

Quantitative Non-Targeted Analysis for Risk-Based Prioritization of Emerging Contaminants

Jon R. Sobus, Ph.D., Physical Scientist, Center for Computational Toxicology and Exposure

Total PFAS Analysis for Public Health Protection | Science, Applications, Benefits and Challenges | October 27 & 28, 2021

Resources and

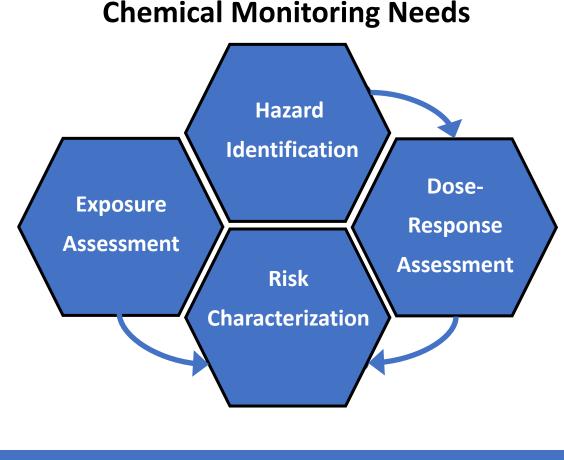
Guidance

Documents

Why Do "We" Need Measurement Data?

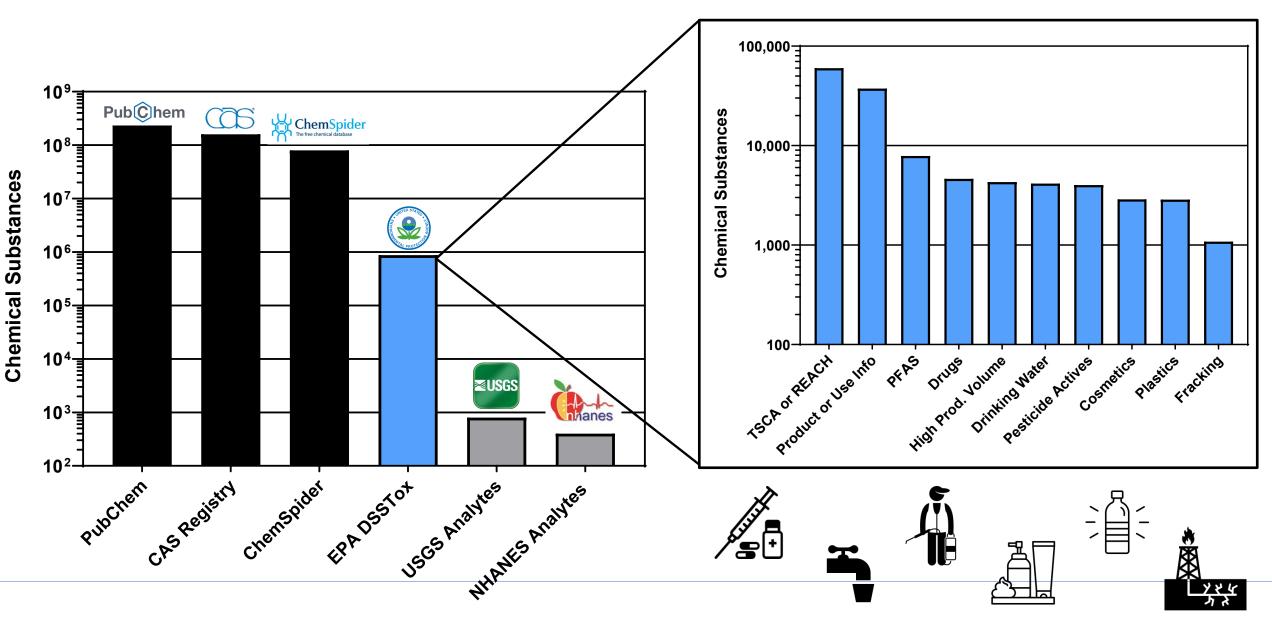
Measurement data needed to ensure chemical safety

- Characterize risk
- Regulate use & disposal
- Manage human & ecological exposures
- Ensure compliance under legal statutes


Toxic Substances Control Act (TSCA) Compliance Monitoring

To protect Safe Drinking Water Act (SDWA) federal, sta with statut **Compliance Monitoring** import), p chemical s

substances Providing safe drin states, tribes, pub certified laborator water samples col the tribes monitor Water Act regulato


Federal Insecticide, Fungicide and **Rodenticide Act Compliance** Monitoring

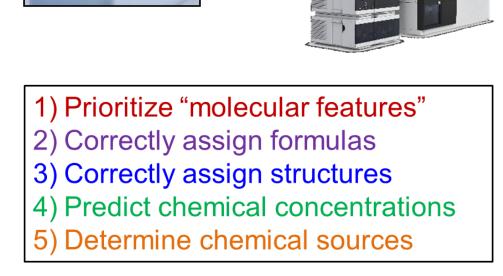
The Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) gives EPA the authority to regulate the registration, distribution, sale and use of pesticides. FIFRA applies to all types of pesticides, including:

Data Disparity: Have vs. Need

- High-quality monitoring data are unavailable for most chemicals
- Measurement data traditionally generated using "targeted" methods
- Targeted analytical methods:
 - Require *a priori* knowledge of chemicals of interest
 - Produce data for few selected analytes (10s-100s)
 - Require standards for method development & compound quantitation
 - Are blind to emerging contaminants
 - Can't keep pace with the needs of 21st century chemical safety evaluations

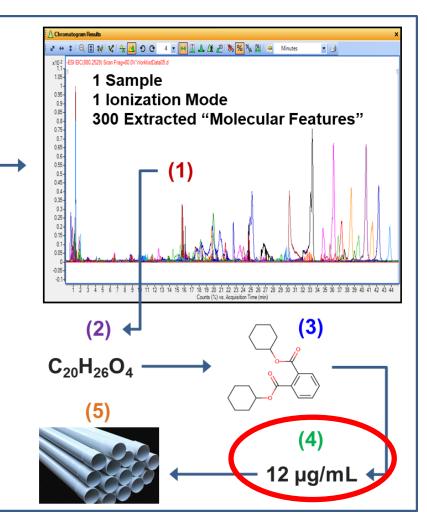
What's So Great About NTA?

Samples

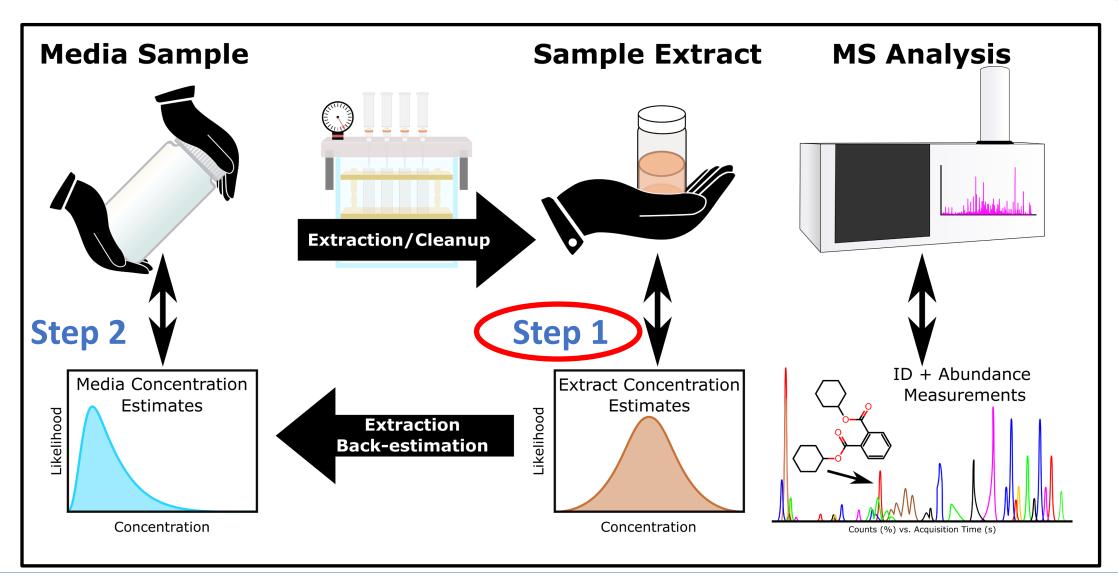


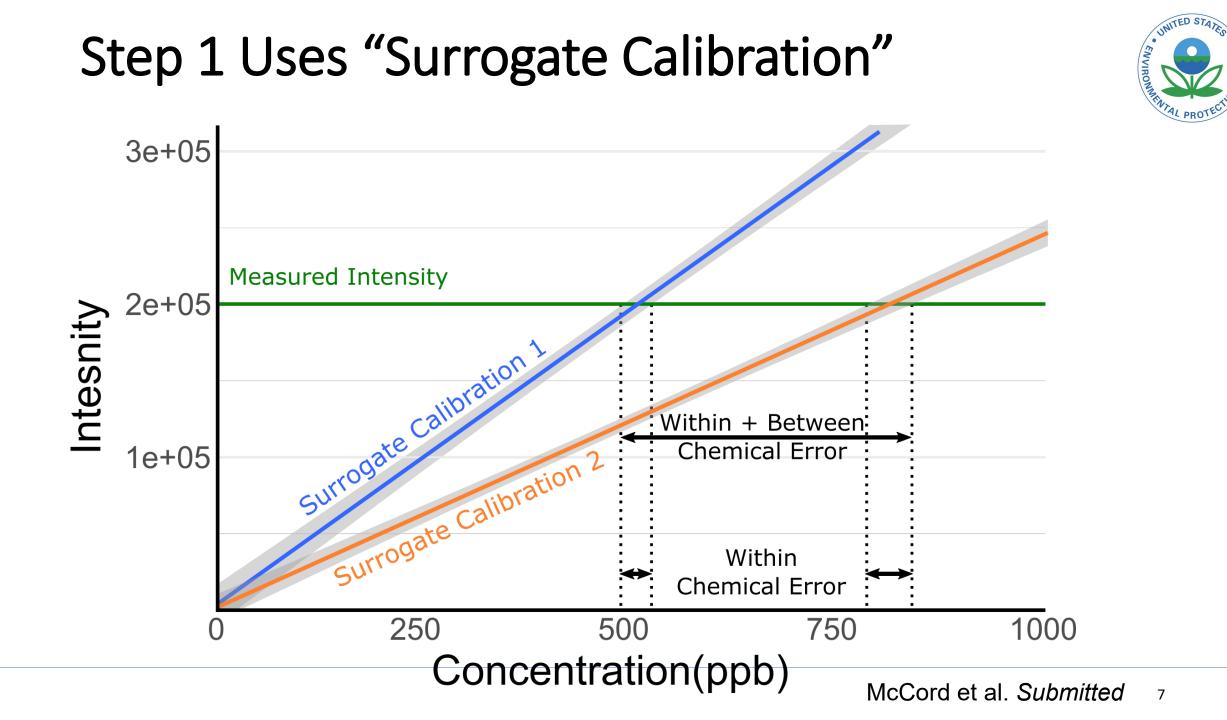
Rapidly screen for "knowns"

Discover "unknowns"


Uncover historical exposures

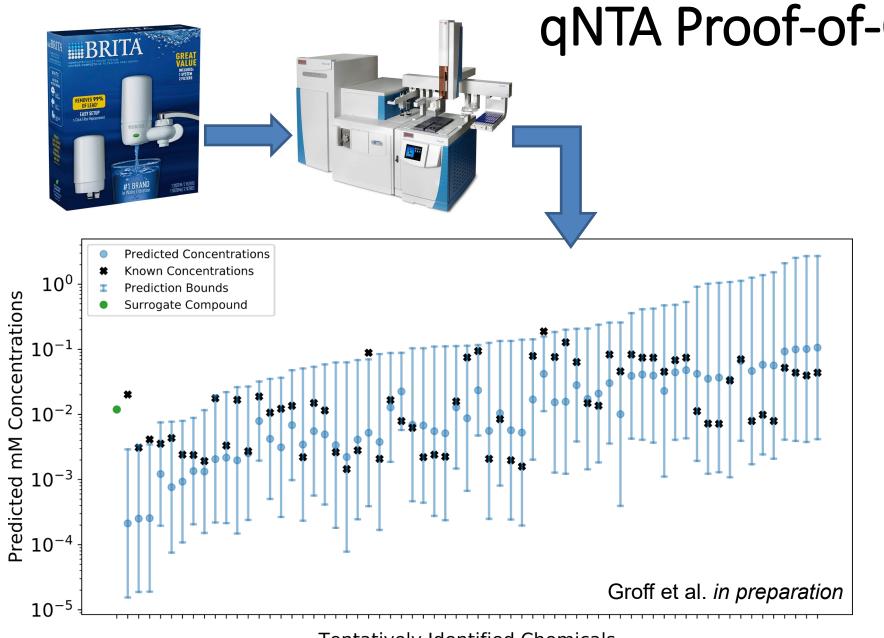
Generate source fingerprints...




High-

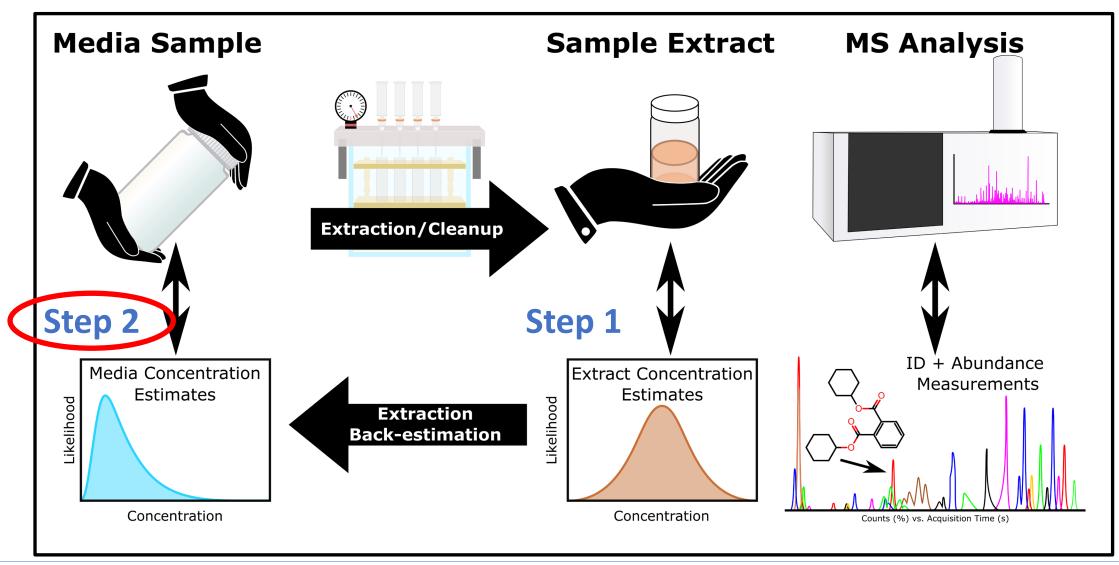
Resolution MS

Quantitative NTA (qNTA) Workflow



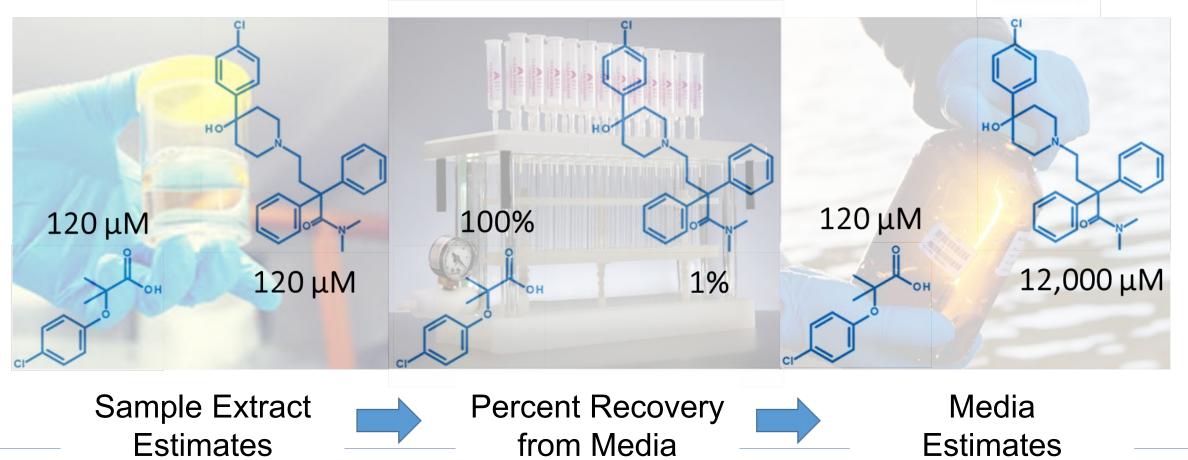
Considerations for Surrogate Calibration

- Multiple methods for choosing a surrogate calibrant
 - Single surrogate (i.e., an "average" responder)
 - Structurally similar surrogate
 - Nearest neighbor (e.g., based on elution time)
 - Within chemical class
 - Based on calculated similarity (e.g., Tanimoto index)
 - Based on known parent/metabolite relationship
 - Model-predicted value (e.g., based on expected ionization efficiency)
- Prediction error within and between chemicals
 - Affected by sample & batch correction techniques
 - Affected by surrogate selection techniques
 - Consider all error when estimating confidence intervals for individual predictions


qNTA Proof-of-Concept

- Analysis of Brita filter extracts via GC-HRMS.
- Single surrogate selected and applied to all identified analytes
- Concentration estimates can be above or below true value.
- Prediction intervals used to bound concentration estimates.
- 95% prediction intervals shown; Can use 99%, 99.9%, etc.
- Tentatively identified compounds ranked by upper-bound estimates.
- Upper-bound estimates compared to level-of-interest to set priorities.

Tentatively Identified Chemicals


Quantitative NTA (qNTA) Workflow

Why is "Recovery" A Critical Parameter?

Max. Percent Recovery = $100\% \rightarrow \text{known}$ lower bound on media conc. Min. Percent Recovery = $?\% \rightarrow \text{no upper bound on media conc.}$

No Existing Models for Predicting Recovery

- General rule of thumb:
 - At least 10× more data points than explanatory variables
- Type of media: 10s
- Conditions of media: 10s
- Extraction solvents: 10s
- Extraction conditions: 10s
- Clean-up procedures: 10s
- Interactions terms (e.g., media × condition × solvent...): ???
- >100,000 possible recovery scenarios \rightarrow >1,000,000 required data points
- So we can't bound it, and we can't predict it. Now what???

Defining "Margin of Recovery" (MoR)

Traditional "Recovery" Definition:

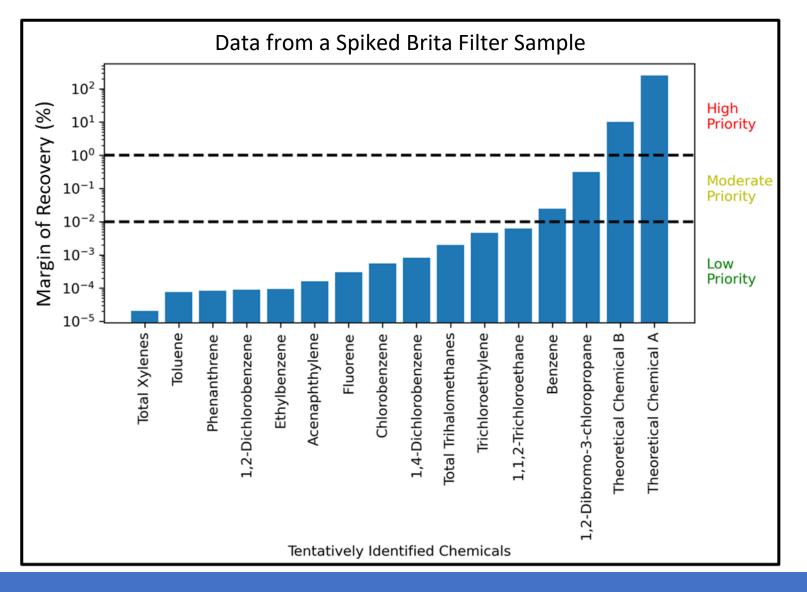
Amount in Sample Extract Amount in Sampled Media

 $\Rightarrow \frac{80 \ \mu g}{100 \ \mu g} \times 100 = 80\%$ Recovery

"Margin of Recovery" (MoR) Definition:

Upper Bound qNTA Estimate (amount in sample extract)

Level of Concern (amount in sampled media)

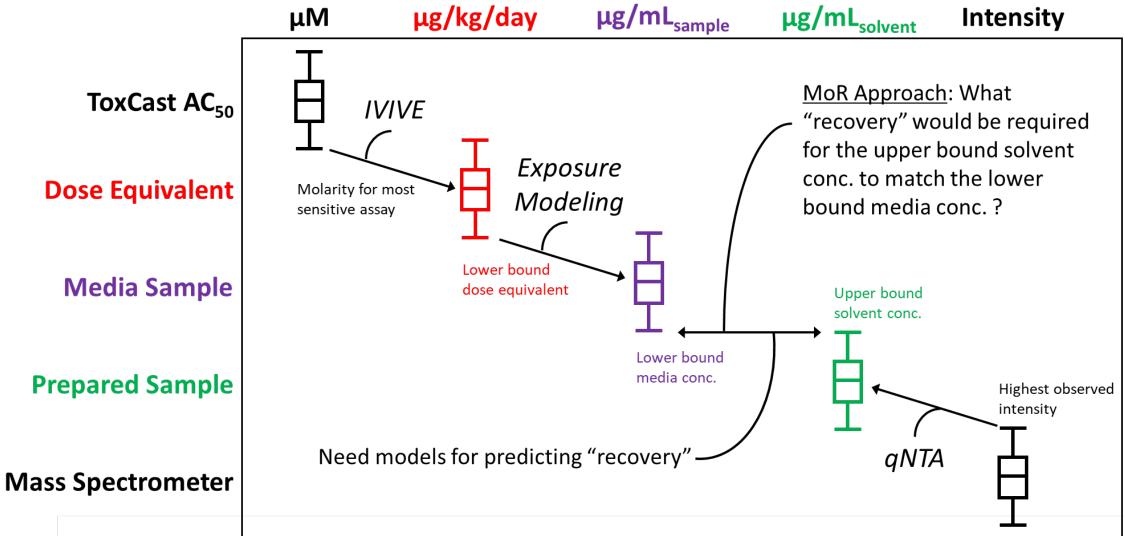

Important interpretation:

- What recovery is needed for the qNTA estimate to match the level-of-concern?

 \times 100 = %MoR

- Is that calculated recovery plausible enough to warrant further targeted analysis?

Example Risk-Based Prioritization


For "High Priority" Chemicals, a 1-100% experimental recovery would be needed for the upper bound qNTA estimate to match a drinking water concentration associated with bioactivity/toxicity.

Recoveries < 1% and > 0.01% are considered somewhat unlikely. Chemicals in this range are therefore considered "Moderate Priority"

Recoveries < 0.01% are considered highly unlikely. Chemicals in this range are therefore considered "Low Priority"

Conceptual Model for Rapid Risk Evaluation

The Future of NTA and Chemical Risk Assessment

- The number of labs performing NTA will increase <u>dramatically</u>!
- We're expecting a wealth of NTA data for known (but data-poor) chemicals
 - <u>These data cannot be interpreted using traditional performance metrics</u>
 <u>How will risk assessors use new NTA data to support decisions?</u>
- We're expecting a steady stream of NTA data for newly discovered chemicals
 - Chemical standards won't be readily available (via purchase or synthesis)
 - How will risk assessors rapidly evaluate the safety of these CECs?
- ORD efforts will enable translation of NTA data to support Agency decisions

WHAT IS BP4NTA? A consensus organization of >100 members from ~55 worldwide, multisector institutions.

FOR NON-TARGETED ANALYSIS

BP4NTA was formed in 2018 to address challenges in nontargeted analysis (NTA) studies using mass spectrometry. We hope to accelerate the broad acceptance and use of HRMS studies in scientific and regulatory communities.

BP4NTA PRODUCTS

Visit <u>www.nontargetedanalysis.org</u> for more information.

1. Collated resources for new NTA researchers traversing the learning curve

Access detailed, NTA reference content at www.nontargetedanalysis.org/reference-content/

2. The NTA Study Reporting Tool (SRT)

Access a peer-reviewed tool that aids study design & review of NTA manuscripts at www.nontargetedanalysis.org/srt/

3. A glossary of commonly used NTA terms, concepts, and performance metrics

Access the list of NTA definitions at www.nontargetedanalysis.org/glossary/

UPCOMING EVENTS

SETAC SciCon4 2021: Nov. 14-17

- Poster: Non-Targeted Analysis Study Reporting Tool: A New Framework to Improve Reproducibility and Transparency (4.08.13)
- Session: Non-Targeted Analysis: Approaches Toward Identification of Chemical Contaminants (4.08.01-4.08.25)
- Session: Non-Target Analysis: Prioritization of Organic Contaminants for Monitoring and Toxicological Studies (4.09.01- 4.09.20)

SETAC Focused Topic Meeting: May 22-26, 2022 "Non-Target Analysis for Environmental Assessment"

THE STUDY REPORTING TOOL (SRT)

A FRAMEWORK FOR CONSISTENT PEER REVIEW

Section	Category	Sub-Category	Category Example Information to Report		Rationale
	Study Design	Objectives & Scope	 Ready (point, hyperbasis, suct pa Copiedad chemical contraga 	1	
		Sample Info & Preparation	 Sampling collection: processing Classification: Internated use of blanks 	2	
		QC Spikes & Samples	Description of spikas-controls		-
	Data Acquisition	Analytical Sequence	-Gample num ander, emalytical batch(en)	NA	
Methods		Chromatography	 3-4 examples of representative 		Space for
Methods		Mass Spectrometry	information to report for each of	0	reviewer to
	Data	Data Processing	the 13 sub-categories.		explain assigned
		Statistical &Chemometric Analysis	 Not an exhaustive list – intended 	1	score (i.e.
			to guide researcher/reviewer and relies on expertise/discretion.	2	typical pee review
		Annotation &Identification	Construction Construction		rationale)
Results -	Data Outputs	Statistical &Chemometric Outputs	Rodic statistical outputs & romats of characteristics analysis We satistical reaction contraction reaction, algorithms, etc.	3	
		ID & Confidence Levels	Hisported/Us and coefficience levels & suggoring data Semi-guarit data, expensed MSIMS spectra	3	
	QA/QC Metrics	Data Acquisition QA/QC	 Method impacts on sitesevable chemical space Accuracy & precision of chronislography, mass error, abundance 	1	
		Data Processing & Analysis QA/QC	Method impacts an abservable chemical space Performance measures for accuracy, reproducibility of results	0	

Enables rigorous evaluation of reporting guality in NTA studies

READILY VISUALIZE REVIEWER FEEDBACK

EN	TER REV	IEW SC	ORES	AUTOPLOT CREATE			
Reviewer 1	Reviewer 2	Reviewer 3	Author Review				
3	3	2	3				-
1	2	3	2				
NA	NA	NA	NA	0			
1	1	2	2				
2	3	1	2			-	
1	1	NA	0	•	0	•	
2	1	2	2			-	• •
		1	1				
3	1	2	3			-	•
0	0	2	1		-	• 0	
1	2	NA	3	•	-		
0	1	2	1		-	-	
NA	NA	1	0	**		•	

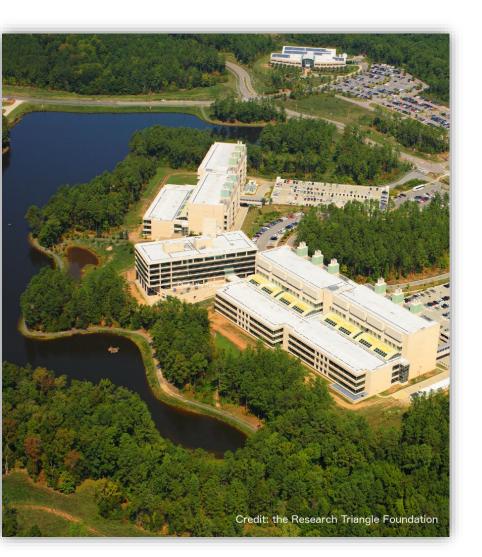
Excel auto-plot function provides quick visual representation of peer-reviewer and self-assigned scores

Follow us on Twitter! BP4NTA

TO LEARN MORE ABOUT BP4NTA, VISIT WWW.NONTARGETEDANALYSIS.ORG

Download the SRT: www.nontargetedanalysis.com/srt/

Evaluation of the SRT: 10.1021/acs.analchem.1c02621


Contributing Researchers

This work was supported, in part, by ORD's Pathfinder Innovation Program (PIP) and an ORD EMVL award

* = ORISE/ORAU

EPA ORD

Hussein Al-Ghoul* Alex Chao Jacqueline Bangma* Matthew Boyce* Kathie Dionisio Louis Groff* Jarod Grossman*

Chris Grulke Kristin Isaacs Sarah Laughlin* Hannah Liberatore

Charles Lowe Kamel Mansouri* Aurelie Marcotte* James McCord Andrew McEachran* Kelsey Miller Jeff Minucci

EPA ORD (cont.)

Seth Newton Grace Patlewicz Allison Phillips Katherine Phillips Tom Purucker Ann Richard Randolph Singh* Jon Sobus Mark Strynar Elin Ulrich Ariel Wallace John Wambaugh Antony Williams

<u>GDIT</u>

Ilya Balabin Tom Transue Tommy Cathey

Questions?

sobus.jon@epa.gov

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.