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Goals for HTTK Case Study:;’ ’{

NAM-based prediction of /n vivo points of departure to inform regulatory decision making.

* We will describe a framework for decision makers'to make use of toxicokinetic (TK) new
approach methods that take into consideration chemical space and the decision-making
context.

* We will review the quantitative uncertainty in HTTK-based predictions of toxicokinetics.

* Finally, we will perform a gap analysis by identifying, for example, areas of chemical space
and routes of exposure in need of further research.

loxicology in Vitro 27 (2013) 1570-1577
Toxicokinetics as a key to the integrated toxicity risk assessment based primarily
on non-animal approaches
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e Chiu et al. (2007) “...[P]arsimony in selecting [toxicokinetic]

model structures is an important and guiding principle
developing models for use in risk assessments.”

o /

o Complexity is constrained by limited data available to “7//
calibrate and test the model and the need to jUStIfy both /
the model assumptions and predictions /y n AL

® Bessems et al. (2014): We need “a first, relatively )
quick (‘Tier 1), estimate” of concentration vs. timein %/ =~
blood, plasma, or cell “r

o At the time they suggested that we [ Sk Py | [Lung (non-volates): Py Bessems et al. (2014)
might neglect active metabolism. [Lung (voltles): Ko

“—{Absorption}—

Thanks to /n vitro measurements we
can now do better

| C,t-curve |
o We still neglect transport and other
protein-specific phenomena
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model
= high(er) throughput toxicokinetics

aaaaaaaaaa

Lung Tissue

| ntl’i nSiC Q Kidney Tissue
. GFR
Hepatic <« Kidney Biood PR
Clearance
uuuuuuuu 4
oooooooo et 5
@
3
Plasma a
. Qetan Q4.
Prote|n < 4= Liver Blood
Binding '
ooooooooo 40&_

\ APCRA ' h {t K

T
i a ‘5‘%&

)/ ACCELERKTING THE PACE OF - B
e CHEMICAL RISK ASSESSMENT —

— _\_-A - -



Generic PBTK Models
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Table from Breen et al. (2021)

A

G-P

L2

Armitage (2021)

Pearce (2017)

eferences Jamei (2009) Parrott (2009) Eissing (2011) (2011)
License, but License, but
_ . ; : ; Free
Availability inexpensive for inexpensive for Free Free Free Free
research research
Ppen Source No No GitHub No GitHub Planned Release = CRAN and GitHub
Df’!‘ﬁf H fj” Yes Yes Yes Yes Yes Yes Yes
PopulationiVarability, Yes Yes Yes No No No Yes
DataiNeeds High/Low High/Low High High Low Low Low
S , , , Environmental Food and Drug Environmental .
PICAINISENCASE: .
ypicaliy | Drug Discovery Drug Discovery Drug Discovery Assessment Safety Evaluation Assessment Screening
BatchiMode Yes Yes Yes No No No Yes
izl ol s
= il [!”,:“(j { Yes Yes Yes Excel No Excel No
R uiltsin Chemics - Many pharmaceutical- ; Pharmaceuticals and
Q;JrJJ:—(J{J’EI‘J?{HJ',:JL Mang Clinical No Soealle e ER 15gnV|ronm§ntaI No No ToxCast: 998 human,
SPECITCASIANY rugs available ompounds 226 rat
OraliBroavalability Yes Vo No No No No _NO (Will be ava"a.ble
Modeling in the future version)
InVitroiDistribution SIVAVIVD No No No No No Armitage Model
Oral. Gas Oral, IV, Gas, Inhalation
Exposure Route Oral, IV Oral, IV Oral, IV Inhalati ’ D ’ I Oral Oral, IV, Inhalation  (Dermal, Aerosol, and
I, Atk Fetal forthcoming)
- JJ;‘J Jrzf’i’ rﬁ ) Yes Yes Yes No No Yes Yes
Export Eunction No No Matlab and R No No No SBML and Jarnac
Rintegration No No Yes (2017) No Yes Yes Yes
ReverseDosimetry. Yes Yes Yes No No No Yes



S _ \
. 4 /

A Generic Model is a Hypothesis, *

> ke ;
% /
.~ For pharmaceuticals, /n vitro data plus a generic TK model including

hepatic metabolism and passive glomerular filtration (kidney) are often
enough to make predictions within a factor of 3 of /n vivo data (Wang,

2010) NP

For other chemicals there may be complications

We can add additional processes only if there is some way to
parameterize the process for most chemicals - otherwise we are back to

‘taLLQring the model to a chemical
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Decision Trees Ry -

Predr:ted Css >=0.55
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PEPT1_plIC50 >= 2.7 Inhibition Transporter OATP2B1 < 0.38

/

Substrate_Transporter MCT1 < 0.29 Fup < 0. 11

12(1?1;?;9r -TxD'.nBr m Substrate Transpurter PEPT1 >=0.18

Predlnte-d  Css < 0.19

e aw

FIG. 5. A recursive partitioning regression tree was used to classify the disaepancy between the C;; predicted from in vitro data and the in vivo C,; (Obach et al., 2008;
Wetmare et al., 2012). Each “leaf” of the tree shows a group of chemicals for which HTTK either overestimates C,; (making conservative predictions) or underestimates
Css. For all but 3 groups, the predictions are on the order of the observed C,,; (approximately within a factor of 3.2x greater or lesser). For the other 3 groups, the C,; is
5.2, 7.7%, and 120x overestimated.

| . j.‘ ~|| 1L
APCRA b
\ | T ’_li.
ACCELERATING THE PACE OF ]
CHEMICAL RISK ASSESSMENT Figure from Wambaugh et al. (2015) .




Decision Trees

We are constructing a decision tree/tiered framework that is two dimensional:
Decision context vs. chemical space

We need to ensure that evaluators can understand and use this information.

How are you going to use the data? For example, when do you identify the metabolites
from the /n vitro data?

How do we decide when it is good enough?

Can we look from exposure side with these decision trees?

When using a bioactivity:exposure ratio (BER) or margin of exposure approach it would be
helpful to have a library of urinary excretion

There is chemical specific uncertainty in interpreting urine biomonitoring data, can HTTK
help?

APCRA
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Decision Trees

Different levels of certainty needed for prioritization, risk evaluation,
susceptible populations |

What is conservative depends on the application (for example, 100% absorption)
What is the uncertainty associated with chemistry and decision?

Since /n vitro experiments are surrogates for reality, do you really get a reduction of
uncertainty if you perform a specific measurement?

Certain chemicals are suitable, others may not be appropriate:
For example, what do we do when highly bioaccumulative?
If you predict the days to reach steady state to be longer than the exposure period
APCRA you are trying to model, then steady state is a poor assumption.

ACCELERATING THE PACE OF
CHEMICAL RISK ASSESSMENT
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S. Coecke et al. /Taxicology in Vitro 27 (2013) 1570-1577

I I Table 1
H K M e as u re m e n ts Main Alternative Methods Available (adapted from Adler et al. (2011); Supplementary Information).
Test name Advantages Limitations
Absorption QSAR In o Applicable for dermal and oral exposure « Not available for lung absorption
silico e Able to predict overall absorption of a chemical e Active metabolism and transport not yet
[ based on available physicochemical parameters included
We will develop a table of what we can e e
regulatory purposes
Artificial intestinal In e Used for very early screening o Information only on passive diffusion
membranes vitro e Underestimation of the permeability of highly
d I lipophilic drugs
mea su re mo e Skin Preparations In e Mainly composed of human source or slaughter e In Skin preparations, the value of absorption
vitro sources of animals resembling human (e.g.: pig) under finite dose is specific for the specific
& Ex exposure time, concentration and skin load
vivo making it difficult as input parameter for
PBPK-models
Cell Cultures In o Standard procedures that can be incorporated in a o Limited/unspecified correspondence to in vivo
vitro medium-throughput test strategy metabolic and active transport systems
3 ? e Allow the study of both absorption and
Start with Coecke et al. (2013): meabolsm
Ussing chamber & Everted sac  Ex o Possible to use human sources e The bioavailability depends on intestinal
vivo o Fast and reproducible study of intestinal absorp- section
tion of molecules across the inserted tissue e Limitation on the availability of the test
e Allows the study of both absorption and material
metabolism
M . Distribution QSAR | Computerized models In e Methods still under development, but improving e Predictions not reproducible among different
For each measurement technology describe:
e Poor results obtained for charged molecules
under physiological conditions and with
b charged phospholipids
1) d eC I S I O n CO n teXt Ex-vivo methods (Equilibrium  Ex e Automation possible for high-throughput e Routine for plasma protein binding. applica-
dialysis; Ultrafiltration vivo e Easy to perform; good precision and tions for other tissues/organs under
. . Ultracentrifugation; Vial- reproducibility development
2) a p p I Ica b I e C h e m I St ry - equilibration) o Results very close to the ones obtained in vivo
regarding plasma protein binding
2D and 3D Mixed Cultures In e Importance of barrier integrity and correlation o In vitro systems still not adequately character-
. L3 old . . vitro with in vivo permeability (Pe) and transendothe- ized for reliable predictions
3) SC I e n t Ifl C m Ot Ivat I O n o lial electrical resistance recognized
ﬂ Human perfused placenta Ex e Minimum number of ethical problems e The term placenta may not reflect the placenta
. cotyledon vivo e Up to 48 h perfusions possible during the first months of foetal development
4) I m p a Ct O n m O d e I S Metabolization  Expert In o Useful for indicating potential routes and metabo- e Developed mostly for pharmaceuticals (drug
systemsQSARPharmacophore  silico lites (but usually overprediction!) development tools)
or molecularprotein e Predictive capability heavily dependent on e Quantitative predictions still not reliable
. . modelling selected parameters and model compounds enough
5) Wh et h e r q u a n t Itatlve St ru Ct u re = p ro p e rty 2D and 3D Cell Cultures In o Studies on metabolic stability, metabolic clear- o Not fully representative of the in vivo specific
vitro ance, metabolite formation; metabolic activation; activities
. . N induction of metabolism and inhibitory interac- o Correlations between activation and toxic out-
re I at I O n S h I p (Q S P R) m O d e I S eXI St a n d W h e n tions with probe substrates comes not well established )
e High-troughput screening and cocktail methods e Limitation on the availability of primary
established human cells
. e With suitable analytical techniques, covers also e Missing methods measuring cellular transport/
t h ey a re a p p ro p r I ate elucidation of primary metabolite profile efflux and bioavailability/nominal
concentration
Excretion Computerized models In e only 4 physico-chemical parameters (charge, o Still under development
silico molecular weight, lipophilicity, and protein o Not standardized
unbound fraction in plasma) are required to pre- e No formal validation studies are known
dict major excretion pathways
Collagen-sandwich cultures In e Useful in vitro method to differentiate between e Not standardized
of hepatocytes vitro hepatic sinusoidal and canalicular disposition of o No formal validation studies are known
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Quantifying Uncertainty in HTTK

® U.S. Air Force and U.S. EPA developed generic s

gas inhalation physiologically-based

toxicokinetic (PBTK) model
® Evaluated HTTK with CvTdb (Sayre et al., 2020):

0 5 . 21
142 exposure scenarios across 41 volatile organic S pyrene Rat BL
chemicals were modeled and compared to % Species F’
g c o > Pyrene Rat BL — Overa
published /n vivo data for humans and rat g . Human |
g Tetrahydrofur‘an Human EB — Rat
2
® R?was 0.69 for predicting peak concentration iy s, * Decane Rat BL
e :‘ ~—2H-Perfluoropropane Human VBL
® R2was 0.79 for predicting time i " FaranRatBL
. _ L * 2H-Perfluoropropane Human VBL
plasma concentration (Area';yl_rt 2H-Perfluoropropane Human VBL .
AUC) -8 *Furan Rat BL Regression R*2: (.79
| Regression RMSE: 1.49
APC R A 2 RMSE (vs. Identity): 0.55
=) ' i

ACCELERATING THE PACE OF
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Review of HTTK Evaluations

® Prediction of TK summary statistics such as peak
concentration and time-integrated (“area under the curve”or
AUC) concentration: WA TR

o Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from4
observed by 2.3x -

o Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0. 5 or 3 2xr |
for AUC -

o Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-
pharmaceutical nature, RMSE of 2.2x for peak and 1.64x for AUC

o Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is
included in httk similarly predicted human volume of distribution with a RMSE of 0.48
(3x)

APCRA
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Pharm Res (2019) 36: |13 Check for

Documenting, Standardizing, and | |z

RESEARCH PAPER

AsseSSing ’n Vitro Measu rements Interlaboratory Variability in Human Hepatocyte Intrinsic

Clearance Values and Trends with Physicochemical Properties
Multiple governments and organizations Crrsine . Boutan'« Lo 2. Benet
continuing to collect /n vitro data for HTTK

Received: 7 March 2019 / Accepted: 10 May 2019 / Published online: 31 May 2019

® Various approaches, including R package “httk”
. 60=
try to summarize these data 9 .
c
@ 40
® EPA is interested in standardizing data analysis 8 204
2 .
o Working on new R package “invitroTKstats” 11 o o
5 [ ]
I I L
o Ensure all necessary measurements and 0 3 4 5 6 7 8 9
metadata are recorded Number of Measurements (n)
n 3 4 5 6 7 8 9
o Structure data to support potential future # values 17 6 3 9 3 1 1
databases
Mean
APCRA largestDif, | 28 37 19 63 63 17 14
SD 18 13 28 28 21 - -
ACCELERATING THE PACE OF
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Coordinating Ongoing Data Collection

U.S. EPA maintains a list of chemicals that already have /n vitro TK
measurements (Cl,,, f,,, CACO-2, etc.) tested and those that are being
considered for testing

We are happy to share this list with others upon request
(wambaugh.john@epa.gov)

We would appreciate any lists of chemicals you plan to test or are testing to
minimize duplication unless intended for cross-laboratory evaluations

You do not need to share your data, but we’'d always love to have your data

® EPA distributes HTTK data via R package httk
(https://cran.r-project.org/package=httk) and
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). Also see

U.S. NICEATM Web-ICE
(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html)

i
ACCELERATING THE PACE OF
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QSPRs for HTTK Parameters RONTETT

An Intuitive Approach for Predicting Potential Human Health Risk
with the Tox21 10k Library

Nisha S. Sipes,™"® John F. \\’.unlmugh,: Robert Pearce,” Scott S. Auerbach,” Barbara A. Wetmore,

. We m ay n Ot a IWayS n e ed to m e a S u re Jui-Hua Hsich,” Andrew J. Shapiro,” Daniel Svoboda,® Michael J. DeVito,” and Stephen S. Ferguson’

"National Toxicology Program, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle
Park, North Carolina 27709, United States

® Ongoing evaluation of QSPRs for predicting HTTK I S e e e ek e

¥Sciome, Research Triangle Park, 2 Davis Drive, North Carolina 27709, United States
*Kelly Government Solutions, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States

o Presented at QSAR2021 virtual meeting / Manuscript in e e s e e b e

preparation
Interpretable machine learning
o Perhaps we can reduce a machine learning model to a ———
diagram that fits on an index card i

* QSAR Research Unit in Environmental Chemistry and Ecotoxicology. Department of Theoretical and Applied Sciences, University of Insubria. Varese ltaly
* ARC Arnot Research & Consulting, Toronto, ON Canada

« Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada

“ Department of Pharmacology and Toxicology. University of Toronto, Toronto, ON Canada

Contents lists available at ScienceDirect

Food and Chemical Toxicology

journal homepage: www.elsevier.com/locate/foodchemtox
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—
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Using chemical structure information to develop predictive models for in -
ﬁ vitro toxicokinetic parameters to inform high-throughput risk-assessment
E Prachi Pradeep *°, Grace Patlewicz °, Robert Pearce **', John Wambaugh °, Barbara Wetmore °,
O Richard Judson ™
* Ok Ridge Instnte for Science and Education, Oak Ridge, TN, United Saawes
® Center for Computaional Toxiology and Exposre, Office of Research & vs Pro P Research Triangle Park, NC, Unisd
i®] e
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o Designing QSARs for Parameters of High-Throughput Toxicokinetic

Models Using Open-Source Descriptors

Daniel E. Dawson, Brandall L. Ingle, Katherine A. Phillips, John W. Nichols, John F. Wambaugh,
and Rogelio Tornero-Velez*

APCRA 10710710 10790710 1070710 4074010
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Case Study Outcome

e \Why/when to use HTTK?
e What information is available and where?
e How to judge input & output quality?

e \What is associated uncertainty?

2 APCRA
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HTTK Case Study Path Forward

® Manuscript is not yet complete - skeleton draft just
circulated (October 2021)

® Targeting 2022 submission to Environment International

We need: -

1) A table of the types of /n vitro measurements that are
currently available and the uncertainties they address

2) A series of decision trees based upon chemical and
context

BA series of case studies/examples walking through the

ACCELERATING THE PACE UF
CHEMICAL RISK ASSESSMENT



HTTK Case Study Needs

J
® Contributions of the partners will include: ~
o Development of and comment on decision trees
o Help assess what factors are important depending ONiih.

chemical, application, regulator, etc.? s 5

APCRA
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HTTK Case Study Needs

® Partners can also help inform examples (what we will
call “case studies” in the manuscript)

o Generic vs. Bespoke Model Case Study
o Data Rich Chemical Case Study

o Chemical Class Case Study

o Biomonitoring Case Study

APCRA
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HTTK Measurements Overview

We will develop a table of what we can measure/model: 1

® For each measurement technology (for example, intrinsic clearance, plasma protein
binding) we will describe 1) decision context, 2) applicable chemistry, 3) scientific
motivation, 4) impact on models, and 5) whether quantitative structure-property
relationship (QSPR) models exist and when they are appropriate ;

-"-‘"-\.
[ S

- BAS
4 T
ﬁ@ T g

- .-.- - 1 ",

o We will focus on the needed certainty in a measurement.

o Do you really get a reduction of uncertainty if you measure X?

o We will make clear the time and labor for both traditional and new
approach measurements.

APCRA
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Review of HTTK Evaluations e

e Armitage et al. (2021) found that the performance of |
generic PBTK models in “data poor” situations was
both “acceptable in qualitative (that is, shape of
concentration versus time (CvT) profiles) and o
guantitative terms for most of the selected chemicals.” %

e World Health Organization (2010): PBTK models are |
“adequate” when predictions “are, on average, within "
a factor of 2 of the experimental data”
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Quantifying Uncertainty in HTTK| | §

« EPA has developed a public database of
concentration vs. time data for building, é

calibrating, and evaluating TK models

442 147
https://github.com/USEPA/CompTox-PK-CvTdb
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« Curation and development is ongoing, but to
date includes:

. . #’ \
o 198 analytes (EPA, National Toxicology f103 7 )~ a‘\
Program, literature) 4 5%‘) \
.
o Routes: Intravenous, dgrmal, oral, sub- Other- 12 7 e 1 % 31
cutaneous, and inhalation exposure v R D)
‘ b 52
adipose
. Standardized, open-source curve fitting software i( g
Sayre et al. (2020) \ urine

invivoPKfit used to calibrate models to all data:

APCRA https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit : kq
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