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INTRODUCTION
The development of new approach methods (NAMs) to inform chemical hazards and risks is presently a key emphasis in
both national and international initiatives to drastically reduce animal testing. As a result, there is a renewed recognition
that in silico methods can offer practical alternatives to bridge the gap between chemical characteristics, biological
activities, and potential hazards to the environment and human health. Machine learning techniques are commonly used
in the construction of Quantitative Structure-Activity Relationships (QSARs) classification, and regression models that link
chemical molecular structural features to physical, chemical, or biological properties. Several studies have shown that
machine learning-based models can successfully predict substance toxicity using chemical structure descriptors, bioactivity
descriptors from High-Throughput Screening (HTS) tests, and hybrid mixes of the two.
Using targeted high throughput transcriptomic and chemical structural data, we use several machine learning classification
approaches (Artificial Neural Networks (ANN), Gradient Boosting, K-Nearest Neighbor (KNN), Logistic Regression (LR),
Naïve Bayes(NB), Random Forest, and Support Vector Machine Classification (SVC) algorithms) to create prediction models
of chemically induced hepatotoxicity. We compare these approaches to the Generalized Read Across (GenRA) approach we
applied in Tate et al (2021) and evaluate the F1, sensitivity, and precision of these supervised classification models with
varying features and feature combinations using targeted HTTr descriptors along with chemical structure and a hybrid
combination of both for predicting liver toxicity.

We sought to address machine learning performance bias in the prediction of liver toxicity in this work by utilizing 
a targeted transcriptomic hit-call data set, chemical structural data, and a hybrid mix of both for several 
classification algorithms. We determined that:
 The performance of our classifiers were influenced by the quantity of positive compounds (better performance 

with more positive chemicals). As a result, we explored a variety of under-sampling and SMOTE over-sampling 
approaches to examine how they affected classifier performance. 

 Like the imbalanced method, the initial number of positive chemicals influenced classifier performance with 
certain under-sampling approaches.

 SMOTE, on the other hand, produced relatively consistent results in a variety of balancing situations, and 
increased performance by 62% when the initial negative chemical balance outweighed the positive.

 Additionally, we determined that using hybrid descriptors can enhance hepatoxicity predictions (0.63 ± 0.16), 
when performance bias owing to imbalanced data is addressed (0.73 ± 0.03).

Ongoing analysis are applying feature selection approaches to determine how classifier performance is impacted 
and identifying relevant genes to build putative adverse outcome pathways (AOPs). 
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Figure 1: Workflow for 
classification process
Morgan structural fingerprints, 

transcriptomic “hit call” 
descriptors, and a hybrid mix 
of chemical and biological 
descriptors were used to 
represent 1060 compounds. 

 Several classification 
approaches were evaluated 
using F1, recall (sensitivity), 
precision scores with five-fold 
cross-validation followed by 
one way ANOVA and Tukey’s 
HSD for multiple comparisons 
of mean differences. 

Data applied in the Analysis
• Chemicals and References Chemicals derived from the ToxCast library
• Individual Descriptors:

• 2048 Chemical structure (Morgan) descriptors generated by python’s RDKit library.
• 93 Gene Hit Calls Descriptors from metabolically competent HepaRGTM cells LTEA assay 

of ToxCast HTS data from multiple concentration level 5 TCPL package in R. 
• Hybrid Descriptors:

• 2143 Morgan + Gene (BC)
• 4825 Morgan + Torsion Topological + ToxPrints* (CA)
• 2918 Gene + Morgan + Torsion Topological + ToxPrints (CBA)

• Toxicity Outcomes extracted from ToxRefDB v2:
• 922 target effects
• 5 Liver specific target effects

Classification Approaches
• Generalized Read Across (GenRA) [genra-py]
• Artificial Neural Networks (ANN)
• Gradient Boosting
• K-Nearest Neighbors (KNN)
• Logistic Regression (LR)
• Naïve Bayes (NB)
• Random Forest
• Support Vector Machine Classification (SVC)

Balancing Methods
• Under-Sampling

• Selecting from Majority Class:
• Condensed Nearest Neighbor (CNN)
• Near-Miss-1 (NM)

• Removing from Majority Class:
• Random
• Tomek Links(TL)
• Edited Nearest Neighbors (ENN)

• Over-Sampling 
• Synthetic Minority Oversampling Technique (SMOTE)

Machine Learning
• Cross Validation

• 5-fold
• Performance Evaluation

• F1-Score
• Recall (sensitivity)
• Precision (positive predictive 

value)

Figure 2: Target Distribution of Positive and Negative Chemicals
Chr:Chronic; Sub:Sub-Chronic; Dev:Developmental; Mgr: Multigenerational Reproductive; Sac:Sub-Acute; 
N+/- Number of positive/negative chemicals
There’s an evident unequal distribution of positive and negative chemicals for each of our target effects 
that may cause potential bias in performance scores. 

Figure 4: Case Example of Chr_ and Dev_ Liver toxicity endpoints comparing an unbalanced approach to 
under- and over-sampling balance techniques. Bc:Mrgn+Gene; Bio:Gene Hit Calls; Chm: Morgan Structural 
Fingerprints. 

 For chr liver (N+>N-), our unbalanced 
method outperformed the oversampling 
technique for all descriptors, while the 
under-sampling strategy (aggregating all 
under-sampling approaches tested) 
exhibited varied performance.

 The unbalanced method, along with the 
variable under-sampling strategy and the 
over-sampling approach, proved to perform 
the worst for dev liver (N<N-).

 Note: The hybrid descriptor appears to 
improve performance ratings for each 
sampling technique using chr liver.

 The number of 
positive chemicals appears 
to have an impact on the 
performance of 
unbalanced and under-
sampling techniques like 
TL, CNN, and ENN, but the 
over-sampling strategy, 
SMOTE, appears to be 
unaffected.

Figure 6: Evaluation of SMOTE over-sampling approach vs unbalanced approach for all liver endpoints.   

Liver 
Endpoints

No. Pos 
Chemicals

No. Neg 
Chemicals

Chr 236 128

Dev 43 219

Mgr 115 86

Sac 58 41

Sub 356 158

 The unbalanced method appeared 
more sensitive (recall) than when 
balanced with SMOTE in 
situations when there were more 
positives than negative 
compounds. However, there is no 
discernible difference in accuracy 
or F1 score.

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA. 

SUMMARY & CONCLUSIONS

Figure 3: Significant Correlation between F1 score and number of positive Chemicals 
 For data pooled by all toxicity 

endpoints and descriptors, 
Spearman's correlations for F1 
performance score and number of 
positive compounds revealed a 
positive correlation between 
these factors.

 Similarly, a higher quantity of 
negative chemicals resulted in 
poorer performance ratings, 
according to the same study.

Figure 5: Significant Correlations between F1 Score and number of Positive Chemicals using 
various sampling approaches

*ToxPrints are a set of 729 features as described in Yang et al (2015)
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