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• We aim to demonstrate that HTTK, with appropriately propagated uncertainty, enhances 
NAM-based prediction of in vivo points of departure to inform regulatory decision making. 

• We will describe a framework for decision makers to make use of toxicokinetic (TK)  new 
approach methods that take into consideration chemical space and the decision-making 
context. 

• We will review the quantitative uncertainty in HTTK-based predictions of toxicokinetics. 

• Finally, we will perform a gap analysis by identifying, for example, areas of chemical space 
and routes of exposure in need of further research. 

Goals for HTTK Case Study



Most chemicals do not have TK Data

Figure from Bell et al. (2018)
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Fit for Purpose 
Toxicokinetics

● Chiu et al. (2007) “…[P]arsimony in selecting [toxicokinetic] 
model structures is an important and guiding principle in 
developing models for use in risk assessments.”

○ Complexity is constrained by limited data available to 
calibrate and test the model and the need to justify both 
the model assumptions and predictions

Bessems et al. (2014) ○ At the time they suggested that we 
might neglect active metabolism. 
Thanks to in vitro measurements we 
can now do better

○ We still neglect transport and other 
protein-specific phenomena

• Bessems et al. (2014): We need “a first, relatively 
quick (‘Tier 1’), estimate” of concentration vs. time in 
blood, plasma, or cell



In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

High Throughput Toxicokinetics (HTTK)
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Generic PBTK Models
SimCYP

ADMET 
Predictor / 
GastroPlus
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References Jamei (2009) Parrott (2009) Eissing (2011) Jongeneelen 
(2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability
License, but 

inexpensive for 
research

License, but 
inexpensive for 

research
Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release CRAN and GitHub
Default PBTK 

Structure Yes Yes Yes Yes Yes Yes Yes

Population Variability Yes Yes Yes No No No Yes
Data Needs High/Low High/Low High High Low Low Low

Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 
Assessment

Food and Drug 
Safety Evaluation

Environmental 
Assessment Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User 

Interface Yes Yes Yes Excel No Excel No

Built-in Chemical-
Specific Library

Many Clinical 
Drugs No

Many pharmaceutical-
specific models 

available

15 Environmental 
Compounds No No

Pharmaceuticals and 
ToxCast: 998 human, 

226 rat
Oral Bioavailability 

Modeling Yes Yes No No No No No (Will be available 
in the future version)

In Vitro Distribution SIVA VIVD No No No No No Armitage Model

Exposure Route Oral, IV Oral, IV Oral, IV Oral, Gas, 
Inhalation, Dermal Oral Oral, IV, Inhalation

Oral, IV, Gas, Inhalation 
(Dermal, Aerosol, and 

Fetal forthcoming)
Ionizable 

Compounds Yes Yes Yes No No Yes Yes

Export Function No No Matlab and R No No No SBML and Jarnac
R Integration No No Yes (2017) No Yes Yes Yes

Reverse Dosimetry Yes Yes Yes No No No Yes

Table from Breen et al. (2021)



A Generic Model is a Hypothesis

• For pharmaceuticals, in vitro data plus a generic TK model including 
hepatic metabolism and passive glomerular filtration (kidney) are often 
enough to make predictions within a factor of 3 of in vivo data (Wang, 
2010)

• For other chemicals there may be complications

• We can add additional processes only if there is some way to 
parameterize the process for most chemicals – otherwise we are back to 
tailoring the model to a chemical



Figure from Wambaugh et al. (2015)

Decision Trees



We are constructing a decision tree/tiered framework that is two dimensional: 
Decision context vs. chemical space

 We need to ensure that evaluators can understand and use this information. 
 How are you going to use the data? For example, when do you identify the metabolites 

from the in vitro data? 
 How do we decide when it is good enough? 
 Can we look from exposure side with these decision trees?
 When using a bioactivity:exposure ratio (BER) or margin of exposure approach it would be 

helpful to have a library of urinary excretion 
 There is chemical specific uncertainty in interpreting urine biomonitoring data, can HTTK 

help?

Decision Trees



Different levels of certainty needed for prioritization, risk evaluation, 
susceptible populations

 What is conservative depends on the application (for example, 100% absorption)

 What is the uncertainty associated with chemistry and decision?

 Since in vitro experiments are surrogates for reality, do you really get a reduction of 
uncertainty if you perform a specific measurement?

 Certain chemicals are suitable, others may not be appropriate:
 For example, what do we do when highly bioaccumulative?

 If you predict the days to reach steady state to be longer than the exposure period 
you are trying to model, then steady state is a poor assumption.

Decision Trees



HTTK Measurements
We will develop a table of what we can 

measure/model

Start with Coecke et al. (2013)?

For each measurement technology describe:
1) decision context
2) applicable chemistry
3) scientific motivation
4) impact on models
5) whether quantitative structure-property 

relationship (QSPR) models exist and when 
they are appropriate



● U.S. Air Force and U.S. EPA developed generic 
gas inhalation physiologically-based 
toxicokinetic (PBTK) model

● Evaluated HTTK with CvTdb (Sayre et al., 2020): 
142 exposure scenarios across 41 volatile organic 
chemicals were modeled and compared to 
published in vivo data for humans and rat

● R2 was 0.69 for predicting peak concentration

● R2 was 0.79 for predicting time integrated 
plasma concentration (Area Under the Curve, 
AUC)

Linakis et al. (2020)

Quantifying Uncertainty in HTTK



Breen et al. (2020) 

• Prediction of TK summary statistics such as peak 
concentration and time-integrated (“area under the curve” or 
AUC) concentration:

o Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from 
observed by 2.3x

o Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x 
for AUC

o Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-
pharmaceutical nature, RMSE of 2.2x for peak and 1.64x for AUC

o Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is 
included in httk similarly predicted human volume of distribution with a RMSE of 0.48 
(3x)

Review of HTTK Evaluations



Documenting, Standardizing, and 
Assessing In Vitro Measurements

Number of Measurements (n)

• Multiple governments and organizations 
continuing to collect in vitro data for HTTK

• Various approaches, including R package “httk” 
try to summarize these data

• EPA is interested in standardizing data analysis

o Working on new R package “invitroTKstats”

o Ensure all necessary measurements and 
metadata are recorded

o Structure data to support potential future 
databases



Coordinating Ongoing Data Collection

• U.S. EPA maintains a list of chemicals that already have in vitro TK 
measurements (Clint, fup, CACO-2, etc.) tested and those that are being 
considered for testing

• We are happy to share this list with others upon request 
(wambaugh.john@epa.gov)

• We would appreciate any lists of chemicals you plan to test or are testing to 
minimize duplication unless intended for cross-laboratory evaluations

• You do not need to share your data, but we’d always love to have your data 

• EPA distributes HTTK data via R package httk 
(https://cran.r-project.org/package=httk) and 
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). Also see 
U.S. NICEATM Web-ICE 
(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html)

https://cran.r-project.org/package=httk
https://comptox.epa.gov/dashboard
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html


QSPRs for HTTK Parameters
• We may not always need to measure
• Ongoing evaluation of QSPRs for predicting HTTK

o Presented at QSAR2021 virtual meeting / Manuscript in 
preparation

• Interpretable machine learning
o Perhaps we can reduce a machine learning model to a 

diagram that fits on an index card



The decision tree will serve as a “Cheat-sheet” for regulators: 

● Why/when to use HTTK?

● What information is available and where?

● How to judge input & output quality?

● What is associated uncertainty?

Case Study Outcome



• Manuscript is not yet complete – skeleton draft just 
circulated (October 2021)

• Targeting 2022 submission to Environment International

We need:

HTTK Case Study Path Forward

1) A table of the types of in vitro measurements that are 
currently available and the uncertainties they address

2) A series of decision trees based upon chemical and 
context

3) A series of case studies/examples walking through the 
data



• Contributions of the partners will include:
o Development of and comment on decision trees

o Help assess what factors are important depending on 
chemical, application, regulator, etc.?

HTTK Case Study Needs



• Partners can also help inform examples (what we will 
call “case studies” in the manuscript)
o Generic vs. Bespoke Model Case Study
o Data Rich Chemical Case Study
o Chemical Class Case Study
o Biomonitoring Case Study

HTTK Case Study Needs
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Figure from Breen et al. (2021)
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HTTK Measurements Overview
We will develop a table of what we can measure/model: 

• For each measurement technology (for example, intrinsic clearance, plasma protein 
binding) we will describe 1) decision context, 2) applicable chemistry, 3) scientific 
motivation, 4) impact on models, and 5) whether quantitative structure-property 
relationship (QSPR) models exist and when they are appropriate

o We will focus on the needed certainty in a measurement.

o Do you really get a reduction of uncertainty if you measure X? 

o We will make clear the time and labor for both traditional and new 
approach measurements.



● Armitage et al. (2021) found that the performance of 
generic PBTK models in “data poor” situations was 
both “acceptable in qualitative (that is, shape of 
concentration versus time (CvT) profiles) and 
quantitative terms for most of the selected chemicals.”

● World Health Organization (2010): PBTK models are 
“adequate” when predictions “are, on average, within 
a factor of 2 of the experimental data”

Review of HTTK Evaluations

Breen et al. (2020) 



● EPA has developed a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

https://github.com/USEPA/CompTox-PK-CvTdb

● Curation and development is ongoing, but to 
date includes:

○ 198 analytes (EPA, National Toxicology 
Program, literature)

○ Routes: Intravenous, dermal, oral, sub-
cutaneous, and inhalation exposure

● Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

Quantifying Uncertainty in HTTK

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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