Prioritizing organic waste chemicals and locations of ecological concern in sediment from Great Lakes tributaries

Austin Baldwin, USGS

<u>Contributors</u>: USGS: Owen Stefaniak, Steven Corsi, Luke Loken, Peter Lenaker, Michelle Nott USEPA: Daniel Villeneuve, Gerald Ankley, Brett Blackwell, Marc Mills

Content does not necessarily reflect positions or policies of associated agencies. ${
m \romega}$

A fundamental challenge with assessment of environmental chemistry results

Thousands of potential contaminants

- Improved analytical techniques
 - \rightarrow Detection of tens or hundreds of chemicals/site
- Difficult to identify the chemicals of greatest concern

Prioritization methods are needed

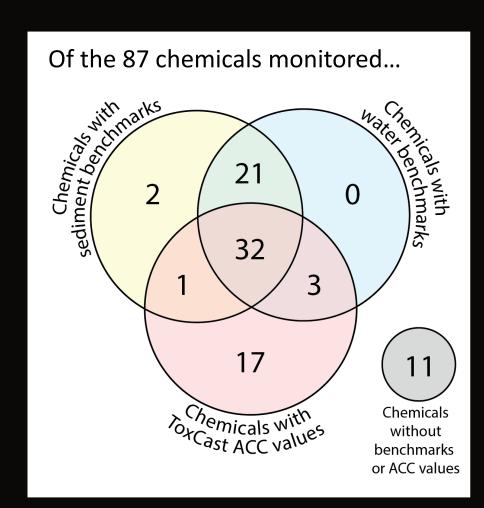
- Chemical prioritization
 - Which detected chemicals are biologically relevant?
- Site prioritization
 - At which sites are the biologically relevant chemicals present?
 - At which sites could risk be increased by co-occurrence (mixtures)?

Sediment sampling in Great Lakes tributaries

- 71 locations (26 watersheds), wide range of
 - drainage areas (3.5 16,300 km²)
 - land uses (0.7 100% urban; 0 to 90% agricultural)
 - population densities (2.8 2,260 people/km²)
 - wastewater contributions (0 48% of streamflow)
- Cores 6" deep, composited
- Targeted fine sediments
- Analyzed for 87 organic waste chemicals (OWCs)
 - antimicrobial disinfectants, antioxidants, detergent metabolites, dyes, fire retardants, flavors/fragrances, fuels, herbicides, insecticides, PAHs, plasticizers, solvents, sterols

Chemical concentrations in sediment

Which chemicals are of greatest concern biologically?

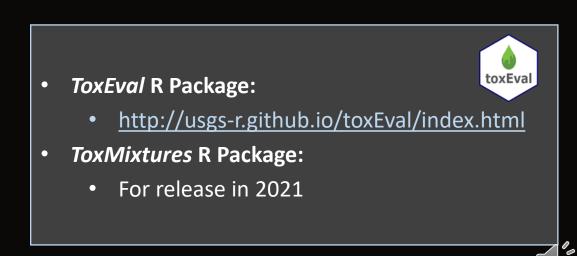


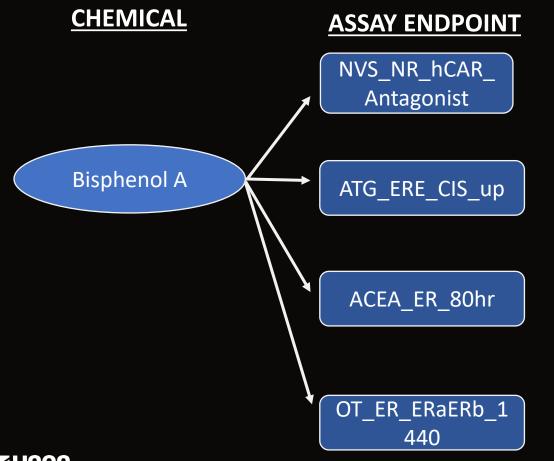
Multiple risk-based approaches:

- Sediment quality benchmarks
- Water quality benchmarks
- ToxCast benchmarks ("ACC values")

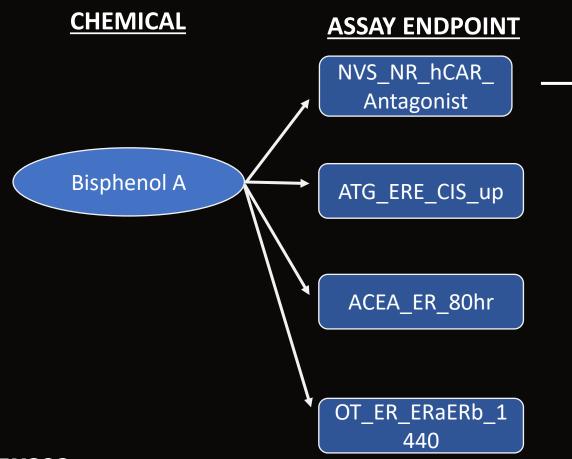
Benefits:

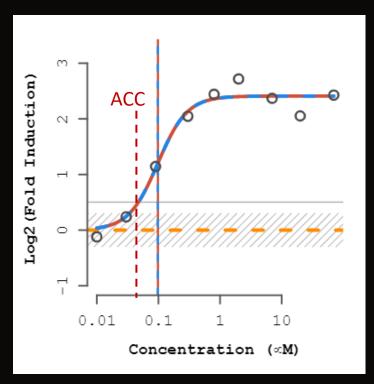
- Maximize the number of chemicals screened
- Strengthen common conclusions

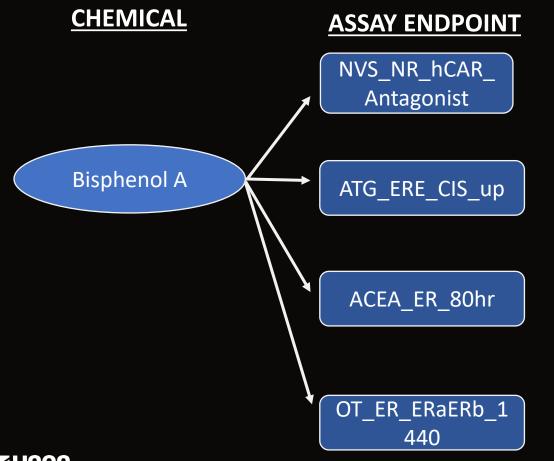

000


- <u>Sediment and Water Quality Benchmarks</u>
 - Established benchmarks from USEPA, Canadian Council of Ministers of the Environment, etc
 - Porewater concentrations estimated from sediment concentrations, partitioning coefficients, and the fraction of organic carbon
 - Toxicity Quotient $(TQ) = \frac{Measured concentration}{Benchmark concentration}$

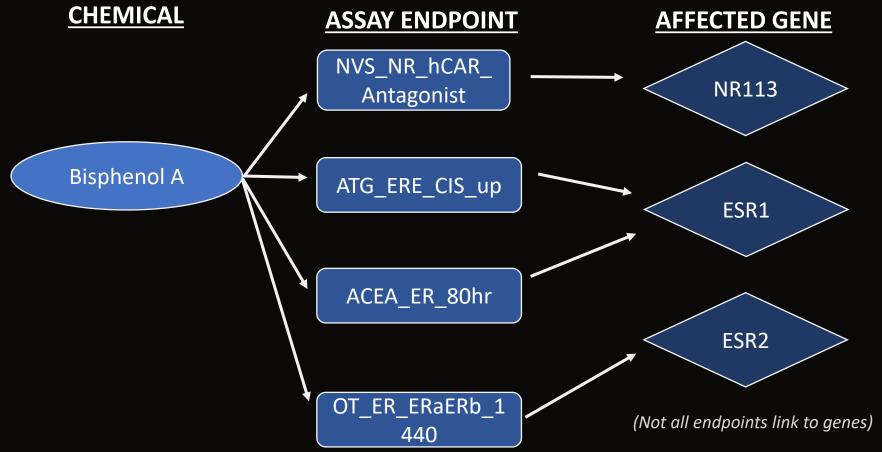
- <u>ToxCast benchmarks</u> ("ACC values")
 - EPA high-throughput screening database
 - Over 9,000 chemicals in more than 700 assay endpoints covering a broad range of cellular responses (estrogen/androgen receptors, enzyme activity, etc)
 - Biological pathways influenced
 - Link to Adverse Outcomes
 - Additive effects of chemical mixtures

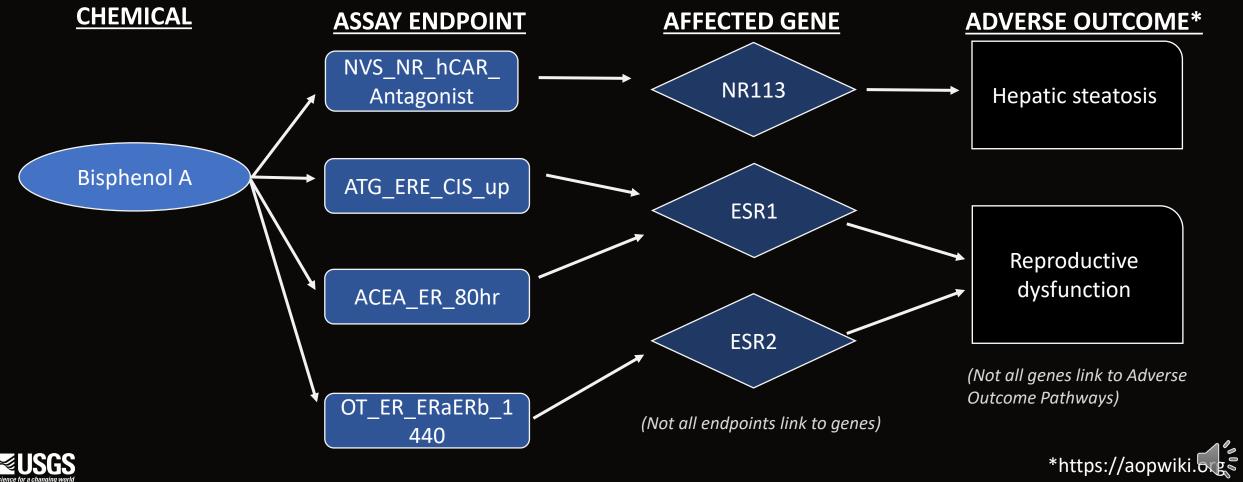


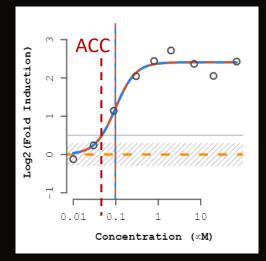




Assay dose-response curve -> Activity concentration at cutoff (ACC)


000





• <u>ToxCast benchmarks</u>

ToxCast dose-response curve. Assay: ATG_ERE_CIS_up Chemical: Bisphenol-A

 $Exposure Activity Ratio (EAR) = \frac{Measured concentration}{ACC}$

- EAR > 1.0:
 - Measured concentration > ACC
- EAR > 0.001:
 - Shown to be a level of potential concern based on comparison to established water quality benchmarks

Priority level 3

 $TO_{Max} > 0.1 \text{ or } EAR_{Max} > 0.001$ at >20% of sites

Priority level 2

 $TO_{Max} > 1.0 \text{ or } EAR_{Max} > 0.01$ at >20% of sites

Priority level 1 (highest)

 $TO_{Max} > 10 \text{ or } EAR_{Max} > 0.1$ at >20% of sites

Low Priority No TQ_{Max} > 0.1 or

 $EAR_{Max} > 0.001$ at any site, or not detected

Chemical class abbreviations: A. antioxidant; AD, antimicrobial disinfectant; DM, detergent metabolite; DP, dye/pigment; FF, flavors and fragrances; FR, fire retardant; H, herbicide; I, insecticide; ND, nonprescription drug; P, plasticizer; RAH, polycyclic aromatic hydrocarbon

Priority level 3

 $TO_{Max} > 0.1 \text{ or } EAR_{Max} > 0.001$ at >20% of sites

Priority level 2

 $TQ_{Max} > 1.0 \text{ or } EAR_{Max} > 0.01$ at >20% of sites

Priority level 1 (highest)

 $TO_{Max} > 10 \text{ or } EAR_{Max} > 0.1$ at >20% of sites

bisphenol-A (A) 4-nonylphenol (DM) indole (FF) carbazole (I) anthracene (PAH) benz[a]anthracene (PAH) benzo[a]pyrene (PAH) benzo[k]fluoranthene (PAH) fluoranthene (PAH) indeno[1,2,3-cd]pyrene (PAH) naphthalene (PAH) phenanthrene (PAH) C3-fluorene (PAH)

Low Priority

No $TQ_{Max} > 0.1$ or $EAR_{Max} > 0.001$ at any site, or not detected

Chemical class abbreviations: A, antioxidant: AD, antimicrobial disinfectant: DM, detergent metabolite: DP, dye/pigment: FF, flavors and fragrances; FR, fire retardant: H, herbicide: I, insecticide: ND, nonprescription drug: P, plasticizer: FAH, polyayolic aramatic hydrocarbon

Priority level 3

 $TO_{Max} > 0.1 \text{ or } EAR_{Max} > 0.001$ at >20% of sites

1-methylnaphthalene *(fuel)* 2-methylnaphthalene *(fuel)* acenaphthylene *(PAH)* benzo[e]pyrene *(PAH)* benzo[g,h,i]perylene *(PAH)* fluorene *(PAH)* C1,C2,C3-benz[a]anthracene/chrysene *(PAH)* C1-fluoranthene/pyrene *(PAH)* C1,C2,C3,C4-phenanthrene/anthracene *(PAH)* C3,C4-naphthalene *(PAH)* bis(2-ethylhexyl) phthalate *(P)*

Priority level 2

 $TO_{Max} > 1.0 \text{ or } EAR_{Max} > 0.01$ at >20% of sites

p-cresol (AD) 4-cumylphenol (DM) anthraquinone (DP) acenaphthene (PAH) benzo[b]fluoranthene (PAH) chrysene (PAH) dibenz[a,h]anthracene (PAH)

Priority level 1 (highest)

 $TO_{Max} > 10 \text{ or } EAR_{Max} > 0.1$ at >20% of sites

bisphenol-A (A) 4-nonylphenol (DM) indole (FF) carbazole (I) anthracene (PAH) benz[a]anthracene (PAH) benzo[a]pyrene (PAH) benzo[k]fluoranthene (PAH) fluoranthene (PAH) indeno[1,2,3-cd]pyrene (PAH) naphthalene (PAH) phenanthrene (PAH) c3-fluorene (PAH)

Lour Drionity	4-t-oct
Low Priority	4-n-oc
<i>No TQ_{Max} > 0.1 or</i>	4-nony
No TO _{Max} > 0.1 or EAR _{Max} > 0.001 at any site,	4-nony
at any site,	4-t-oct

or not detected

4-t-octylphenol monoethoxylate (DM)
4-n-octylphenol (DM)
4-nonylphenol diethoxylate (DM)
4-nonylphenol monoethoxylate (DM)
4-t-octylphenol diethoxylate (DM)
2,2',4,4'-tetrabromodiphenylether (FR)

benzophenone (FF) HHCB (Galaxolide) (FF) isoborneol (FF) isoquinoline (FF) bromacil (H) prometon (H)

chlorpyrifos (I) diazinon (I) DEET (I) menthol (ND) tris(2-chloroethyl) phosphate (P)

Phemical class abbreviations: A, antioxidant: AD, antimicrobial disinfectant: DM, detergent metabolite: DP, dye/pigment: FF, flavors and fragrances: FF, fire retardant: H, herbicide: I, insecticide: ND, nonprescription drug: P, plasticizer: FAH, polycyclic aramatic hydrocarbon

PAHs represented 41% of the chemicals analyzed but 69% of the chemicals prioritized

Priority level 3

 $TO_{Max} > 0.1 \text{ or } EAR_{Max} > 0.001$ at >20% of sites

1-methylnaphthalene (fuel) 2-methylnaphthalene (fuel) acenaphthylene (PAH) \bigstar benzo[e]pyrene (PAH) \bigstar benzo[g,h,i]perylene (PAH) \bigstar fluorene (PAH) \bigstar C1,C2,C3-benz[a]anthracene/chrysene (PAH) \bigstar C1,C2,C3,C4-phenanthrene/anthracene (PAH) \bigstar C3,C4-naphthalene (PAH) \bigstar bis(2-ethylhexyl) phthalate (P)

Priority level 2

 $TO_{Max} > 1.0 \text{ or } EAR_{Max} > 0.01$ at >20% of sites

p-cresol *(AD)* 4-cumylphenol *(DM)* anthraquinone *(DP)* acenaphthene *(PAH)* ☆ benzo[b]fluoranthene *(PAH)* ☆ chrysene *(PAH)* ☆ dibenz[a,h]anthracene *(PAH)* ☆

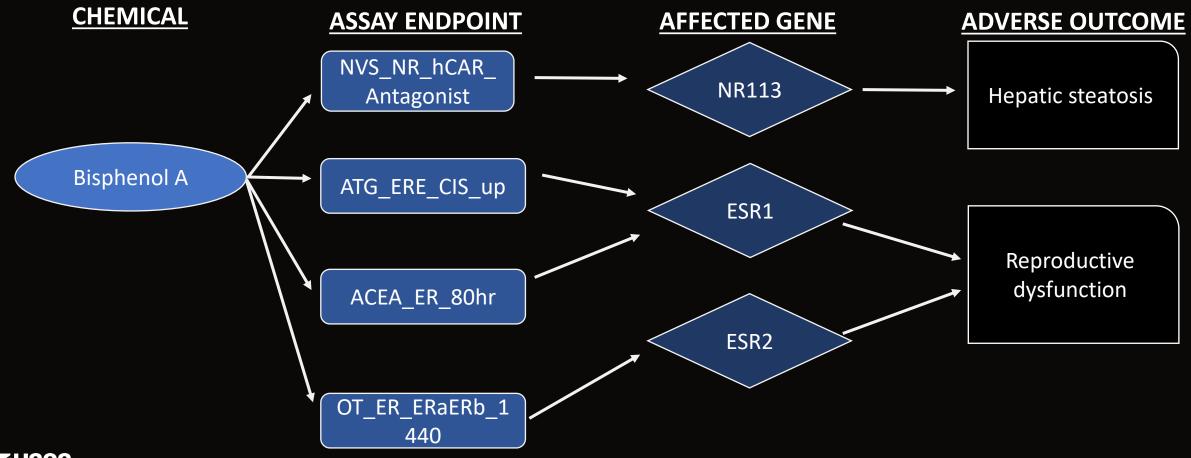
Priority level 1 (highest)

 $TO_{Max} > 10 \text{ or } EAR_{Max} > 0.1$ at >20% of sites

bisphenol-A (A) 4-nonylphenol (DM) indole (FF) carbazole (I) anthracene (PAH) \bigstar benz[a]anthracene (PAH) \bigstar benzo[a]pyrene (PAH) \bigstar benzo[k]fluoranthene (PAH) \bigstar fluoranthene (PAH) \bigstar indeno[1,2,3-cd]pyrene (PAH) \bigstar naphthalene (PAH) \bigstar phenanthrene (PAH) \bigstar C3-fluorene (PAH) \bigstar

chlorpyrifos (I) diazinon (I) DEET (I) menthol (ND) tris(2-chloroethyl) phosphate (P)

hemical class abbreviations: A. antiaxidant: AD, antimicrobial disinfectant: DM, detergent metabolite: DP, dye/pigment: FF, flavors and fragrances: 5, fire retardant: H, herbicide: I, insecticide: ND, nonprescription drug: P, plasticizer: PAH, polycyclic aromatic hydrocarbon

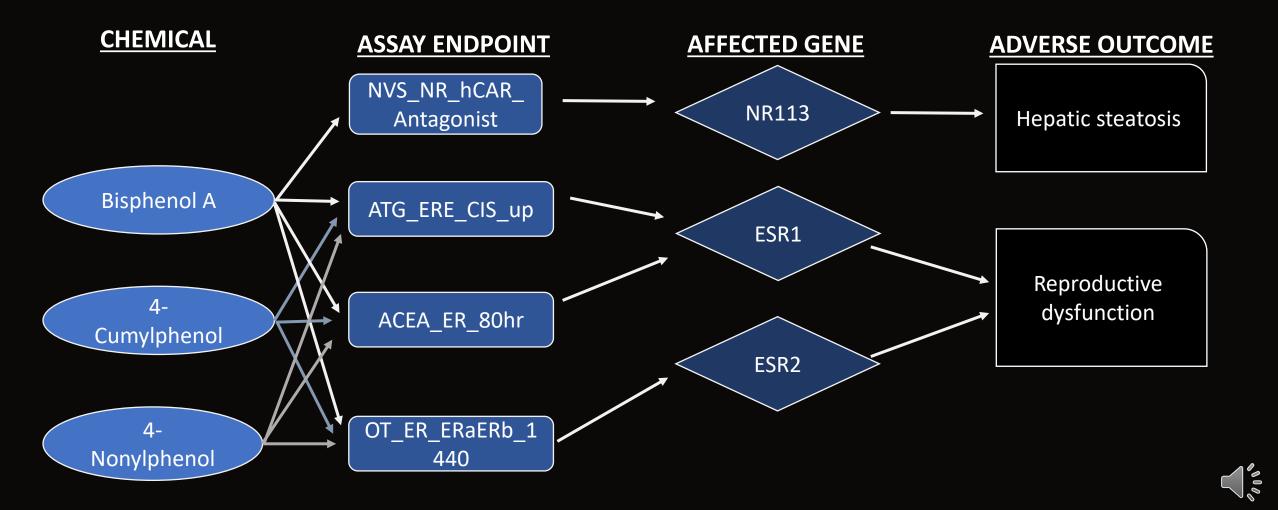

Low Priority

No $TQ_{Max} > 0.1$ or $EAR_{Max} > 0.001$ at any site, or not detected 4-t-octylphenol monoethoxylate (DM)
4-n-octylphenol (DM)
4-nonylphenol diethoxylate (DM)
4-nonylphenol monoethoxylate (DM)
4-t-octylphenol diethoxylate (DM)
2,2',4,4'-tetrabromodiphenylether (FR)

benzophenone (FF) HHCB (Galaxolide) (FF) isoborneol (FF) isoquinoline (FF) bromacil (H) prometon (H)

Chemical mixture prioritization

Additive effects of chemical mixtures based on common biological pathways



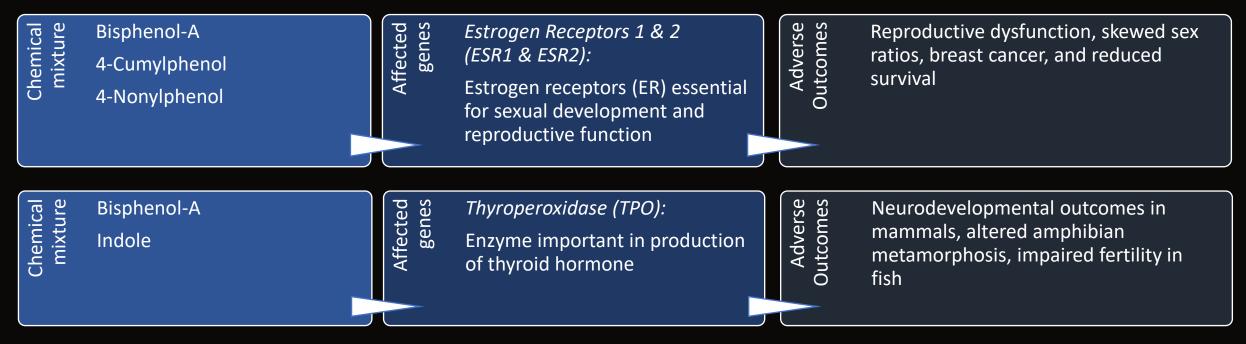
000

Chemical mixture prioritization

Additive effects of chemical mixtures based on common biological pathways

Common mixtures and their potential bioeffects

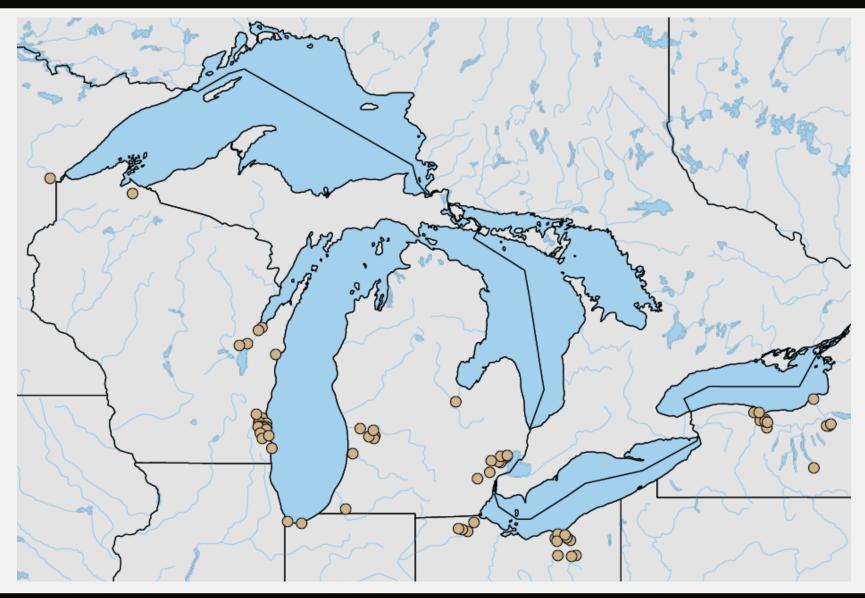
 $EAR_{Mixture} > 0.1 \text{ at} \ge 20\% \text{ of sites}$


https://aopwiki.org

Common mixtures and their potential bioeffects

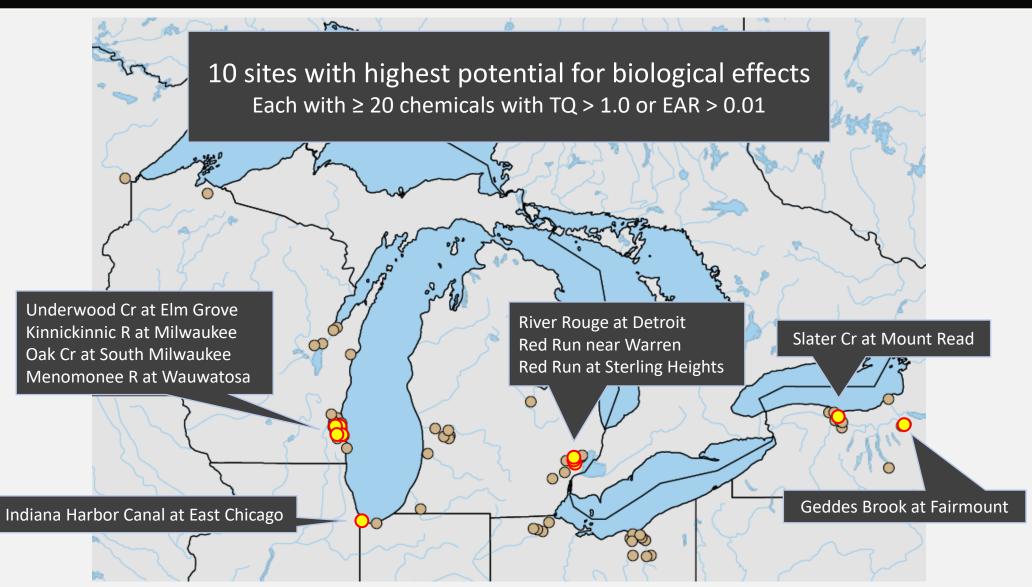
 $EAR_{Mixture} > 0.1 \text{ at} \ge 20\% \text{ of sites}$

https://aopwiki.org


Common mixtures and their potential bioeffects

$EAR_{Mixture} > 0.1 \text{ at} \ge 20\% \text{ of sites}$

https://aopwiki.org


mixture genes Estrogen Receptors 1 & 2 **Bisphenol-A** Adverse **Dutcomes** Reproductive dysfunction, skewed sex Chemical Affected (ESR1 & ESR2): ratios, breast cancer, and reduced 4-Cumylphenol survival Estrogen receptors (ER) essential 4-Nonylphenol for sexual development and reproductive function genes Chemical mixture **Bisphenol-A** Affected *Thyroperoxidase (TPO):* Adverse **Dutcomes** Neurodevelopmental outcomes in mammals, altered amphibian Enzyme important in production Indole metamorphosis, impaired fertility in of thyroid hormone fish Outcomes Chemical mixture Indole Affected genes Aryl hydrocarbon receptor Early life stage mortality in fish and (AHR): birds, hepatic steatosis, rodent liver Carbazole tumors; Regulates biological responses Benz(a)anthracene to planar aromatic hydrocarbons AHR mediated epigenetic reproductive dverse Indeno(1,2,3-cd)pyrene failure Benzo(b)fluoranthene Benzo(k)fluoranthene

Site prioritization

Site prioritization

Summary

Multiple risk-based approaches were used to prioritize chemicals, mixtures, and locations of ecological concern

Limitations

- Some detected chemicals lack benchmarks and ToxCast ACC values
- Adverse Outcomes (AOPs) are under development: not all ToxCast assays are represented by AOPs
- Porewater concentrations are estimates, not measured
- Screening-level approach validation is needed to verify effects at the stream level

Austin Baldwin akbaldwi@usgs.gov

Funding provided by the Great Lakes Restoration Initiative

