https://orcid.org/0000-0001-5844-8754

US EPA QSAR Prediction and Hazard Comparison Tools

Todd Martin US EPA/ORD/CCTE

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

➢ Basics of QSAR modeling \succ Tools to estimate toxicity/properties TEST (Toxicity Estimation Software Tool) OPERA (OPEn Structure-activity Relationship App) EPI Suite (EPISUITE Estimation Programs Interface) Suite[™])

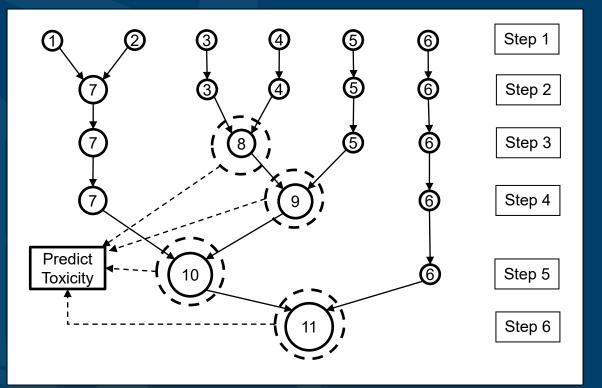
Tools to compare chemical alternatives
 HCD (Hazard Comparison Dashboard)

Molecules are converted to numerical representations known as descriptors
 Properties are calculated using equations based on the descriptor values:

 $Toxicity = a_0 + a_1 x_1 + a_1 x_1 + \dots + a_n x_{n1}$

Overall set is randomly split into a training and prediction setValid predictions must be within a domain of applicability

Methods in TEST 5.1


>There are several QSAR methods available in current TEST software:

- Hierarchical clustering
- Single Model
- Group contribution
- Nearest neighbor
- Consensus
- See the TEST User's guide for detailed information

Hierarchical clustering

- Similar chemicals are grouped together but not necessarily on expert defined chemical classes
- Uses structural information from entire data set instead of just from chemicals in SAR

A prediction is made using the average of the predictions from the MLR models for the closest cluster from each step

Single model

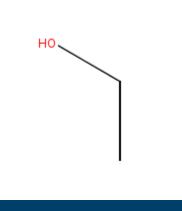
Predictions is made using multilinear regression model fit to entire training set:

$$Tox = \sum a_i x_i + a_0$$

> Descriptors, x_i , are 2d molecular descriptors

>Example, 48 hr *Daphnia magna* LC₅₀ model:

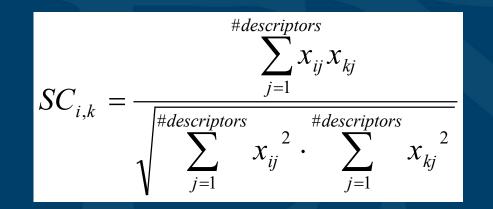
Toxicity = 1.2157 × (xc4) + 0.1341 × (StN) + 0.6974 × (SsSH)
 - 1.3213 × (SsOH_acnt) + 0.8605 × (Hmax) + 1.4685 × (ssi) 0.9197 × (MDEN33) + 0.2238 × (BEHm1) +
 1.4502 × (BEHp1) + 2.4060 × (Mv) + 1.9085 × (MATS1m) 2.4036 × (MATS1e) - 0.3463 × (GATS3m) + 0.0255 × (AMR) 1.4215 × (-C(=S)- [2 nitrogen attach]) - 0.7185 × (AN) 1.0232 × (-N< [attached to P]) - 1.5228 × (-S(=O)(=O)-
 [aromatic attach]) - 6.5594


Group contribution

Predictions is made using multilinear regression model fit to entire training set:

$$Tox = \sum a_i x_i + a_0$$

>Descriptors, x_i , are molecular fragment counts


Descriptor	Xi	a _i	$a_i \times x_i$
-CH3 [aliphatic attach]	1	0.23	0.23
-CH2- [aliphatic attach]	1	0.27	0.27
-OH [aliphatic attach]	1	-0.58	-0.58
Model intercept (a ₀)	1	1.96	1.96
Tox (-Log10(LC ₅₀ mol/L))			1.88

Nearest Neighbor

 Predicted toxicity is simply the average of the three nearest neighbors (i.e. read across)
 The neighbors are those with highest similarity coefficient:

All neighbors must exceed a minimum cosine similarity coefficient

For example the predicted FHM LC₅₀ for benzene is made using average of values for

$$\begin{array}{c} & & \\$$

Consensus model

The consensus prediction is simply the average predicted value for all the models that have predictions inside their applicability domain

- A prediction is made if at least two models have a valid prediction in terms of their respective applicability domain
- Using multiple models minimizes bad predictions and maximizes prediction accuracy

>Using different applicability domains maximizes prediction coverage

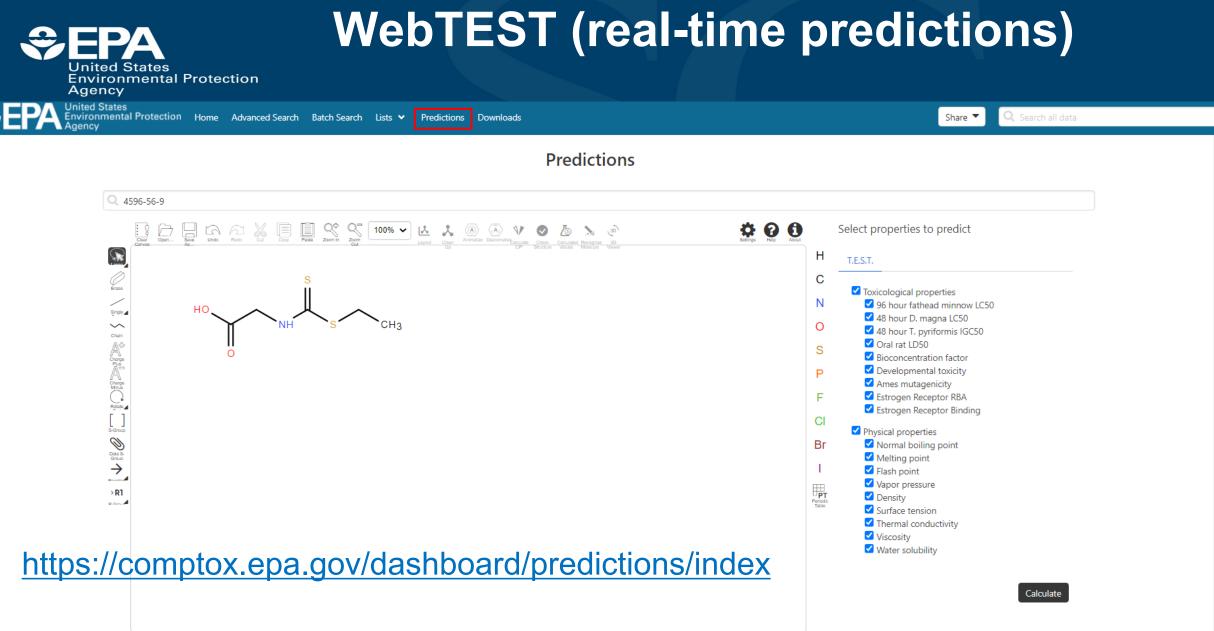
>This method is recommended method to use

Future Work QSAR Methods

>Python based QSAR methods RF - Random Forest SVM – Support Vector Machine DNN – Deep Neural Network XGBoost – eXtreme Gradient Boosting Consensus – average of above methods >Easily implementable as web services for both model building and model prediction

Ways to access TEST predictions

- Downloadable TEST software
 - https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
- >WebTEST
 - https://comptox.epa.gov/dashboard/predictions/index
- Stored predictions on the Dashboard
 - <u>https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID3039242#pr operties</u>



TEST (Toxicity Estimation Software Tool)

۹	T.E.S.T	(Toxicity	Estimation S	oftware Tool)
---	---------	-----------	--------------	---------------

– 🗆 X

File Help Enter a CAS, SMILES, Name, InChi, InChiKey, or DTXSID and click Search Draw Chemical Edit View Atom Bond Tools Search Drawing Help X 🗉 💼 🖹 🖓 🔗 🙆 会 🍃 🛝 🔁 🔍 🔍 50 V Molecule ID: 4596-56-9 \triangle Glycine, N-[(ethylthio)thioxomethyl]-Name: \bigcirc ~~ \bigcirc \bigcirc \bigcirc 110 Wm X Calculation Options \sim Normal boiling point ▼ ? Endpoint: -? Consensus Method: ? Relax fragment constraint https://www.epa.gov/chemical-research/toxicity-? Run CTS estimation-software-tool-test Select output folder: C:\Users\TMARTI02\OneDrive - Environmental Protection Agency (EPA)\Profile\Documents\MyToxicity3 Browse... ? Create detailed reports C H O N P S F CI Br I R 🚔 🚍

Benzene Cyclopentar Byclopentar Byclopenta

12

Stored Predictions on the Dashboard

https://comptox.epa.gov/dashboard/

SEPA United States Environmental Prot Agency	EPA United States Environmental Protection Home Advanced Search Batch Search Lists V Predictions Downloads							
	4596-	ne, N-[(ethyl 56-9 DTXSID0 y DSSTox Substance Id.		methyl]-				
DETAILS	Property	1						
EXECUTIVE SUMMARY	Summary 👻	J						
PROPERTIES				Summary				
ENV. FATE/TRANSPORT	La Download ▼ Columns >	•					Sea	arch query
HAZARD	Property \$	Experimental average	Predicted average	Experimental median 🗘	Predicted median \$	Experimental range	Predicted range	Unit
SAFETY	Water Solubility	8.15e-2 (2)	0.763	8.15e-2	8.11e-2	8.13e-2 to 8.16e-2	2.96e-2 to 2.18	mol/L
ADME	Melting Point	-	128		128	-	127 to 130	°C
EXPOSURE	Flash Point	-	142		142	-	132 to 151	°C
EXPOSORE	Density	-	1.37		1.37	-	1.34 to 1.40	g/cm^3
BIOACTIVITY	Boiling Point	-	311		311	-	296 to 326	°C
SIMILAR COMPOUNDS	LogKow: Octanol-Water	-	0.579		0.599	-	-6.98e-2 to 1.21	-
genra (beta)	Surface Tension	-	64.4			-	64.4	dyn/cm
RELATED SUBSTANCES	Index of Refraction	-	1.60			-	1.60	-
	Molar Refractivity	-	45.7			-	45.7	cm^3
SYNONYMS	Polarizability	-	18.1			-	18.1	Å^3
LITERATURE	Vapor Pressure	-	2.73e-5		2.73e-5	-	9.44e-6 to 4.51e-5	mmHg
LINKS	Molar Volume	-	133			-	133	cm^3
COMMENTS	LogKoa: Octanol-Air	-	7.92			-	7.92	-
COIVIMENTS	Henry's Law	-	1.96e-9			-	1.96e-9	atm-m3/mole

Stored Predictions on the Dashboard

Сору 🔻

Share 💌

Submit Comment

SEPA United States Environmental Protection Home Advanced Search Batch Search Lists v Predictions Downloads Agency

	Glycine, N- 4596-56-9 D Searched by DSSTox Subs	TXSID0	thio)thioxomethyl]- 0400783	-						
DETAILS	Property Water Solubility V	Property								
EXECUTIVE SUMMARY				Water Solubility						
PROPERTIES	Water Solubility									
ENV. FATE/TRANSPORT	🛃 Download Summary 👻	🛓 Download Summary 👻								
HAZARD	Type \diamond Average \diamond Median \diamond Range							\$	Unit	\$
SAFETY	Experimental 8.15e-2 8.15e-2 8.13e-2 to 8.16e-2								mol/L	
ADME	Predicted 0.763 8.11e-2 2.96e-2 to 2.18								mol/L	
EXPOSURE										
BIOACTIVITY	Experimental									
SIMILAR COMPOUNDS	🛓 Download Experimental Data 💌									
GENRA (BETA)										
RELATED SUBSTANCES	Source				÷	Result \$ 8.16e-2 \$	Experiment	al Details		\$
	PhysPropNCCT Kovdienko, et. al. Molecular informatics 29.5 (2010):	394-406.				8.13e-2				
SYNONYMS										
LITERATURE										
LINKS	Predicted Data ▼									
COMMENTS										
	Source +	Result	Calculation Details				\$	QMRF		\$
	TEST	2.96e-2	TEST Report					Not Available		
	ACD/Labs	2.18	Not Available					Not Available		
	OPERA	8.11e-2	OPERA Model Report [Ins	ide AD]				Available		

TEST Report

Predicted Water solubility at 25ŰC for 4596-56-9 from Consensus method

	Prediction results	
Endpoint	Experimental value (CAS= 4596-56-9) Source: <u>EPI Suite v 4.00</u>	Predicted value ^a
Water solubility at 25ŰC -Log10(mol/L)	1.09	1.53
Water solubility at 25°C mg/L	14606.83	5316.84

^aNote: the test chemical was present in the external test set.

Individual Pre		
Method	Predicted value -Log10(mol/L)	5 U
Hierarchical clustering	1.36	НО НО СН3
Group contribution	1.92	Ĭ
Nearest neighbor	1.31	
	·	

Prediction results (colors defined in table below)

TEST Report, cont.

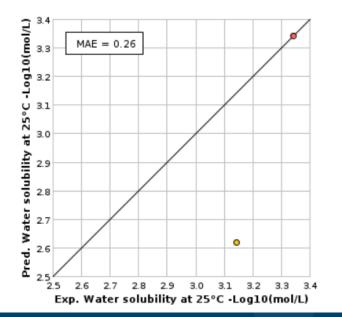
Predictions for the test chemical and for the most similar chemicals in the training set

If the predicted value matches the experimental values for similar chemicals in the training set (and the similar chemicals w value.

5.5 MAE = 0.27 4.0 • <tr

Chemicals	MAE*
Entire set	0.50
Similarity coefficient ≥ 0.5	0.27
*Mean absolute error in -Log1	0(mol/L)

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
4596-56-9 (test chemical)	но на сна		1.09	1.53
70561-60-3		0.97	1.23	1.52
<u>29677-65-4</u>	HO J J J J J OH	0.90	1.30	1.23
<u>5139-67-3</u>	H ₃ C S S H O HO O O H	0.82	1.39	1.54
	OH CH3			



TEST Report, cont.

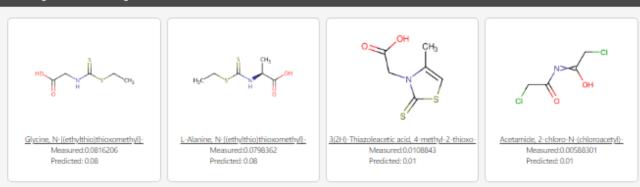
Predictions for the test chemical and for the most similar chemicals in the external test set

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar chemicals were

Prediction results (colors defined in table below)

Chemicals MAE* Entire set 0.58 Similarity coefficient ≥ 0.5 0.26 *Mean absolute error in -Log10(mol/L)
Similarity coefficient ≥ 0.5 0.26
5 –
*Mean absolute error in -Log10(mol/L)

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
4596-56-9 (test chemical)	НО Н СН3		1.09	1.53
<u>149-30-4</u>	HS	0.65	3.14	2.62
97852-89-6	HO S NH	0.51	3.34	3.34


United States Environmental Protection Agency

OPERA Prediction Report Glycine, N-[(ethylthio)thioxomethyl]-4596-56-9 | DTXSID00400783

OPERA Models: Water Solubility

Nearest Neighbors from the Training Set

OPERA QMRF

QMRF identifier (JRC Inventory):Q17-12-0021

QMRF Title:OPERA-model for Boiling

point

Printing Date:Oct 17, 2017

1.QSAR identifier

1.1.QSAR identifier (title):

OPERA-model for Boiling

point

1.2.Other related models:

No related models

1.3.Software coding the model:

OPERA V1.5

OPERA (OPEn (quantitative) structure-activity Relationship Application) is a standalone free and open source command line application. It provides a suite of QSAR models to predict physicochemical properties and environmental fate of organic chemicals based on PaDEL descriptors. It is available for download in Matlab, C and C++ languages from github under MIT license.

Kamel Mansouri (mansourikamel@gmail.com) https://github.com/kmansouri/OPERA.git

PaDEL descriptors V2.21

Open source software to calculate molecular descriptors and fingerprints. Chun Wei Yap (phayapc@nus.edu.sg) http://padel.nus.edu.sg/software/padeldescriptor

Alternatives Assessment

Goal: identify safer alternatives for chemicals of concern.

- Comparative Chemical Hazard Assessment
- Exposure Assessment and Life Cycle Assessment

Purpose of the Hazard Comparison Dashboard

An OECD* review identified gaps including
 a need for improved access to "automated tools and methods to reduce hours of highly technical work"

>The Hazard Comparison Dashboard aims to fill this gap

 Display compiled chemical hazard data and enable users to readily compare alternatives

^{*}Organization for Economic Cooperation and Development (OECD) (2013), *Current Landscape of Alternatives Assessment Practice: A Meta-Review.*

Hazard categories

Scores of Low, Medium, High, and Very High (L, M, H, VH) for:

- Human Health
 - Acute mammalian toxicity*
 - Carcinogenicity
 - Mutagenicity*
 - Endocrine disruption*
 - Reproductive toxicity
 - Developmental toxicity*
 - Neurotoxicity
 - Systemic toxicity
 - Skin sensitization
 - Skin irritation
 - Eye irritation

- Ecotoxicity
 - Acute aquatic toxicity*
 - Chronic aquatic toxicity
- Fate
 - Persistence
 - Bioaccumulation*

*Six endpoints can be predicted using Quantitative Structure-Activity Relationship (QSAR) models in WebTEST

Sources of Hazard Data

GHS H-codes

- Safe Work Australia Hazardous Chemical Information System (HCIS)
- Canada CNESST Workplace Hazardous Materials Information System (WHMIS)
- European Chemicals Agency (ECHA) Classification Labeling and Packaging (CLP)
- National Institute of Technology and Evaluation (NITE) of Japan
- Ministry of Human Resources Malaysia Industry Code of Practice on Chemicals Classification and Hazard Communication

Hazard categories

- Germany Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission)
- New Zealand Environmental Protection Authority
- > Quantitative toxicity data
 - ChemIDplus, ToxVal v8
- > Quantitative Structure-Activity Relationships (QSAR) Predictions
 - WebTEST, OPERA
- Ministry of Environment and Food of Denmark Advisory List for Self-Classification of Dangerous Substances

Sources of Hazard Data

> Hazardous Chemical Lists

- Environment and Climate Change Canada Domestic Substance List (DSL)
- EPA mid-Atlantic Region Human Health Risk-Based Concentrations
- Health Canada Priority Substance Lists (Carcinogenicity and Reproductive Tox)
- International Agency for Research on Cancer (IARC) Monographs
- Integrated Risk Information System (IRIS)
- National Institute for Occupational Safety and Health (NIOSH) list of potential occupational carcinogens
- California Proposition 65
- ECHA Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Candidate List of Substances of Very High Concern for Authorization
- Report On Carcinogens
- Chemsec Substitute It Now (SIN) List
- The Endocrine Disruption Exchange (TEDX) List of Potential Endocrine Disruptors
- Toxic Substances Control Act (TSCA) Work Plan
- ²⁴ University of Maryland (UMD) List of Acute Toxins, Teratogens, Carcinogens, or Mutagens,

Criteria for converting acute mammalian toxicity data into hazard scores

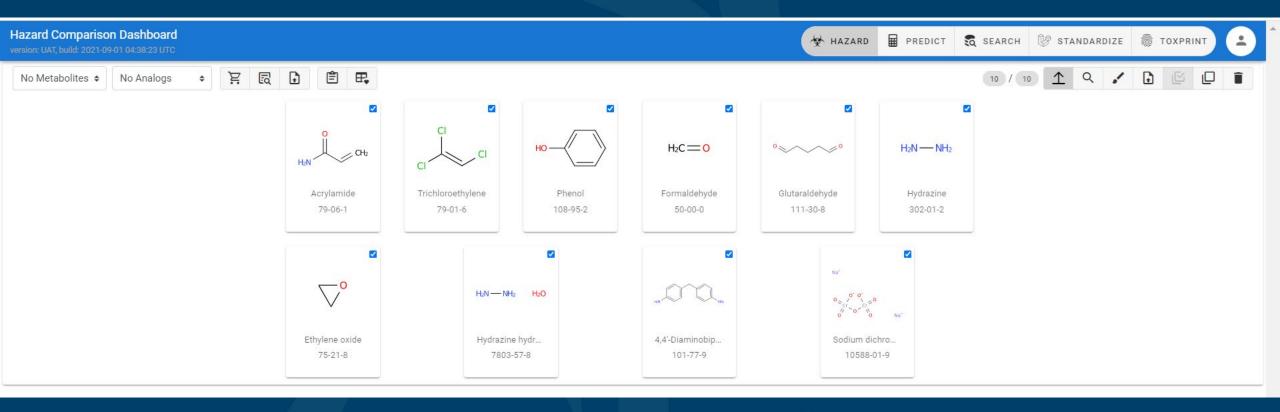
		Score						
Source	Endpoint	VH	н	М	L	N/A		
DfE criteria	Oral LD50 (mg/kg)	≤ 50	> 50 - 300	> 300 - 2000	> 2000			
Die Citteria	Hazard Code	H300	H301	H302				
ChemID <i>plus</i> ; T.E.S.T. Predicted*	Oral LD50* (mg/kg)	≤ 50	> 50 - 300	> 300 - 2000	> 2000			
Australia; Canada; ECHA CLP; Japan**; Malaysia	Hazard Code	H300	H301	H302	H303			
Denmark	Category	AcuteTox1 and AcuteTox2	AcuteTox3	AcuteTox4				
		Category 6.1A			o (
New Zealand	Category	Category 6.1B	Category 6.1C	Category 6.1D	Category 6.1E			
TSCA Work Plan			Acute mammalian toxicity					
UMD		Acute toxin						

*T.E.S.T. Predicted predicts rat LD50 values. ChemID*plus* LD50 values for rats, mice, rabbits, and guinea pigs were included. **Japan is the only source that included H303.

Assigning the Overall Score

Trumping Method: overall score is the most toxic score from the most authoritative source

- 1. Authoritative (e.g., ECHA CLP)
- 2. Screening (e.g., ChemIDplus)
- 3. Predicted (e.g., WebTEST)



Data coverage for the active non-confidential portion of the TSCA inventory (n = 18,696)

Endpoint	% Coverage*
Acute Mammalian Toxicity Oral	18.5%
Acute Mammalian Toxicity Inhalation	6.7%
Acute Mammalian Toxicity Dermal	8.6%
Carcinogenicity	3.6 %
Genotoxicity Mutagenicity	9.6%
Endocrine Disruption	2.3%
Reproductive	3.4%
Developmental	4.1%
Neurotoxicity Repeat Exposure	1.5%
Neurotoxicity Single Exposure	1.9 %
Systemic Toxicity Repeat Exposure	5.6%
Systemic Toxicity Single Exposure	5.0%
Skin Sensitization	3.6 %
Skin Irritation	12.3%
Eye Irritation	13.1%
Acute Aquatic Toxicity	40.3%
Chronic Aquatic Toxicity	9.4 %
Persistence	40.4 %
Bioaccumulation	40.18

* Omits QSAR predictions from T.E.S.T. and Denmark

Sample Web HCD Output

				l oxicity:	VH - Ver				10000	w I - Inco	onclusive N	/A - Not App	licable ,	Authority:	Authorita	tive ⊕ Se	creening `		
 Skipped (0) Unlikely (0) Filters (0) Sorting (0) Structure CAS Name 					-		Human	Health I	Effects							Ecoto		Fa	ite
	Acute N	1ammalian	Toxicity		enicit	5			Neuro	toxicity	Systemic Toxicity					ity	icity		
	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicit	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation
79-06-1 Acrylamide	Н	М	М	VH	VH	L	м	н	н	Н	н	Н	н	н	н	М	М	L	L
79-01-6 Trichloroethylene	L	М	L	VH	VH	1	н	н	н	н	Н	М	Н	н	н	н	VH	Н	L
108-95-2 Phenol	н	н	н	н	н	н	н	н	н	н	м	н	н	νн	VH	н	н	L	н
50-00-0 Formaldehyde	н	н	н	VH	н	н		L			L	М	н	νн	VH	н	L	L	L
111-30-8 Glutaraldehyde	н	νн	н	м	VH	н	н	L		н	н	М	н	νн	VH	νн	н	L	L
302-01-2 Hydrazine	н	н	н	νн	VH		н	М	н	н	Н	н	н	VH	VH	VH	VH	L	L
75-21-8 Ethylene oxide	VH	н	I	νн	νн	н	н	н	н	н	н	М	Н	н	н	М	L	Н	L
7803-57-8 Hydrazine hydrate	VH	VH	VH	VH	VH		м	I	н	н	н	н	н	VH	VH	VH	VH		
101-77-9 4,4'-Diaminobiphe	н	T	VH	VH	н	L	I	Н		н	м	н	н	L	н	VH	н	L	L
10588-01-9 Sodium dichromate	н	VH	М	VH	VH		н	н			н	н	н	VH	VH	VH	VH	Н	L

HCD Results with CTS* transformations https://qed.epa.gov/cts/

Hazard Comparison Dashboard version: UAT, build: 2021-09-01 04:38:23 UTC												♦ H	IAZARD		PREDIC	т	SEAR	н	🕼 st	TANDA	RDIZE	Ō	TOXPR	INT	(
4 generations ↔ No Analogs ↔ 🔆 🛱 🚺	ð F.																1	11	Ţ	Q	1	Ð	Ľ	D	Î
						1																			
H _N								H₂C <mark>=0</mark> °≪			0	• H ₂ N — NH ₂			JH₂										
Acryl: 79-1		Trichloroeth 79-01-6			Phen 108-9				maldehyd 50-00-0	e		raldehyde 1-30-8	e		Hydrazin 302-01-;										
					Н	luman l	Health E	ffects		A second					Ecoto	xicity	Fa	te							
Skipped (0)	Acute Man	nmalian Toxicity		enicit	5			Neurot	oxicity	Systemic	Toxicity				ity	ticity									
 Unlikely (23) Filters (0) ✓ Sorting (0) Structure CAS Name 	Oral	Inhalation Dermal	Carcinogenicity	Genotoxicity Mutagenicit	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation							
115-86-6 Triphenyl phospha	М	LL	I	L	н	L	L	L	I	L	T	T	L	н	VH	VH	м	Н							
838-85-7 Diphenyl phospLIKELY	М			VH	L	М	Н								L		L	L							
108-95-2 Phenol LIKELY	н	нн	н	н	н	н	н	н	н	м	Н	н	VH	VH	н	н	L	н							

* Chemical Transformation Simulator generates breakdown products via environmental and biological transformation pathways

HCD with analog search

Batch mode of TEST

I.E.S.T (Toxicity Estimation Software Tool)

File Help

Search the database by CAS, SMILES, Name, InChi, InChiKey, or DTXSID (one per line)	
79-06-1	
Automatic	
108-95-2	
Draw chemical 50-00-0	
111-30-8	
302-01-2	
Delete selected 75-21-8	
7803-57-8	
101-77-9	
Clear table 10588-01-9	
	Search
Calculation Options	
Endpoint: Normal boiling point 💌 ?	
Method: Consensus 💌 ?	
Relax fragment constraint ?	
Select output folder:	
C:\Users\TMARTI02\OneDrive - Environmental Protection Agency (EPA)\Profile\Documents\MyToxicity3	
	Browse
Create reports ?	View results
	VIEW TESUILS

n list of chemicals	double click a row to edit a cher	mical)		
#	ID	Name	Formula	Error
1	79-06-1	Acrylamide	C3H5NO	
2	79-01-6	Trichloroethylene	C2HCI3	
3	108-95-2	Phenol	C6H6O	
4	50-00-0	Formaldehyde	CH2O	
5	111-30-8	Glutaraldehyde	C5H8O2	
6	302-01-2	Hydrazine	H4N2	Molecule does not contain carbon
7	75-21-8	Ethylene oxide	C2H4O	
8	7803-57-8	Hydrazine hydrate (1:1)	H6N2O	Multiple molecules
9	101-77-9	4,4'-Diaminobiphenyl methane	C13H14N2	
10	10588-01-9	Sodium dichromate	Cr2Na2O7	Multiple molecules

_

 \times

Sample Hazard Comparison Output in TEST

Hazard comparison

1																					
Final Score	s Score R	ecords	Score Records	s Exposure 7	/9-06-1																
CAS	Name	Acute Mammalian Toxicity Oral	Acute Mammalian Toxicity Inhalation	Acute Mammalian Toxicity Dermal	Skin Sensitization	Skin Irritation	Eye Irritation	Carcinogenicity	Genotoxicity Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Neurotoxicity Repeat Exposure	Neurotoxicity Single Exposure	Systemic Toxicity Repeat Exposure	Systemic Toxicity Single Exposure	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure
	Acrylamide	Н	M	M	Н	Н	Н	VH	VH	L	M	Н	Н	Н	Н	Н	M	M	L	L	Н
79-01-6	Trichloroet	L	M	L	Н	Н	н	VH	VH	L	Н	Н	Н	Н	Н	M	Н	VH	Н	L	Н
	Phenol	H	Н	Н	Н	VH		Н	Н	Н	Н	Н	н	Н	М	Н	Н	H	L	Н	VH
50-00-0	Formaldeh	H	Н	H	H	VH		VH	H	Н		L			L	M	H	L	L	L	Н
111-30-8	Glutaralde	H	VH	н	H	VH	VH	М	Н	Н	Н	L		Н	Н	М	VH	H	L	L	Н
302-01-2	Hydrazine	Н	Н	H	H	VH	VH	VH	VH		Н	М	Н	Н	Н	Н	VH	VH	L	L	
75-21-8	Ethylene o		Н		Н	H	Н	VH	VH	Н	H	Н	Н	Н	Н	М	М	L	Н	L	VH
7803-57-8	Hydrazine	VH	VH	VH	H	VH	VH	VH	VH		М	I.	Н	Н	Н	Н	VH	VH		1	
101-77-9	4,4'-Diami	Н		VH	H	L	Н	VH	H	L		Н		Н	М	H	VH	H	L	L	Н
10588-01-9	Sodium di	Н	VH	M	H	VH		VH	VH		H	Н			H	Н	VH	VH	Н	L	

Score Record Output in TEST

Hazard comparison

Final Sco	ores Score	e Records	Score Record	ls Syster	mic Toxicity I	Repeat Exposi	ıre 79-06-1										
CAS	name	hazardName	source	sourc	listType	score	rationale	route	category	hazardCode	hazardStat	note	note2	toxvalID	testOrganis	testType	valuel
79-06-1	acrylamide;	Systemic T	ECHA CLP		Authoritative	Н	Score of H was assigned based on a hazard code of H372		STOT RE 1	H372	Causes da						
79-06-1	Acrylamide	Systemic T	Australia		Screening	Н	Score of H was assigned based on a hazard code of H372		Specific tar	H372	Causes da	N (The clas					
79-06-1	Acrylamide	Systemic T	Canada		Screening	Н	Score of H was assigned based on a hazard code of H372		Specific tar	H372	Causes da	Comments					
79-06-1	Acrylamide	Systemic T	Japan		Screening	Н	Score of H was assigned based on a hazard code of H372		Category 1	H372	Causes da	As for hum					
79-06-1	Acrylamide;	Systemic T	Malaysia		Screening		Score of H was assigned based on a hazard code of H372		STOT RE 1	H372	Causes da						
79-06-1	Acrylamide	Systemic T	New Zeala		Screening	Н	Score was assigned based on a category of Category 6.9A (Category	dermal	Category 6		Toxic to hu	EndPoint: <					
79-06-1	Acrylamide	Systemic T	New Zeala		Screening		Score was assigned based on a category of Category 6.9A (Category		Category 6		Toxic to hu	EndPoint: <					
79-06-1	Acrylamide	Systemic T	New Zeala		Screening	Н	Score was assigned based on a category of Category 6.9A (Category	oral	Category 6		Toxic to hu	EndPoint: <					
79-06-1	Acrylamide	Systemic T	ToxVal v8	ECHA	Screening	Н	2 year Oral NOAEL < 1.25 mg/kg-day	oral						67861	rat	NOAEL	=
79-06-1	Acrylamide	Systemic T	ToxVal v8	HPVIS	Screening	Н	1 month Oral NOAEL < 30.0 mg/kg-day	oral						667461	rat	NOAEL	=
79-06-1	Acrylamide	Systemic T	ToxVal v8	HPVIS	Screening	Н	3 months Oral NOAEL < 10.0 mg/kg-day	oral						667462	rat	NOAEL	=
79-06-1	Acrylamide	Systemic T	ToxVal v8	HPVIS	Screening	Н	3 months Oral NOAEL < 10.0 mg/kg-day	oral						667463	rat	NOAEL	=
79-06-1	Acrylamide	Systemic T	Australia		Screening	M	Score of M was assigned based on a hazard code of H373		Specific tar	H373	May cause	N (The clas					

Х

Strengths and Limitations of the Hazard Comparison Dashboard

> Strengths

- Provides rapid way to compare chemicals and retrieve hazard data
- Includes data from several sources including QSAR models
- Limitations
 - Data gaps
 - Automation limits the scope of data searching and quality assurance, particularly of primary sources

Future Research Needs

Update the data from each source

Add additional data sources into the AA Dashboard

- QSAR models for additional endpoints
- Quantitative data from REACH dossiers

Questions???

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency