
Internal Dose of Selected PFAS (Perfluoro-3-methoxypropanoic acid and) in Rat Plasma from Short Term Dosing Studies Aero Renyer¹, Denise K. MacMillan², Michael DeVito², Michael F. Hughes², and Leah C. Wehmas²

Introduction

- Per- and polyfluoroalkyl substances (PFAS) are of growing concern due to their increasing environmental presence and persistence.
- Current estimates put the number of PFAS over 4700 yet only a select few have toxicological data available for public review and use.
- Several data-poor PFAS are also known to have high exposure potential to people.
- We are using a rat model and 5-day oral gavage exposures over multiple dose levels to provide a more rapid assessment of potential toxicity than the current 90-day and 2-year approaches.
- Quantitation of internal dose, along with toxicogenomics and thyroid hormone analysis, could yield primary points of departure based upon benchmark dose response modeling and enable timely risk prioritization for less-well studied PFAS.
- Plasma concentrations after exposures to perfluoro-3-methoxypropionic acid (PF-MOPA) are presented.

Approach

- 1) Develop a single robust, reproducible, non-selective extraction method for multiple PFAS from rat plasma.
- 2) Develop a targeted LC/MS/MS method with sufficient sensitivity for detection of PFAS in plasma at all dose levels.
- 3) Apply method to plasma collected 24 hours after the 5-day exposure

Tetrafluoro-2-(Heptafluoropropoxy-propanoic acid) (¹³C-GenX, internal standard)

- LC/MS/MS was performed in negative ion, multiple reaction monitoring (MRM) with electrospray ionization (ESI) on a Sciex (Framingham, MA) X500R QTOF Time %A equipped with a Phenomenex (Torrance, CA) Kinetex XB- 0.00 C18 (100 x 2.1 mm, 2.6 µm) column.
 - Flow rate: 0.200 mL/min
 - Injection volume: 5 µL
 - Mobile Phases:
 - A: 95:5 H₂O:MeOH with 4 mM NH₄ formate
 - B: 95 MeOH:5 H₂O with 4 mM NH₄ formate

1 – Oak Ridge Institute for Science and Education (ORISE)

2 - U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure

Sample Preparation /ortex (1000 rpm, 10 min) 0.1 M FA Transfer to ACN in well $DF6 \rightarrow 1:2.5$ DF6 →1:1.7 DF25 → 1:4.7 DF25 → 1:3.8 Vortex Fransfer (1000 rpm, 10 min) 100 uL aliquot Add ¹³C-GenX F400 → 1:10 PF-MOP -MOPA to aliquot

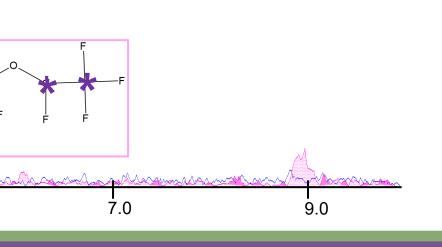
Dilution Factor (DF) Volume Table									
Plasma, μL	PF-MOPA stock OR MeOH, μL	¹³ C-GenX stock, μL	¹³ C-GenX stock conc. (ng/mL)	Formic acid, µL	Acetonitrile, μL	Total DF			
25	5	5	500	25	100	1.4*1.7*2.5 = 6			
25	5	5	1,000	100	500	1.4*1.38*4.7 = 25			
25	100	20	1,000	875	900	4*10*10 = 400			

Sample Prep: Samples are diluted as shown above. After dilution, protein precipitation (PPT) extraction was completed by applying the samples to a Biotage (Uppsala, Sweden) PPT+ 96well plate to wells containing acetontrile. The plate is vortexed at 2000 rpm for 2 min then eluted using positive pressure (20 bar max for 30 min). The eluate is transferred to an autosampler vial and stored at -20 °C pending analysis.

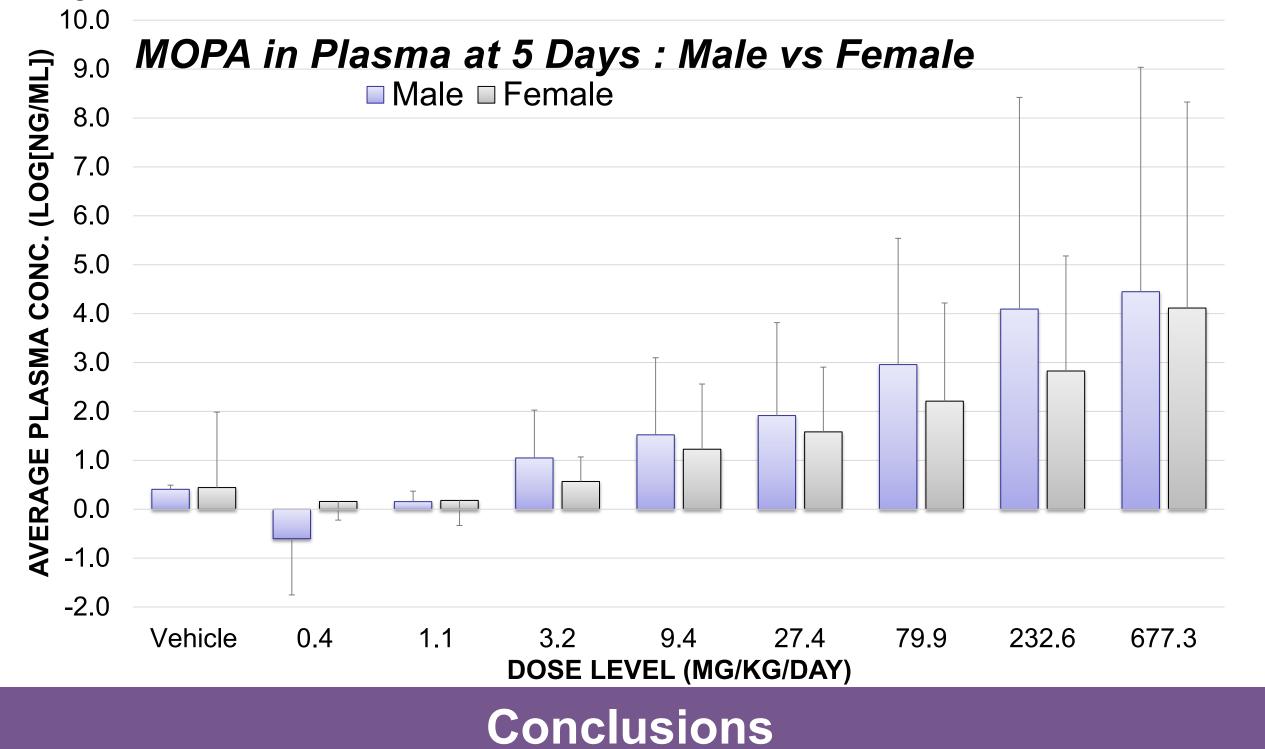
Analytical Approach

				2100			F		3.77	Extract	ta
nt	B MRM Fragments					E) [_]		(EIC) fo	
%B						1		,		and ¹³ C	nd ¹³ C-
2	Compound	Molecular	Fragment	(Sa) 1500			F				
65		lon	lon								
100	PF-MOPA	228.97	84.9901	Intensity 1000					4.30		
100		220101	0110001	_						F F	(
2	¹³ C-GenX	331.98	286.9868	500-							F
2						Mar And A				F F	
				Ļ	<u> </u>			30 T :	mo (mir	\sim 50	<u>×_</u>

Innovative Research for a Sustainable Future


∗= Carbon-13

isotope



ted Ion Chromatogram or PF-MOPA (m/z 84.9901) C-GenX (m/z 286.9868)

Plasma Concentrations: PF-MOPA was detected above the limit of quantitation (1 ng PF-MOPA/mL plasma) in all dose levels and vehicles. PF-MOPA was not detected in method blanks. Concentrations in male rat plasma ranged from 56 µg/mL (677.3 mg/kg/day) to 1.38 ng/mL (0.4 mg/kg/day). Concentrations were between 2-18 times lower in female rat plasma in samples at and above the dose level of 3.2 mg/kg/day. A wide biological variation was also observed within all dose levels.

- We developed a PPT-LC/MS/MS quantitative method for PF-MOPA in rat plasma.
- Post 5-day exposure, male rat plasma had concentrations as high as 56 µg/mL, with female rat plasma having lower concentrations across the 6 highest dose levels.
- The data suggests sex-related differences in processing of PF-MOPA.
- Plasma concentrations paired with toxicokinetic data and body mass difference (BMD) analysis are compared to and potentially augment the transcriptomic point of departure (POD) results.
- Our next step is to apply this non-selective method to 5-day oral gavage samples for Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) acid.

Aero Renyer I <u>Renyer.Aero@epa.gov</u> I 919-541-4438

Disclaimer: This poster does not necessarily reflect EPA policy.