014

Wetmore et al., Tox Sci., 2015
Wambaugh et al.,Tox Sci., 2015
Wambaugh et al., Tox Sci. 2019
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Hepatic Clearance
• Main metabolic pathway of xenobiotic clearance in body
• Several In vitro systems in use for measurement:

• hepatocytes, microsomes, S9 fractions, HepaRG cells

Hepatocyte suspensions currently considered the gold standard in screening efforts

- Physiologically relevant; Full complement of enzymes present
- Custom pools can be created across multiple donors
- Historical data available to evaluate performance and reproducibility
- Viability and activity maintained in culture out to 4 hr
- Scaling factors well established in IVIVE

Con: Not sufficiently sensitive to derive clearance rates for slowly metabolized compounds

Hepatic Clearance (Clint)
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Hepatic Clearance
Experimental Considerations

Select a substrate concentration << Km to ensure Clint not saturated
Donor pools typically used to incorporate a range of metabolism (ie, to control for 

donor-specific outlier effects)
Standardized protocols exist for a reason. Use them. And clearly describe them.
 Include reference compounds to ensure assay performance is reproducible
 Include media and metabolically inactivated controls to evaluate compound 

stability/mass balance
Unbound intrinsic clearance rates (Cluint) corrected for non-specific binding in the 

assay are required  to correct for assay-specific artifacts 
Chemicals non-specifically bound in the assay are not available to be cleared; 

but they are quantitated during analytical measurement. Adjustments are 
required or the Clint value will be underestimated.

Cluint = Clint / fuinc
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Hepatic Clearance
Low Turnover Compounds

HepaRG spheroids
 Emerging technology
Hepatoma cell line, 1 donor
How to handle IVIVE scaling?

Plated hepatocytes (48 hr time-frame)
HepatoPac – proprietary micropatterned 

hepatocyte co-culture 
 Pros: 
 Highly functional; most physiologically relevant
 maintained in culture for 28 days
 Highly characterized donor information available

 Cons:
 Expensive to run multiple donors

Transport of fluorescent dye via MRP-2
indicates functional and robust network of
bile canniliculi in Hepatopac culture
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Hepatic Clearance
Low Turnover Compounds

Hepatocyte Relay Method
Pros:
 Any lot of pooled hepatocytes
 # of relays flexible (up to 5)
Good correlation with human in 

vivo data
 Suitable to generate metabolites 

for metabolite ID
Cons:
Uses 4-5x the hepatocytes as in 

std assay
 Labor Intensive
Dilution factor consideration
 Compound loss across transfers

Di et al., 2012, Drug Metab Dispos. 
Di et al., 2013, Drug Metab Dispos. 
Ballard et al., 2014, Drug Metab. Dispos. 
Peng et al., 2016, Drug Metab Letters

Supernatant Transfer

Thaw new aliquots for each 4 hr period

T=0h
Aliquot #1

T=4h
Aliquot #2

T=8h
Aliquot #3

T=12h
Aliquot #4

T=16h
Aliquot #5
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In Vitro-In Vivo Extrapolation (IVIVE)
In VitroToxicokinetic Assays

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2014
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Wambaugh et al., Tox Sci. 2019
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Plasma Protein Binding

Knowledge of chemical binding a key metric in TK evaluations
Unbound chemical is: 
 free to elicit effect / therapeutic activity
 available to be metabolized (cleared; or bioactivated)
 available to be transported across membranes 
 Importance can be seen in application in Css equations:

CLR = fU * GFR              where GFR ≈ 6.7 L/hrCLH =    where QL ≈ 90 L/hr
fU * QL * CLInt

QL + fU * CLInt

[Conc]SS =
Dose Rate * Body Weight

CLWholeBody

QL: hepatic blood flow
Clint: intrinsic clearance

ClH: hepatic clearance
fu: fraction unbound

ClR: renal clearance
GFR: glomerular filtration rate
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Plasma Protein Binding

Knowledge of chemical binding a key metric in TK evaluations
Unbound chemical is: 
 free to elicit effect / therapeutic activity
 available to be metabolized (cleared; or bioactivated)
 available to be transported across membranes 
 Importance can be seen in application in Css equations:
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QL + fU * CLInt
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CLWholeBody
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Clint: intrinsic clearance

ClH: hepatic clearance
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ClR: renal clearance
GFR: glomerular filtration rate
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Plasma Protein Binding
Ultrafiltration; Solid-Phase Microextraction 

Available Methods:
 Ultrafiltration (commonly used technique in protein purification efforts)
 molecular weight cut-off filter employed; chemical-spiked plasma added to upper chamber
 Separation achieved by centrifugation; free chemical flows through filter; plasma-bound is retained
 Individual tubes and high-throughput (HT) plate available
 Cons: Inconsistent recoveries observed across HT plate; potential for non-specific binding to membrane; 

hence not truly high-throughput
 Solid-Phase Microextraction (SPME)
 Method of choice for smaller-scale, case study projects focused on lipophilic compounds
 Cons: method optimization precludes this from being a viable technique in HT space
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Plasma Protein Binding
- Rapid Equilibrium Dialysis -

Available Methods:
 Ultrafiltration (commonly used technique in protein purification efforts)

 molecular weight cut-off filter employed
 Separation achieved by centrifugation
 Individual tubes and high-throughput (HT) plate available
 Cons: Inconsistent recoveries observed across “HT” plate; potential for non-specific binding to 

membrane; hence not truly high-throughput

 Rapid Equilibrium Dialysis (RED) – Gold standard approach in HTS, 
Pharmaceutical R&D
 Miniaturized dialysis chambers mapped to a multi-well robotic footprint
 Highly amenable to HT evaluations
 Cons: 
 Assumption that chemical at equilibrium may not apply for subset of chemicals (e.g., 

lipophilic)
 Non-specific binding/loss of chemical to membrane/surfaces in apparatus
 Presence of PTFE/plastics may confound measures of certain TSCA chemicals (e.g., PFAS, 

phthalates)

RED Plate

T=4hrT= 1hr
Plasma PBS Plasma PBS

chemical
protein

Waters et al., 2008, J. Pharm. Sci.
Wetmore et al., 2012, Toxicol. Sci.
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Plasma Protein Binding
- Ultracentrifugation -

Available Methods:
Ultrafiltration
 Solid-Phase Microextraction
 Rapid Equilibrium Dialysis (RED)
Ultracentrifugation
 Membrane-free approach (no 

binding concerns)
 Ultracentrifugation (850,000xg) 

separates plasma into aqueous, 
protein fractions

Cons: 
 Specialized instrumentation required
 Not particularly HT (but cassette 

format can be used for some 
chemicals)

Kieltyka et al., 2016, J. Pharm Res.
Brockman et al., 2018, J. Med. Chem.

Fu: fraction unbound
AF: aqueous fraction
T5: Time 5 hr sample
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In Vitro Toxicokinetic Assays
Binding and Stability Considerations

Focus on non-drug chemicals has reinforced need for:
 Inclusion of stability controls in all assays
 Inclusion of reference compounds 
 Inclusion of equilibrium controls
 Consider if mass balance is an important to track in your work

Lipophilic compounds present challenges
may confound membrane-based evaluations (e.g., RED)
Greater rates of non-specific binding in assays affect mass balance, in vitro disposition
Use of experimental data preferred over QSARs, which typically fail at high LogPows
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In Vitro-In Vivo Extrapolation (IVIVE)
In VitroToxicokinetic Assays
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Considering Bioavailability
Bioavailability: the fraction of chemical that reaches the systemic 

circulation
For IV-administered chemicals, bioavailability (F) = 100%
F for orally administered compounds is affected by:
 Fraction of chemical absorbed in the intestine (Fabs)
 Fraction of chemical that escapes intestinal metabolism (Fgut)
 Fraction of chemical that escapes first-pass hepatic metabolism (Fhep

in vitro apparent permeability (Papp) assays provide estimates of Fabs
 Poised as the next parameter for entry into httk

Extrahepatic intestinal metabolism also a key parameter to evaluate 
in future efforts
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Apparent Permeability Assays

Cell-based systems
Caco-2: Most widely accepted/used
 Expression of relevant transporters ; long cultivation time

MDCK-II, LLC-PK-I: low levels of endogenous transporters present; can 
be transfected; shorter cultivation period than Caco-2

Non cell-based system
PAMPA (parallel permeability assay)
High-throughput; no transporters present

Take-home: Know your system! Various experimental conditions (e.g., 
pH gradients, sink conditions) can impact reproducibility of results

Apical

Basolateral
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From OATP Review: 
Schulte and Ho, 2019, Mol. Pharm.

Considering Transporters…

• Involved in chemical efflux and uptake
• Play roles in multiple organs

• Blood-brain-barrier
• Renal re-uptake (PFAS) /clearance
• Hepatic uptake

• Emerging field
• Functions, substrates still unknown
• Abundances for many still unknown
• Ontogenies even less well understood
• More likely to be discovered

The next frontier in TK-IVIVE??



33 of 50

- Incorporating Population Variability -
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Incorporating Variability in IVIVE

 In vitro clearance (µL/min/106 hepatocytes) is scaled to a whole organ 
clearance using the density of hepatocytes per gram of liver and the 
volume of the liver (which varies between individuals)

 Glomerular filtration rate (GFR) and blood flow to the liver (Ql) both vary 
from individual to individual
 Further assume that measured HTTK parameters have 30% coefficient of 

variation
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Jamei et al. (2009)
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Monte Carlo Simulations to 
Characterize TK Variability

• Builds models of possible outcomes
• Substitutes a range of values for any factor that has 

inherent uncertainty (using probability distributions)
• Simulations are performed over and over, each time 

using a different set of random values from the 
probability functions

• Depending on number of uncertainties and ranges 
specified, a simulation could involve tens of thousands 
of recalculations before it is complete.

• Outputs are  distributions of possible outcome values
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Monte Carlo (MC) Approach to Simulating Variability

( ) 







+

+
=

intubl

int
ublub *FQ

*F*QF*GFR

rate dose oral

Cl
Cl

Css

Pr
ob

ab
ili

ty
log Liver Flow (Ql)

Pr
ob

ab
ili

ty

log Glomerular Filtration Rate (GFR)

Pr
ob

ab
ili

ty

log Liver Volume

Pr
ob

ab
ili

ty

log Clint
in vitro

Pr
ob

ab
ili

ty

log fub

Pr
ob

ab
ili

ty

Css

Wetmore et al. (2012)

Using an iterative
assembly function
to predict output
distributions
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Monte Carlo Simulation in IVIVE

In Vitro - In Vivo
Extrapolation

Iterations 
Across a 

Population

Distributions based on known populations
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Sources of TK Variability

— Across each of the ADME drivers of TK —
• Absorption (route considered (e.g., dermal, etc.);  

also - intestinal, hepatic, renal; transporters
— Physiologic, genetic, ontogenetic

• Distribution tissue partitioning
— Physiologic, ontogenetic

• Metabolism hepatic, extrahepatic
— Physiologic, genetic, ontogenetic

• Excretion hepatobiliary, renal - glomerular 
filtration/secretion/resorption 
— Physiologic, ontogenetic
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Physiologic Differences

• Tissue by tissue…
Brain, lungs, heart, skin, liver, kidney, intestine, etc.

• Parameter by parameter…
Weights, blood flow rates, metabolism, etc.

• Systemic concerns (red blood cells,  blood volume)
• Tissue-specific concerns

Blood-brain barrier, capillary size (lungs, heart), etc. 
• Drivers:  Life-Stage, Lifestyle, Ethnic, Sex, Disease

 All ADME Processes impacted 
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Contributors to TK Variability

Contributors to 
Variability

Effect 
Window

Extent of Effect Frequency

Physiologic
(e.g., tissue weights, 
blood flow rates)

All life stages
Early; Late 
greatest

Moderate All populations 
and lifestages

Ontogenetic
(differing abundances 
of enzymes,
transporters)

Early Life Stages Can be significant All within 
relevant
lifestages

Genetic
(functional differences 
in enzymes, 
transporters)

All life stages Depends on 
polymorphism,

functional effects

0-10% of 
population

Exposomic
(e.g., co-exposures,
lifestyle)

Throughout life Unknown Unknown
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TK Variability in the Elderly

-- Figures from this and next slide from Ginsberg et al., 2005, Environ. Health Persp., 113, 1243-49. --

• Decreased cardiac outputs; tissue blood flow rates (hepatic – 25% ↓)
• Decline in muscle mass and body water (up to 25% ↓)
• Increase in body lipid content (↑ Vd; longer T1/2, lipophilic compounds)
• Decrease in plasma protein binding (15-25% ↓; higher free drug conc.)

PK Meta-analysis: 
• 4500 subjects
• across >46 substrates
• 18 to >85 years of age
• >100 subjects per age group
(except for >85; n=45) 
Hattis and Russ, 2003
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• ↓ in renal clearance, glomerular filtration rate
• ↓ in hepatic clearance (↓ liver size, P450 content, bile flow, blood flow)
• Higher disease rates

• Polypharmacy  (>65; 2-6 prescriptions; 1-3 over-the-counter) 
• ADRs– challenge at any age group, but heightened in elderly

Age-specific Rates of ADRsT1/2s for Different Clearance Mechanisms

TK Variability in the Elderly
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TK Variability in Children

Developmental Feature Relevant Life-Stage Impact on TK

Body composition: lower lipid, 
greater water content

Birth through 3 months
↓ partitioning and retention of     lipid-
soluble cmpds
↑ Vd for water soluble  cmpds

Larger liver:body weight ratio
Birth through 6 yr (largest 

ratios, birth-2yr)

↑ Hepatic extraction/metabolite    
clearance 
↑ potential metabolic activation

Immature Phase I/II enzyme 
functionality

Birth through 1 yr (largest 
differences in first 2 months)

↓ metabolic clearance, activation 
↓ removal of activated metabolites

Larger brain:body weight ratio; 
greater CNS blood flow;
higher BBB permeability

Birth through 6 yr (largest 
differences in first 2 yr)

↑ CNS exposure, particularly for water 
soluble agents  normally impeded by BBB

Immature renal function Birth through 2 months
↓ elimination of renally cleared 
chemicals/metabolites

Limited serum protein binding 
capacity

Birth through 3 months
↑ potential, free toxicant
↑ distribution of chemicals normally 
bound/unavailable
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In Vitro Assays to Quantitate TK Variability
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Comparison of Css Values Derived Across 
Multiple Lifestages and Subpopulations

HKAF:  human toxicokinetic adjustment factor

Lifestage or Subpopulation
(Age (yr) or Ethnic)

Lifestage or Subpopulation
(Age (yr) or Ethnic)

Upper 95th percentile Css

HKAF =11.4
HKAF =3.5
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Despite the linkages with HT and computational approaches, 
development of the experimental TK assays and supporting 
information to support IVIVE came after years – decades – of effort, 
optimization, and verification
To facilitate adoption of these approaches, clearly written, well 

detailed methods with descriptions of approaches, scalars used, etc. 
is paramount.
Given the complexity of these approaches, education and outreach is 

key. 
Contact me at Wetmore.barbara@epa.gov with any questions.

Wrap-Up

mailto:Wetmore.barbara@epa.gov
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Questions?
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