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How to select PFAS for tiered screening?
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* A few PFAS (e.g., PFOA, PFOS) have extensive information whereas many PFAS

have little to no information.

* Select the original 75, extended to select ~150 for screening activities.
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Figure 1. Workflow for selection of structural categories to identify the subset of 75 per- and polyfluoroalkyl substances (PFAS).
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@ comptox.epa.gov/dashboard/chemical_lists

You can search our lists of chemicals on our public CompTox
Chemicals Dashboard, and from there link to data resources
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Description: Per- and Polyfluoroalkyl Substances (PFAS) included in EPA’s expanded ToxCast chemical inventory and available for testing. These PFAS chemicals were successfully procured from commercial suppliers (with a small number
19 provided by Naticnal Toxicology Program partners) and were deemed suitable for testing (i.e., solubilized in DMSQ above 5mM, and not gaseous or highly reactive). All or portions of this inventory are being made available to EPA
researchers and collaborators to be analyzed and tested in various high-throughput screening (HTS) and high-throughput toxicity (HTT) assays.

s The https://comptox.epa.gov/dashboard/chemical lists/EPAPFAST5S1 list is a prioritized subset of this larger chemical inventory.

3 The https://comptox.epa.gov/dashboard/chemical lists/EPAPFASINSQOL list were chemicals pracured, but found to be insoluble in DMSO above 5mM.
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Executing the Next Generation CompTox
Blueprint to inform putative chemical hazard

High-throughput
transcriptomics and high-
throughput phenotypic
profiling

High-throughput targeted
screening (ToxCast)
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Figure 2. Tiered testing framework for hazard characterization. Tier 1 uses both chemical structure and broad coverage, high content assays across multiple cell types
for comprehensively evaluating the potential effects of chemicals and grouping them based on similarity in potential hazards. For chemicals from Tier 1 without a de-

fined biclogical target / pathway, a quantitative point-of -departure for hazar
tion. Chemicals from Tier 1 with a predicted biological target or pathway a

d is estimated based on the absence of biological pathway or cellular phenotype perturba-
re evaluated Tier 2 using targeted follow-up assays. In Tier 3, the likely tissue, organ, ar

organism-level effects are considered based on either existing adverse outcome pathways (AOP) or more complex culture systems. Quantitative points-of-departure
for hazard are estimated based on the AOP orresponses in the complex culture system.
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S EPA This talk includes some of the publicly available
i data from research on PFAS

EPA’s PFAS Action Plan:
A Summary of Key Actions

RESEARCH

EPA is rapidly expanding the scientific foundation for
understanding and managing risk from PFAS.

Improved detection and measurement methods,
additional information about PFAS presence in the
environment and drinking water, better understanding of
effective treatment and remediation methods, and more
information about the potential toxicity of a broader set
of PFAS will help EPA, states, and others better manage
PFAS risks.

r

EPA’s PFAS Action Plan outlines concrete steps
the agency is taking to address PFAS and to
protect public health.

EPA’s Per- and Polyfluoroalkyl Substances (PFAS)
Action Plan:

* Demonstrates the agency’s critical national leadership
by providing both short-term solutions and long-term
strategies to address this important issue.

* Provides a multi-media, multi-program, national research and risk
communication plan to address this emerging environmental challenge.

* Responds to the extensive public input the agency has received over the past year during the PFAS National
Leadership Summit, multiple community engagements, and through the public docket.

EPA is taking a proactive, cross-agency approach to addressing PFAS. The key actions EPA is taking to help provide
the necessary tools to assist states, tribes, and communities in addressing PFAS are summarized below.

EPA's PFAS Action Plan: A Summary of Key Actions



https://www.epa.gov/sites/default/files/2019-02/documents/pfas_action_factsheet_021319_final_508compliant.pdf
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ARTICLE INFO ABSTRACT

Fer- and potyfluorcaliyl substances (PFAS) are & broad cluss of bundreds of fluoeinated chemibcals with envi-
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L. Introduction

¥ 20110 These two chemicals are no longer
manufsctured in the US. and their international mamdfacturing has

Per- and polyfhuomalkyl substances {(FFAS) are a class of man-made
chemicals that have been in use since the 19405 and are found in a broad

array of ndustrial and consamer products (Gliige 2020), Their
comman usage as non-stick surface repellants, in fire-fighting foams, in
flucropedymer manufacturing, and in other applications, coupled with a
tendency of some members af the dass to bioaccumulate and be ress
tant to biodegradation, has led to a high level of concern for their
comtamination of the environment (Wang e al, 2017). There are well
dramiented, widespread, buman and wildlife cxposare to same of these
chemicals, the best known being perflucrooctancic acid (PFOA;
DTXSIDBGG1865) and  perflucrooctane salfonic  acid  (PFOS;
DTXSID3NE1864) (HKelly

et al., 3004 Poothong et al, 2000; Hansen

, M F A, 2017). While the tpxicities of FFOA and FFOS
have been extensively studisd by many researchers, numerows ather
PFAS have little to mo toxicity or envirommental fate information
available. The lack of data and potential environmental impact of this
class of chemicals led the US. Environmental Protection Agency (EPA)
and the Naticnal Institute of Health's National Toxicology Program
{NTP) to collaborale on conducting PFAS taxicity testing to facilitate
PFAS human health assessments (Pa e 2015). A targed
selection of 430 PFAS (hup: _EpaLge card/chemic
al lists/EFAPFASINY) designed to be representative of the mange of
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>3800 ToxCast chemicals have been
screened in concentration response in
the Attagene transcription factor
profiling system
* HepG2 HG19 subclone for elevated
xenobiotic metabolic capacity

* “CIS” assays: endogenous transcription
factors that regulated transfected
reporters (nuclear receptor promoter
elements, cell stress)

* “TRANS” assays: exogenous receptor-
reporter system is transfected in
(xenobiotic nuclear receptors)

e Used for environmental mixtures and
single chemical screening
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Gathering information on nuclear receptor and cell stress pathways
via transcription factor activity profiling (TFAP)
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15 eRcs | T8 55 DRS_CIS
16 Ets_CIS 3 S6  RARa_TRANS
17 Pax6_CIS b 57 RARD_TRANS
18 | AR_TRANS 58 RARgTRANS  §
19 ERa_TRANS 5 L] RXRa_TRANS =
0 ERE CI5 g &0 RERb_TRANS E
21 |m™HRa1TRANs| B 61  NURRLTRANS &
22 VDR_TRANS g' 62 RORb_TRANS ﬁ
23 VDRE_CIS 63 RORg_TRANS
S = 64 RORE_CIS
24 ISRE_CIS E -§ E = ST
5 NEKBCIS |E & o 73 AP 2 CIS
% IR1_CIS &7 BRE_CIS
7 FXR_TRANS = 88 C_EBP_CIS
28 | DRA_LXR_CIS & 89 FexA2_CIS g
29 LXRa_TRANS g 70 FoxD_CIS £
30 | LXRb_TRANS | & 71 GATA_CIS £
31 |PPARa_TRANS| 2 72 GL_CIS z
32 |PPARd_TRANS E 73 HNFaa_TRANS &
33 |PPARg TRANS| = 74 HNF6_CIS u
= 2
34 PPRE_CIS - 75 Myb_CIS %
L] SREBP (IS 76 Myc_CIS B
36 Ahr_CIS ) NFI_CIS E
7 CAR_TRANS [ £ u 78 Sp1_CIS B
a8 PBREM_CIS |2 -§ ﬁ 7 STAT3_CIS o
EL] PXR_TRANS |§ £ & 80  TCF_b_cat CI5
40 PXRE CIS 81 1GFb_CIS
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Table 1
Nuclear receptors included in FACTORIAL-TRANS assay.

There are differences in assay sensitivity by mode and
receptor, based on expression and design differences.

# Abbreviation  Receptor Name Nomenclature  Reference Agonist (Fold- cis-Factorial Assay Receptor Expression in HepG2'
Increase) (Fold-Increaze)
1 FXR Farnesoid X receptor MR1H4 Lithocholic acid (3.5) IR1(1.9) Moderate
2 AR Androgen receptor NR3C4 Testosterone propionate NA Very low
(44.1)
3 RARy Retinoic acid receptor-y MNER1EBE3 All-trans retinoic acid (3.9) DRS (20.2) Meoderate (RAR subfamily)”
4 GAL4 Yeast GAL4, negative control GAL4 NA NA NA
5 RXRx Retinoid X receptor-u MNR2E1 Bexarotene (18.5) DR5 (8.3) Moderate (RXR subfnmjl}'}:
6 GR Glucocorticoid receptor NR3C1 Betamethasone (29.1) GRE (4.6) Moderate
7 RARJ Retinoic acid receptor-f! MNR1B2 All-trans retinoic acid (1.6) DR5 (20.2) Mederate (RAR subfamily)”
& RARx Retinoic acid receptor-u MR1EB1 All-trans retinoic acid (5.5) DR5 (20.2) Moderate (RAR subfamily)”
9 PPARy Peroxizome proliferator- NR1C2 Rosiglitazone maleate (44.5) FPRE (3.8) High
activated receptor-y
10 ERRy Estrogen-related receptor-y NR3BE3 4-Nonylphenol, branched NA NA
(2.7)
11 RORp RAR-related orphan receptor-p  NRIFI S5R69071 (7.8) RORE (5.9) NA
12 ERu Estrogen receptor-u MER3Al 17 p-Estradiol (22.6) ERE (19.1) Very low; full-length human ERu co-
expressed in FACTORIAL-CIS
13 LXRa Liver X receptor- NRI1H3 Lynestrenol (13.9) DR4 (2.3) High (LXR subfamily)*
14 ERRua Estrogen-related receptor-uc NR3E1 4-Nonylphenel, branched NA NA
(2.7)
15 FXR Pregnane X receptor NR112 Rifampicin (3.8) PXEE (9.1] Mederate; full-length human PXR co-
expressed in FACTORIAL-CIS
16 TR Thyroid hormone receptor-u NR1Al 3,53 -Triiodothyronine NA High
(33.0)
17 LXRp Liver X receptor-fi NRI1H2 Lynestrenol (8.7) DR4 (2.3) High (LXR subfamily)®
18 CAR. Constitutive androstane NR1I3 p.p’-DDT (3.5) PBREM (1.0) Very low
recepter
19 PPARO Peroxizome proliferator- NRI1C1 Pirinixic acid (14.1) PPRE (2.4) Moderate
activated receptor-u
20 RORy RAR-related orphan receptor-y NRIF3 SSR62071 (14.2) RORE (5.9) NA
21 RXRJ Retinoid X receptor-fi MNR2B2 Bexarotene (15.2) DR5 (8.3) Meoderate (RXR subfamily)®
22 HNF4u Hepatocyte nuclear factor-4-o NR2A1 NA NA High
23 NURR1 MNuclear receptor related 1 MNR4AZ Bexarotene (24.6) MNA NA
24 VDR Vitamin D receptor NER1I11 Ergocaleiferol (32.6) VDEE (1.2) Very low
25  PPARS Peroxizome proliferator- NRIC3 12-Hydroxyoctadecanoic FPRE (2.9) NA

activated recepter-6

acid (9.3)

Low- to negligible-expression in
HepG2 cells of ERa and PXR was
overcome by cotransfection of full-
length receptors in the TRANS
assay

CAR and VDR have very low
sensitivity to ligands due to
reliance only on endogenous
receptor expression in the host
cell.
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o EPA As with other assay platforms screened, lower MW often corresponded
\ Y4 to more limited bioactivity, but there may be more than one reason.

* PFAS with molecular weight less than 330 g/mol

appeared less likely to be active in the Attagene .. n e . M zzsaT 8 W 280-328
assays and more likely to “fail” analytical QC o Ny )
(defined as parent structure not detected). = s, 3

) . £ g

* Activity was not detected for 76 distinct ;85- g - ;és .
structures, of which 55 % failed analytical QC. - .z . o= if- - o '.l - - '

* 67% of the “failed” samples had predicted vapor EASSASSRSSERRLE SRR LRSS PSS ASAIRLRE RS LIRSS RSS! gEISESAEERARAL SRR AR
pressures in excess of 100 mmHg, suggesting that chamiesicose cremestcoce Chamica Code
chemical volatilization may have played a role in MW 330422 MW 424496 MW 496-726
limited bioactivity of some of these samples. . & 2

74 7 .

* The specific acid form of PFAS may also be gs_ f.:s_ EZ
important, as the free acid form of the chemical <. - -1 <. PR R
known as “GenX” (perfluoro-2-methyl-3- <)ot nt Il < I I o iyl O ll ! <l Ity l i ||ﬂ|| I%
oxahexanoic acid (DTXSID70880215) did not have a ! l ) | aal P
high vapor pressure (was unlikely to have EIII SRR ARER AR R RS S LSRR RaRRR LS R AR S RARESS PSS SARRRRS AR SR ASANSY
volatilized), but the ammonium salt form of this CReGa St Chemical Code Chemisal Code

chemical (DTXSID40108559) showed activity as a
PPARa agonist when solubilized in water (rather
than DMSO).

Houck et al. 2020, Fig1B.
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Potency for the PFAS that were positive at key transcription factor

< EPA
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Transcription factor group

Many PFAS were negative in the transcription factor
activity screening

Aryl hydrocarbon receptor (AhR), estrogen receptor
alpha (ERa), PPAR alpha, delta, and gamma (PPARa,d,g),
the pregnane X receptor (PXR), and RXR alpha and beta
(RXRa,b) emerged as targets.

log10-AC50, micromolar

The number of chemicals that simply hit one or more
relevant assays for a particular transcription factor
group can be examined in more depth for confirmation.
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Transcription factor group

targets tended to be somewhat left-shifted from the rest of the ToxCast

Chemical Type
$ Everything else
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Estrogen receptor activity can be confirmed with orthogonal assays
including ACEA: Real Time Cell Analysis Based on Electrical Impedance
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Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast
Chemicals in T-47D Human Ductal Carcinoma Cells
Daniel M. Rotroff, ™ David 1. Dix,F Keith A. Houck,F Robert 1. Kavlock, Thomas B. I\’nquell,1E

Matthew T. Mart_in,1E David M. Reif;’ Ann M. Richard,® Nisha S. Sipes,f Yama A. Abassi¥ Can _]in,§
Melinda Stampﬂ,ge and Richard S. judson*’i

pubs.acs.org/crt

+Depa.rtment of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27514,
United States

fOffice of Research and Development, National Center for Computational Toxicology, United States Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States

SACEA Biosciences, Inc., 6779, Mesa Ridge Road, San Diego, California 92121, United States

e Can measure cell proliferation or cytotoxicity
depending on the direction

* Electrical impedance measured over 80 hr

 ACEA ER assay uses T-47D breast cancer cells
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Confirmation of transcriptional responses with functional
activity is an important strategy for ER bioactivity
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40-60 PFAS demonstrated some activity in the ATG ERa TRANS or ERE

CIS assays; viewing these assays as orthogonal reduces the set to <10.

* All of these were less potent than 17B-estradiol.
* Acrylates and N-akyl perfluoroalkyl (linear) sulfonamide structural categories were

significantly associated with ER activity.

Adding in ACEA as another orthogonal assay to confirm specificity
leads indicates few PFAS with transcription factor and functional ER-

dependent cell proliferation.

1H,1H,8H,8H-Perfluoro-3,6-dioxaoctane-1,8-diol 1H,1H,8H,8H-Perfluorooctane-1,8-diol

PFOA activated ATG_ERa_TRANS and ERE_CIS but failed to produce
functional ER-dependent cell proliferation in ACEA.
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The TRANS assay contained endpoints
for all three human PPARs (a,6,y)
whereas the CIS assay contained a
reporter gene controlled by a PPAR-
response element that responds to all
three PPARs endogenously expressed
in the HepG2 host cells.

Functional groups enriched within the
actives were mostly carboxylates
along with sulfonates, sulfonamides
and a thenoylketone, which all have a
negative ionic charge at physiological
pH, consistent with known critical
components for ligand-binding.

Not much activity at PPARS (smaller
binding pocket?).

K.A. Houck et al.

pg

Fold Change (log2)

(@]

Fold Change (log2)

4 Ammonium perfluorooctanoate
] - PPRE
= PPARu
2 -« PPARS
1 -+ PPARy
0
Conc (log uM)
4 Ammonium
perfluoro-2-methyl-3-oxahexanoate

- Conc (log pM)

o

Fold Change (log2)

O

Fold Change (log2)

As expected PPAR activity was observed for a
subset of PFAS.

Perfluorooctanesulfonic acid

0
Conc (log pM)

Methy! perfluoro(3-(1-ethenyloxy-
propan-2-yloxy)propanoate)

0
Conc (log pM)

Toxicology 457 (2021) 152789

Fig. 6. Transactivation of the peroxisome
proliferator-activated receptors (PPARs) by
example PFASs. Concentration-response data
for PPAR-q, -5, and -y in the FACTORIAL-TRANS
assays and the PPAR response element (PPRE)
in the FACTORIAL-CIS assay following treat-
ment for 20-24 h with increasing concentrations
of ammonium perflucrooctanoate (A), per-
fluorooctanesulfonic  acid (B), ammonium
perfluoro-2-methyl-3-oxahexanoate (C), and
methyl pertluoro(3-(1-ethenyloxypropan-2-
vloxy)propanoate) (D). Values are the mean
reporter gene activity expressed as fold-change
(log2) normalized by solvent control (dimethyl
sulfoxide) values.

Houck et al. 2020, Fig6.
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active at RXRa

K.A. Houck et al. Toxicology 457 (2021) 152739
A 6= B DMSO Fig. 8. PFAS activity for retinoid X receptors (RXR). A) Re-
sponses of RXRa and RXRp to pertluorononancic acid (PFNA)
~ 5 = UVI3003 and effects of pharmacelogical agents UVI3003 (5 uM), a pan-
o . " " RXE antagonist; 9-cis retinoic acid (0.02 pM), a pan-RXR
é 44 W 9-cis-Retinoic acid agonist; and GW&471 (5 pM), a PPARa-selective antagonist;
@ 3 9-cis-Retinoic in the presence and absence of PFNA (66 pM). No significant
E' acid/UVI3003 activation of RXRa by PFNA was observed. Significance was
E 2 established with an ordinary one-way ANOVA and Tukey's
5] m GWe4T71 multiple comparisons test. (**** = P < .0001). B) Radioligand
% 17 B PFNA Houck et al. 2020, Fig8A.
W -
" # PFNA/GW6471
-1- RXRu RXRp e PENA/UVI3003

PFNA appears to work through RXR specifically: an RXR-selective antagonist,
UVI3003 (DTXSID501024375), completely blocked PFNA activation of RXR,
whereas the PPARa antagonist GW6471 was ineffective.

PFNA

~17 PFAS activated RXRpB, with two of these

Seventeen of the PFAS, mostly
linear, fluorinated carboxylic
acids, showed a novel finding
of activation of RXRp.

Most also activated PPARq,
PPARy and NRF2, with varying
levels of selectivity. Only two
activated RXRa; however,
NURR1 was activated,
presumably through agonist
effects on RXRpB .

All are structurally related
perfluorinated carboxylic acids
and meet defined ligand
structural requirements for
RXR.
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D AHR PXR PXRE CAR PBREM
Concentration:_.‘ __.‘ __.‘

Fold
Induction

(log2)

No data

Houck et al. 2020, Fig3B.
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N-Ethylperluorooctanesulionamide
Perfluorohexanesulfonic acid
Perfluoroheptanesulfonic acid
Potassium perflucrohexanesulfonate
Potassium perflucrohexanesulfonate
Ammonium perfluorooctanoate
Perfluorooctanocic acid
Perfluorotetradecanoic acid P FAS
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C I Selvent Yellow 14
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7.,12-Dimethyibenz{ajanthracens
p.p-DDOT

REFERENCE

Xenobiotic nuclear receptor responses associated with hepatic
metabolism may also be important targets to screen for PFAS bioactivity.

Many of the PFAS modulated the
xenobiotic response, particularly PXR.

Responses were generally modest with
respect to potency and efficacy relative
to prototypical PXR inducers.

None of the PFAS were determined to be
CAR activators, recognizing limitations in
the FACTORIAL-CIS assay for CAR, likely
due to negligible expression of CAR in
HepG2 cells.

Several PFAS structures activated the
AhR, somewhat surprising in that all were
linear fluoroalkyl molecules while the
protypical activator is a polycyclic
aromatic hydrocarbon. Except for sodium
perfluorodecanesulfonate and 1-lodo-
1H,1H,2H,2H-perfluoroheptane, the
responses were very weak with unknown
in vivo relevance.
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Immunosuppressive activity of the
PFAS150 in an /n vitro assay suite

Houck KA, Paul Friedman K, Feshuk M, Patlewicz G, Smeltz M, Clifton MS, Wetmore BA, Velichko S, Berenyi A,
Berg EL. (/n internal review). Evaluation of 147 Perfluoroalkyl Substances for Immunosuppressive and Other
Activities through Phenotypic Screening of Human Primary Cells.

20



< EPA

Published in final edited form as:
J Expo Sci Environ Epidemiol. 2019 March ; 29(2): 148-156. doi:10.1038/541370-018-0097-y.

Exposure to per- and polyfluoroalkyl substances leads to
immunotoxicity: Epidemiological and toxicological evidence

Jamie C. DeWitt, Ph.D.,
Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina Universi
600 Moye Blvd., Greenville, NC 27834, USA

Sarah J. Blossom, Ph.D., and
Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine,
Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA

Laurel A. Schaider, Ph.D.
Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA 02460, USA

Abstract
In this perspective, we evaluate key and emerging epidemiological and toxicological data
concerning immunotoxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate
(PFOS) and seck to reconcile conflicting conclusions from two reviews published in 2016. We
summarize ways that immunosuppression and immunoenhancement are defined and explain how
specific outcomes are used to evaluate immunotoxicity in humans and experimental animals. We
observe that different approaches to defining immunotoxicological outcomes, particularly those
that do not produce clinical discase, may lead to different conclusions from epidemiological and
toxicological studies. The fundamental point that we make is that aspects of epidemiological
studies considered as limitations can be minimized when data from toxicological studies support
epidemiological findings. Taken together, we find that results of epidemiological studies,
supported by findings from toxicological studies, provide strong evidence that humans exposed to
PFOA and PFOS are at risk for immunosuppression,

PFOA and PFOS are suspected of being
Immunosuppressive

A 2016 NTP review of PFOA/PFOS had concluded that
suppression of antibody responses in animals had the most
evidence.

Chang et al. 2016 had concluded that the available evidence
was insufficient to make a conclusion about causality; could
cause immunosuppression in animals, but inconsistencies
were present across species and strain.

DeWitt et al. 2019 attempts to reconcile these opinions and
concludes what the NTP concluded, that PFOA and PFOS may
be associated with immunosuppression based on available
data.

The limited data landscape, focused on PFOA and PFOS, is
complex, with differences by species, strain, sex, endpoints
measured, and doses used.
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BioMAP is a suite of primary and primary co-culture models for
assessing phenotypes, including some elements of immunosuppression

Cell Type Disease Relevance Biomarker Readouts Description
Perinheral blood The SAg system models chronic inflammation of the Th1 type and
enp eral 00 I Autoimmune MCP-1, CD38, CD40, E-selectin, T cell effector responses to TCR signaling with costimulation. This
SAg :n&nomljc eardt;ethsl' | Disease, Chronic CDg&g, IL-8, MIG, PBMC system is relevant to inflammatory conditions where T cells play a
"enu aren elia Inflammation Cytotoxicity, Proliferation, SRB key role including organ transplantation, rheumatoid arthritis,
cells psoriasis, Crohn's disease and multiple sclerosis.
The BT system models T cell dependent B cell activation and class
Peripheral blood Asthma, Allergy, B cell Proliferation, PBMC switching as would occur in a germinal center. This system is
BT 9 menonuclear cells Oncology, Cytotoxicity, Secreted IgG, sIL-17A, relevant for diseases and conditions where B cell activation and
+ B cells Autoimmunity sIL-17F, slL-2, sIL-B, sTNFa antibody production are relevant. These include autcimmune
disease, oncology, asthma and allergy.
. Cardiovascular MCP-1, MIP-1a, VCAM-1, CD40, The Mphg System .moslels chronic inﬂarrTmation of.the Th1 type
Venular endothelial . . and macrophage activation responses. This system is relevant to
Inflammation, E-selectin, CDE9, IL-8, IL-1a, M- . L . )
Mphg cells . . inflammatory conditions where monocytes play a key role including
Restenosis, Chronic CSF, . . : o .
+ Macrophages X atherosclerosis, restenosis, rheumatoid arthritis, and other chronic
Inflammation slL-10, SRB, SRB-Mphg X "
inflammatory conditions.

*Does not cover every type of cell involved in immune suppression nor every marker

* A TDAR will measure T-cell dependent IgM antibody response, can also IgG if modified.
* SAg: markers of decreased T-cell proliferation or specifically cytotoxic to PBMCs.

* BT: Decreased IgG and B cell proliferation or specifically cytotoxic to PBMCs.

* Mphg: Decreased IL-10 (like dexamethasone)

» Reference chemicals used: cyclosporin A, azathioprine, methotrexate [these 3 strongly suppress

lgG production in BT], and dexamethasone [affected IL-10 in Mphg]

A subset of BioMAP includes

biomarkers in relevant cell
types with measures of
specificimmune cells and
interleukins known to be
immune-relevant.
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Fold Change (log10)
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Diversity Plus Panel

It’s unlikely that PPAR is related to any immunosuppressive activity in
the BioMAP assay suite as PPAR agonists have little activity

Gemfibrozil
Rosiglitazone
Pioglitazone
Oleoylethanolamide

BioMAP Diversity Plus profiles of PPARa and PPARg reference
chemicals. Profiles for PPARg agonists rosiglitazone (3.7 uM),
pioglitazone (10 uM) and PPARa agonists gemfibrozil (200 uM)
and oleoylethanolamide (1.1 uM) are shown for the 12 assay
systems of the BioMAP Diversity Plus platform. Concentrations
were selected from the database to exceed reported in vitro
EC50’s for the corresponding receptor targets by 5- to 40-fold.
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o EPA PFOA (and PFOS) failed to provide support for suppression of
N\ IgG in BioMAP at the screened concentration range

|Diversity Plus Panel BT System o

W9 i:oci. ;. . i 05 Overall, neither PFOA nor PFOS seemed to show activity
SRS similar to the reference immunosuppressants except
perhaps PFOA at its highest testing concentration of 60 uM

where it clustered with dexamethasone.

0.0 g
-0.54

Fold Change (log10)
™ o
1 1

Fold Change (log10)

»
o
1

-2.5

 PFOA and PFOS decreased IL-10 in a co-culture system
(Mphg assay) that detects macrophage responses. IL-10 is a
cytokine that promotes B cell IgG production, but human
relevance of this in vitro finding is unknown.

=
[=]
]

=
o
1

» Several other PFAS, i.e. 3-Bis(trifluoromethyl)-2-propenoic
acid, 3H-perfluoro-2,2,4,4-tetrahydroxypentane and
perfluoropinacol, have activities similar to the reference

N, , ‘ immunosuppressants in some of the cell systems, including

OO A e: N & &Y —d suppression of 1gG secretion.

§

0.04-

Fold Change (log10)

-+~ Cyclosporine A (0.7) - Methotrexate (1.5) ¥ GenX (60)
-8 Azathioprine (13) -8~ Dexamethasone (1.5) <& PFOA (60)
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-+~ Cyclosporine A (0.7) -B Methotrexate (1.5)
-8 Azathioprine (13) -8~ Dexamethasone (1.5) ¥ 2,2,3,3-Tetrafluoropropyl acrylate (60)

A single PFAS at its highest screened concentration
associated closely with cyclosporin

Suppression of multiple endpoints in the BT system and the
SAg system is similar for both chemicals with strong
reduction in secreted IgG and the cytokines IL-17A, IL-2, IL-
6 and TNFo in the BT assay.

Notably, while cyclosporine A was very selectively active for
these two assay systems, 2,2,3,3-tetrafluoropropyl acrylate
was also active in others, in particular the wound healing
and inflammation model (HDF3CGF).

0 F
H,C W
F
0

2,2,3,3-Tetrafluoropropyl acrylate
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Overall conclusions of these high-throughput
screening data for a PFAS library

* PFAS with MW >330 g/mol tend to be more active in vitro in the current
agueous media, cell-based assays.

* Analytical quality control is exceedingly imoloortant particularly for PFAS which
may include substances that volatilize. Additionally the specific salt form of a
PFAS greatly impacts its bioactivity.

* In general, the PFAS tend to be similarly or less potent than the rest of the
ToxCast chemical library for any of the targets screened to date.

* Subsets of PFAS have activity for various nuclear receptor targets, and the use of
orthogonal assays in vitro can further inform interpretation of these
transcription factor targets. Screening for AhR, ER, PPAR, PXR, and RXR may be
Important.

* Work in progress on research-based screening models of immunosuppression
fails to support PFOA and/or PFOS induced IgG suppression.
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