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The prediction of chemical bioactivity at the level of MIEs required the integration of 
Chemical-MIE labels and a large gene expression compendium (Figure 1). 

Method: 
1. Chemical treatments associated with LINCS L1000 profiles were matched to EPA 

substance identifiers (DTXSIDs) using ChemReg [3] and identifiers in LINCS 
metadata. 

2. Chemical-MIE linkages in RefChemDB were integrated with LINCS L1000 data to 
map gene expression profiles to specific MIEs. 

3. “Exemplar” chemicals were selected for exclusion from training data to be used later 
as positive controls. 

4. Binary classifiers were trained independently for each of 51 distinct MIEs using the 
R package caret. 

5. To measure model performance independent of training data, holdout accuracy was 
assessed using a hold-out data set consisting of 20% of available gene expression 
profiles. 

Figure 2. Example of training data structure for Estrogen Receptor-α inhibition.   Binary 
classifiers were trained for each MIE using size-matched collections of LINCS L1000 gene 
expression profiles (represented by vertical bars) partitioned into a MIE-Active and MIE-
Inactive category. MIE-Active profiles were associated with a chemical treatment that is 
linked to a given MIE in RefChemDB.  MIE-Inactive profiles are selected at random from a 
collection of chemicals with no association with the given MIE in RefChemDB.   

• To optimize MIE models, we evaluated model performance across all the 3 
types of gene expression feature sets (Figure 3) and 6 classification 
algorithms (Figure 4). 

• Classifiers were trained using three different sets of features:
1. Landmark genes

• ~1,000 transcripts that are directly measured in the L1000 assay
2. All genes

• Landmark genes plus expression estimates of an additional ~11,000 
genes inferred through linear combination of landmark genes

3. Pathway scores
• Used the canonical pathways gene set from MSigDB [4]
• Gene set enrichment scores were calculated from “All genes” features 

using ssGSEA [5], and the resulting scores used as training features
• Cross-fold validation accuracies were compared for the 51 MIE classifiers 

trained on different feature types using a paired Wilcoxon test 
• Landmark Gene based classifiers consistently out-performed “All 

Gene” and “Pathway Score” based classifiers

• Comparison of internal accuracy and hold-out accuracies from svmPoly-based 
models indicated significantly lower holdout accuracies
• Suggests that svmPoly classifiers were systematically overfit 
• Restricted further analysis to the runner up svmLinear based 

classifier 

Figure 1. Data processing and classifier training workflow 

Classifier Optimization Continued

Figure 4. Comparison of internal accuracy across different training algorithms. 
P-values are from a two-tailed, paired, Wilcoxon test. 

Figure 6. Comparison of internal accuracies for MIE models trained on  MCF7-
derived gene expression profiles vs PC3 derived profiles 

Figure 5. Comparison of internal and hold-out accuracies across classification 
algorithms. P-values are from a one-tailed, paired, Wilcoxon test. 

• To identify MIEs that were predicting with variable accuracy across cell types, a 
separate set of classifiers on gene expression profiles derived from the PC3 
prostate cancer derived cell line

• Of the 51 classifiers trained on MCF7-derived data, 46 classifiers had sufficient 
gene expression profiles for training from PC3-derived data

• Accuracies from each cell line were compared with linear regression (Figure 6). 
• Internal accuracies were generally well correlated
• The two top-performing classifiers as measured by internal 

accuracy, were the same in both cell types
• TUBA1A_Negative
• MTOR_Negative

• Some classifiers showed cell-type specific differences in accuracy. 
• ADRB2_Positive classifier achieved internal accuracies of 0.80 and 0.53 

in PC3 and MCF7 cells 
• AR_Positive achieved an accuracy of 0.85 in MCF7 cells, but only 0.49 

in PC3 cells 

In this study we integrated RefChemDB chemical-MIE annotations with LINCS 
chemical identifiers and gene expression profiles for the purpose of predicting 
MIE induction from gene expression profiles. We trained binary classifiers to 
predict 51 distinct MIEs and explored factors that affected model accuracy 
such as feature type and classification algorithm.  Finally, we trained 
classifiers on both MCF7 and PC3 derived data and compared accuracies, 
identifying several MIEs that are well-modeled in both cell types.  A subset of 
classifiers showed a disparity in performance as a function of cell type and 
shed light on MIEs that may be better screened in one cell type over another 
(AR_Positive in MCF7 cells over PC3 cells). One possible explanation for this 
disparity is differences in baseline expression of MIE-associated proteins.  
These findings suggest that ML-based methods for predicting MIEs may be 
helpful in prioritizing chemicals for further study based on transcriptomic 
profiling and may inform decisions on suitable cell-types for further screening. 

Figure 3. Comparison of internal accuracy for Support Vector Machine (SVM) Linear 
based classifiers trained on different feature types.  P-values are from a two tailed, 
paired, Wilcoxon test. 
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Selection of Training Data
Goal: U.S. EPA is developing new approach methodologies (NAMs) to identify 
potential toxicity pathways. Some NAMs are using mechanistic data, such as high 
throughput transcriptomics (HTTr), to connect apical effects with molecular initiating 
events (MIEs). To meet this challenge, we are developing a machine learning based 
method that integrates HTTr data and chemical-MIE labels to predict MIEs. 

Key points:
• Integrated LINCS L1000 CMAP gene expression compendium [1]
• Used RefChemDB database of chemical-protein target interactions [2]
• Trained binary classifiers on integrated data sets with the following parameters:

• 51 MIEs
• 3 Feature Sets
• 6 Classification Algorithms
• 2 Cell Types

• MCF7 profiles
• PC3 profiles Classifier Optimization

Test for Overfitting

Discussion / Conclusions
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