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Disclaimer

The views expressed in this presentation are those of the author(s) and do not 
necessarily represent the views or policies of the U.S. Environmental Protection 
Agency, nor does mention of trade names or products represent endorsement 
for use.



• High Throughput Transcriptomics (HTTr)

• High Throughput Phenotypic Profiling (HTPP)

• Applications for Molecular PODs From HTP NAMs

Outline



Tiered Hazard Evaluation Approach (1)

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

• New Approach Methodologies (NAMs) are any
technology, methodology, approach or combination
thereof that can be used to provide information on
chemical hazard and risk that avoids the use of intact
animals.

• NAMs are a potential means to reduce the use of
animals in toxicity testing and accelerate the pace of
chemical risk assessment.

• US EPA CompTox Blueprint advocates the use of high
throughput profiling (HTP) assays as the first tier in
a NAMs-based hazard evaluation approach.

• HTP assay criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction and
evaluation of chemical similarity.

2. Compatible with multiple human-derived culture
models.

3. Concentration-response screening mode.
4. Cost-effective.



Tiered Hazard Evaluation Approach (2)

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

• To date, EPA has identified and implemented 
two HTP assays that meet this criteria. 

• High-Throughput Transcriptomics [HTTr]

• Whole Transcriptome TempO-Seq

• High-Throughput Phenotypic Profiling [HTPP]

• Cell Painting

• Both methods are complementary to each 
other and can be used in many different 
human-derived cell types.

• EPA has established scalable laboratory and 
bioinformatics workflows for each assay. 



High-Throughput Transcriptomics
(HTTr)



• The TempO-Seq human whole transcriptome assay
measures the expression of greater than 20,000
transcripts.

• Requires only picogram amounts of total RNA per sample.

• Compatible with purified RNA samples or cell lysates.

• Lysates are barcoded according to sample identity and
combined in a single library for sequencing using industry
standard instrumentation.

• Scalable, targeted assay: 
• 1) specifically measures transcripts of interest
• 2) ~50-bp reads for all genes
• 3) requires less flow cell capacity than RNA-Seq

TempO-Seq Assay Illustration

Yeakley, et al. PLoS ONE 2017

Known, captured in probe 
manifests and fastq files

Aligned to reference 
transcriptome to generate counts

Templated Oligo with Sequencing Readout (TempO-Seq)



HTTr Experimental Design and Bioinformatics Workflow

Test Samples:
8 Concentrations
½ Log10 Spacing
Triplicate Plates

QC Treatments
Vehicle Control
Ref Treatments
Cell Viability
Trichostatin A

QC Treatments
UHRR
HBRR
BL DMSO
BL TSA
Lysis Buffer

Cryopreserved 
Cell Stocks

Cell Expansion & 
Plating



Concentration-Response Modeling of Signature Scores (1)

Experimental Data: Chemical_Conc × Gene matrix of DESeq2-moderated log2 [fold-change] values.
Signature Collections:      MSigDB (Liberzon et al. 2015), BioPlanet (Huang et al. 2019), CMAP (Subramanian et al. 2005)

Chemical_Conc × Pathway matrix of scores.
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Step 1:
Inputs

Step 2: Pathway Scoring Step 3: Cut-off Estimation via NULL Modeling

• For each gene, resample l2fc based on the cross-
sample gene distribution  breaks gene correlation

• Calculate pathway scores for “null” data
• One null distribution (n = 1000 scores) / pathwayK-S statistic

Analysis by Thomas Sheffield and Richard Judson



Biological Pathway Altering Concentrations (BPACs)
Step 4: Concentration-Response 

Modeling (tcplfit2) Step 5: Ranking of Signatures Step 6: Signature Aggregation

Signature-Level:
• Benchmark Dose (BMD)
• Confidence Interval on BMD
• Hit Call Probability

Retinoic Acid

• Molecular PODs based on biological pathway altering concentrations (BPACs) may be derived in several ways.

• Most sensitive signature OR statistic based on distribution of active signatures (5th %ile) OR by target class.



High-Throughput Phenotypic Profiling
(HTPP)



• A high-throughput testing strategy where rich information present in biological images is reduced to 
multidimensional numeric profiles and mined for information characteristic to a chemical’s biological activity.

• Originated in the pharmaceutical sector and has been used in drug development to understand disease 
mechanisms and predict chemical activity, toxicity and/or mechanism-of-action.

Imaging-Based High-Throughput Phenotypic Profiling 
(HTPP)

Chandrasekaran et al. Nat Rev Drug Discov. 2020 Dec 22:1–15



Golgi + membrane 
+ actin skeleton DNA RNA + ER Mitochondria

1300 features

Cell Painting is a profiling method that
measures a large variety of phenotypic
features in fluoroprobe labeled cells in vitro.

• High-throughput
• Scalable
• Amenable to lab automation
• Deployable across multiple human-

derived cell types.
• Reproducible
• Cost-effective (¢ / well)
• Infrastructure investment
• High volume data management

Laboratory & bioinformatics workflows for
conduct of this assay have been established
at CCTE.

HTPP with the Cell Painting Assay



1300 features / cell

With illustrations from Perkin Elmer
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49 Feature Categories
(ex. MITO_Texture_Cytoplasm)

Image Acquisition & Phenotypic Feature Extraction



Adapted from Nyffeler et al. Toxicol Appl Pharmacol. 2020 Jan 15;389:114876

• Strong phenotypes are observed qualitatively and produce distinct profiles when measured quantitatively.

Mitochondrial Compactness Golgi Texture Cell Swelling Cell Compaction

Examples of Chemical Induced Phenotypes



Data reduction

cell-level data

normalized
cell-level data

well-level data

cell value – medianDMSO

1.4826 MADDMSO

Concentration Response Modeling

Fit Multiple Curve 
Shapes

Best Model 
Selection

BMC

scaled 
well-level data

Cell Count Info
Conc. > 50% cell loss

Berberine chloride
Mito_Cells_Morph_STAR

Normalization
MAD normalization

Aggregation
median

Standardization
Z transformation

clipped 
well-level data

See Nyffeler et al. SLAS Discov. 2021 
Feb;26(2):292-308.

Calculate Response 
Metrics

HTPP Data Analysis Pipeline



Mahalanobis Distance (DM): 
• A multivariate metric that measures the distance between a treatment and a distribution of controls in feature space. 

• Accounts for unpredictable changes in cell states across test concentrations and inherent correlations in profiling data.

1300 features

group them in 
49 categories

derive a Mahalanobis distance
(relative to control wells)

derive a Mahalanobis distance
(relative to control wells)

1 BMC

49 BMCs

PAC

Global Mahalanobis

Category-level Mahalanobis

Feature-level 
fitting

• Chemicals where a BMC can be determined using either the global or category DM approach are considered active.

• The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC)

Phenotype Altering Concentrations (PACs)



Concentration-Response Modeling Example Chemical

• Changes in cell morphology observed at concentrations below the threshold for cytotoxicity or cytostatic effects



Applications for Molecular PODs
From HTP NAMs



Parameter Multiplier Notes

Chemicals 462 APCRA case study chemicals

Cell Types 4 U-2 OS HepaRG-2D MCF-7

Assay Formats 2 HTPP HTTr HTTr HTTr

Exposure Durations Variable 24 HR 24 HR 24 HR 6 HR

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: Variable 4 3 3 3

HTP Screening Experimental Designs

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

International collaboration of regulatory scientists focused on next generation chemical risk 
assessment including deriving quantitative estimates of risk based on NAM-derived potency 
information and computational exposure estimates.

APCRA Chemicals
PK parameters necessary for in vitro to in vivo extrapolation (IVIVE) 
in vivo toxicity data   



U-2 OS Screening Results

HTTr

HTPP

min[HTTr | HTPP]

• A majority of chemicals were active in 
both the HTTr and HTPP assays.

• There were a larger number of 
chemicals active in HTTr only versus 
HTPP only.

• Most biological activity was observed 
between 1 and 10 uM.

• A few chemicals with HTTr PACs < 1 uM
had HTPP BPACs > 10 uM or were 
inactive. 



Comparison of Screening Results Across Cell Lines

• Molecular POD defined as the minimum potency observed in HTP NAM assays across three cell types.

MCF-7 U-2 OS

HepaRG



HTP Potency Estimate
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTPP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose

In Vitro to In Vivo Extrapolation (IVIVE) Using 
High-Throughput Toxicokinetic (httk) Modeling



Bioactivity / In Vivo Effect Value Ratio Analysis

• Negative ratios indicate that AEDs 
derived from HTP NAMs molecular 
PODs are conservative surrogates 
for traditional in vivo PODs.

• When cell lines are considered 
individually, ~66-68% of chemicals 
had negative ratios.

• When considered in combination, 
the number and percentage of 
chemicals with negative ratios 
increased (82.3 %). 

• Paul-Friedman et al. (2020)a:
• Using ToxCast, 89 % of APCRA 

chemicals had negative ratios.

• Positive ratios observed for several 
organophosphate and carbamate 
pesticides.



Bioactivity Exposure Ratio (BER) Analysis
• Negative ratios indicate a potential 

for human exposure to chemicals in 
a range that is bioactive in vitro.

• When cell lines are considered 
individually, ~1-2% of chemicals had 
negative ratios.

• When considered in combination, 
the percentage of chemicals with 
negative ratios did not appreciably 
change. 

• Positive ratios observed for several 
chemicals found in consumer 
products. 

• Most extreme negative ratios 
associated with banned or limited 
use organochlorine pesticides.



• High-Throughput Profiling:  Developed experimental designs and scalable laboratory workflows 
for high-throughput transcriptomics and high-throughput phenotypic profiling of environmental 
chemicals that can be used in multiple human-derived cell types.

• Potency Estimation: Developed high-throughput concentration-response modeling workflows to 
identify thresholds for perturbation of gene expression (e.g. BPACs) and cell morphology (e.g. 
PACs).

• IVIVE: Potency estimates can be converted to administered equivalent doses (AEDs) using high-
throughput toxicokinetic modeling.

• Bioactivity to In Vivo Effect Value Ratio Analysis: AEDs derived from HTP assays were 
conservative compared to traditional PODs a majority of the time.  Performance improved to 
~80% when results from multiple cell types were considered in combination. 

• Bioactivity to Exposure Ratio (BER) Analysis: AEDs derived from HTP assays were compared to 
high-throughput exposure predictions.  There were very few chemicals where AEDs were within 
the range of exposure predictions. 

• Comparison to ToxCast:  Applications using HTP NAMs potencies as input yielded comparable 
results compared to the use of ToxCast NAMs potencies.

Summary and Conclusions
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