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ORD Facility in
Research Triangle Park, NC

 The Office of Research and Development (ORD) is the scientific research arm of 
EPA
 555 peer-reviewed journal articles in 2020

 Research is conducted by ORD’s four national centers, and 
three offices organized to address:
 Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

 13 facilities across the United States

US EPA Office of Research and Development

 Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees



3 of 63 Office of Research and Development

Chemical Regulation in the United States

 Park et al. (2012): At least 3221 chemical signatures 
in pooled human blood samples, many appear to be 
exogenous

 CDC National Health and Nutrition Examination 
Survey (NHANES) monitors biomarkers of hundred 
for chemicals in the general U.S. population

 A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

 Chemical safety testing is primarily for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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 Chemical safety testing is primarily for food additives, 
pharmaceuticals, and pesticide active ingredients
(NRC, 2007)

 Most other chemicals, ranging from industrial waste to dyes 
to packing materials, are covered by the Toxic Substances 
Control Act (TSCA) administered by the EPA

 Thousands of chemicals on the market were “grandfathered”  
without assessment 
Judson et al. (2009), Egeghy et al. (2012), Wetmore et al. (2015)

“Tens of thousands of chemicals are listed with the Environmental Protection Agency (EPA) for 
commercial use in the United States, with an average of 600 new chemicals listed each year.” 

U.S. Government Accountability Office

March, 2013

Chemical Regulation in the United States
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 TSCA was updated in June 2016 to allow more rapid 
evaluation of chemicals (Frank R. Lautenberg 
Chemical Safety for the 21st Century Act)

 New approach methodologies (NAMs) are being 
considered to inform prioritization of chemicals for 
testing and evaluation (Kavlock et al., 2018)

 EPA has released a “A Working Approach for 
Identifying Potential Candidate Chemicals for 
Prioritization” (September, 2018)

Toxic Substances 
Control Act (TSCA)

Schmidt, C. W. (2016). TSCA 2.0: A new era in 
chemical risk management”, Environmental 
Health Perspectives, A182-A186.
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New Approach Methodologies (NAMs)

 There are roughly 10,000 TSCA-relevant 
chemicals in commerce
 Traditional methods are too resource-

intensive to address all of these
 EPA, other US regulators, and international 

governments are all considering NAMs

 NAMs include:
 High throughput screening (ToxCast)
 High throughput exposure estimates 

(ExpoCast)
 High throughput toxicokinetics (HTTK)

 TSCA Proof of concept (June 2021): Examine ~200 chemicals with ToxCast, ExpoCast, and HTTK
 HTTK was rate limiter on number of chemicals
 “A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for 

Chemical Prioritization under TSCA” https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=349776&Lab=CCTE

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=349776&Lab=CCTE
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When to Use NAMs?

 …”New approach methods (NAMs), include any technologies, methodologies, approaches or 
combinations thereof that can be used to provide information on chemical hazard and potential human 
exposure that can avoid or significantly reduce the use of testing on animals”
 NAMs for filling information gaps for decision-making
 integrating data steams into chemical risk assessment
 making the information publicly available

 Can ask (at least) two different questions:
 For chemicals where we have resources to study: 

When are NAMs equivalent to or better than existing methodologies?
 Animal testing
 Clinical studies (for therapeutics)
 Biomonitoring / epidemiology

 For chemicals where there are limited resources: 
When are NAMs sufficient to act upon in the absence of other information?
 Raising/lowering chemical priority?
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Three Components for Chemical Risk

NRC (1983)

The National Academy of 
Sciences, Engineering and 
Medicine (1983) outlined three 
components for determining 
chemical risk.

Chemical
Risk Dose-

Response
(Toxicokinetics 

/Toxicodynamics)
Exposure

Hazard
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ToxCast = Toxicity Forecaster
ExpoCast = Exposure Forecaster

“Recent advances in high throughput toxicity 
assessment, notably the ToxCast and Tox21

first-tier risk-based rankings of chemicals on 
the basis of margins of exposure”

-

National Academies of 
Sciences, Engineering, and 
Medicine (NASEM)High Throughput

Risk 
Prioritization

Toxicokinetics
(easier to deal with than toxicodynamics)

Calculating Chemical Risk

New approach methodologies (NAMs) enable risk assessors to more 
rapidly address public health challenges and chemical regulation

programs… and in high throughput computational 
exposure assessment [ExpoCast] have enabled

January 5, 2017

Exposure

Hazard
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10

Risk Assessment in the 21st Century
“…The committee sees the potential for the application of computational exposure 
science to be highly valuable and credible for comparison and priority-setting 
among chemicals in a risk-based context.”

January 5, 2017

FIGURE 2-7 Data from nontargeted and targeted analysis of dust samples were used with 
toxicity data to rank chemicals for further analysis and testing. Source: Rager et al. 2016
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• The U.S. National Research Council (1983) identified 
chemical risk as a function of both inherent hazard 
and exposure

• Therefore, high throughput risk prioritization needs:
1. High throughput hazard characterization                            

(Dix et al., 2007, Collins et al., 2008)
2. High throughput exposure forecasts                       

(Wambaugh et al., 2013, 2014)
3. High throughput toxicokinetics (that is, dose-

response relationship) linking hazard and 
exposure                                                          
(Wetmore et al., 2012, 2015)

Chemical Risk = Hazard x Exposure

High Throughput 
Exposure Rate 

Predictions

mg/kg BW/day

High Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk
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The Margin Between Exposure and Hazard

Aylward and Hays (2011) 

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data… what do we do about the other 1000’s?

Estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Bio-monitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+

Range of bioactive concentrations 
across ToxCast assays
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Can we develop new tools to                    
generate the exposure information we need?

There are Limited Available 
Data for Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume 
(Egeghy et al., 2012)
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NAMs for Exposure Science

 There are at least 10,000 chemicals produced, used in commerce, and potentially present 
in the environment
 Traditional methods are too resource-intensive to address all of these
 New Approach Methodologies (NAMs) have the potential to address these gaps

 The tools to characterize both toxicity and exposure have evolved significantly in the past 
decade

 NAMs for exposure science are being developed 
to enable risk assessors to more rapidly address 
public health challenges and chemical 
regulation
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Human

Figure from Kristin Isaacs

Exposure is a Complex System

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Residential Use
(for example ,flooring)

TARGET

MEDIA

Environmental 
Release

Other Industry

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(for example, surface cleaner)

Ecological
Flora and FaunaHuman
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The Exposure Event is Often Unobservable

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

near field
Direct

near field 
Indirect Dietary far field

Residential Use
(for example ,flooring)

TARGET

MEDIA

EXPOSURE 
(MEDIA + TARGET)

Ecological

Environmental 
Release

Other Industry

Occupational

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(for example, surface cleaner)

Ecological
Flora and FaunaHuman

Figure from Kristin Isaacs

 Can try to predict exposure by characterizing pathway
 Some pathways have much higher average exposures: In home “Near field” sources significant (Wallace, et al., 1987)
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What Do We Know About Exposure?
Biomonitoring Data

 Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 
(NHANES) provides an important tool for monitoring public health

 Large, ongoing CDC survey of US population: demographic, body measures, medical exam, 
biomonitoring (health and exposure), …

 Designed to be representative of US population according to census data

 Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

 Includes measurements of:

 Body weight
 Height
 Chemical analysis of blood and urine



19 of 63 Office of Research and Development

Identifying Prevalent Mixtures in the NHANES Data

• We used data-mining 
methods (frequent 
itemset mining or FIM, 
Borgelt, 2012) to identify 
combinations of items 
(chemicals) that co-occur 
together within samples 
from same individual

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al. (2017)
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What Do We Know About Exposure?
Exposure Models

 Any model, including those for exposure, capture knowledge and a hypothesis of how the world works

 EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within government, 
industry, academia, and the general public with assessing exposure
 Includes many, many models (https://www.epa.gov/expobox)

 These models can be coarsely grouped (Arnot et al., 2006) into:
 Models that describe “near field” sources that are close to the exposed individual (consumer or 

occupational exposures) 
 Models that describe “far field” scenarios wherein individuals are exposed to chemicals that were 

released or used far away (ambient exposure)
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Everyone Uses Models
 Toxicology has long relied upon model animal species

 People rely on mental models every day 
 For example, repetitive activities like driving home from work

 Mathematical models offer some significant advantages:
 Reproducible
 Can (and should) be transparent

 …with some disadvantages:
 Sometimes reality is complex
 Sometimes the model doesn’t always work well
 How do we know we can extrapolate?

 …that can be turned into advantages:
 If we have evaluated confidence/uncertainty and know the “domain 

of applicability” we can make better use of mathematical models

USES MODELS
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Fit for Purpose Models

 A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented 
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably 
useful approximations… The only question of interest is ‘Is the model illuminating and useful?’”
George Box

 A fit for purpose model is defined as much by what is omitted as what is included in the model.

 We must accept that there will always be areas in need of better data and models – our knowledge will 
always be incomplete, and thus we wish to extrapolate.

 How do I drive to a place I’ve never been before?
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NAM Makes Use of
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Toxicokinetics

 Toxicokinetics describes the absorption, 
distribution, metabolism, and excretion of a 
chemical by the body:
 Chemical-specific
 Links exposure with internal concentrations

Breen et al. (submitted)

Exposure

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Iin vivo 
TK data
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HTTK:  A NAM for Exposure

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, 
et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, 
Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)
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In Vitro-In Vivo Extrapolation (IVIVE)

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals

Breen et al. (submitted)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

Iin vivo 
TK data

Concentration

Re
sp

on
se

In vitro Bioactivity 
Assay
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Fit for Purpose IVIVE

Bessems et al. (2014)

 We choose to make the complexity of the 
model and the number of physiological 
processes appropriate to decision context

 Bessems et al. (2014): We need “a first, 
relatively quick (‘Tier 1’), estimate” of 
concentration vs. time in blood, plasma, 
or cell

 They suggested that we neglect active 
metabolism – thanks to in vitro 
measurements we can now do better

 We do neglect transport and other 
protein-specific phenomena
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In Vitro-In Vivo Extrapolation (IVIVE)

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals

Breen et al. (submitted)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

Iin vitro 
TK data

Iin vivo 
TK data

Toxicokinetic
IVIVE

Concentration

Re
sp

on
se

In vitro Bioactivity 
Assay
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Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk


31 of 63 Office of Research and Development

NAM Makes Use of

M
ea

su
re

m
en

t

To
xi

co
ki

ne
tic

s

M
od

el
s

De
sc

rip
to

rs

Ev
al

ua
tio

n

M
ac

hi
ne

 L
ea

rn
in

g

Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboard
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Class Description Traditional Approach
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NAMs for Exposure Science

Wambaugh et al., (2019)
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Machine Learning:  A Subset of 
Artificial Intelligence

“…machine 
learning can be 

thought of as 
inferring plausible 
models to explain 

observed data.”

At the EPA we are applying publicly available machine learning algorithms to 
bridge data gaps and draw inferences from complex data sets.
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Machine Learning in Environmental Decision-Making

• National Academies Workshop, June 2019
• “Machine learning algorithms can analyze large volumes of complex data to find 

patterns and make predictions, often exceeding the accuracy and efficiency of people 
who are attempting the same task.”

• Highlighted areas of environmental health for which AI and machine learning could 
help, including:
• Predicting the toxicology of chemicals
• Characterizing the exposome
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Machine Learning NAMS

Chemical Structure 
and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Probabilistic 
Predictions of 

Potential Chemical 
Uses

Chemical Functional Use Database (FUSE)

Phillips et al. (2017)

Successful 
Model

Failed
Model

Random Forest 
Classification Models

(Breiman, 2001) 
with five-fold cross 

validation
Positive Examples Negative Examples
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Screening for Alternatives By Function 
and Bioactivity

Probability of 
Chemical 
Performing 
Same Function

Combine high throughput screening data and chemical use prediction:

Phillips et al. (2017)
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)



39 of 63 Office of Research and Development

Recycled Consumer 
Materials

Residential Dust

Rager et al., Env. Int., 2016

Phillips et al., Env. Sci. Tech. 2018

Published and Ongoing Non-Targeted Analysis 
(NTA) Studies in the ExpoCast Project

Consumer Product Emissions
from Different Substrates

Residential Air
Pooled Human Blood

Source and Release Fate and Transport Exposure

Lowe et al., Submitted

Pilot: 20 Consumer Product Categories

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Human Placenta

Rager et al., Repro. Tox. , 2020

Slide from Kristin Isaacs
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Method 1

EPA’s Non-Targeted Analysis 
Collaborative Trial (ENTACT)

 Phase 1: 
 Collaborators provided 10 mixtures of 100-

400 ToxCast chemicals each
 Mass spectrometry equipment vendors 

provided with individual chemical standards 

 Phase 2: Fortified reference house dust, human 
serum, and silicone wristbands

The Chemical Universe

Method 2

 Suspect screening / Non-targeted analyses (SSA/NTA) present 
opportunities for new exposure data

 What NTA methods are available? What is the coverage of chemical 
universe and matrices? How do methods differ in their coverage?

Ulrich et al.  (2019)

Led by Jon Sobus, 
Seth Newton and Elin Ulrich
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capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

What is “High Throughput”?

Kaewkhaw et al. (2016)

Positive
Control

Titration of 
Potential Hits
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

• ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on 
NHANES monitoring for ~120 chemicals
• Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to 

reduce uncertainty

• HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
• Work continues to develop in silico tools, for example Sipes et al. (2016)

Our work is not done…

What is “High Throughput”?
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How Do We Know if a Model is a 
“High Throughput Exposure (HTE) Model”? 

To be considered an HTE model, a model must:

1. Be applicable to and capable of handling many chemicals with minimal descriptive information
2. Cover one or more relevant exposure routes (for example, inhalation, food ingestion, mouthing, 

and dermal contact) and sources (for example, industrial and residential use), accounting for the 
influential parameters relevant for the considered pathways

3. Allow for integration with models for other pathways
4. Be scientifically plausible, respecting mass-balance principles and accounting for competing 

processes (for example, volatilization versus dermal uptake)
5. Allow for the assessment of interindividual and intraindividual variation in exposure and impact 

of such variation on acute and chronic doses as the required input data become available
6. Be amenable to integration within statistical frameworks that quantify uncertainty for 

propagation into risk evaluations
7. Remain parsimonious, that is, no more complicated than necessary to reflect the data

Adapted by Wambaugh et al. (2019) from Huang and Jolliet (2016)



45 of 63 Office of Research and Development

High Throughput Exposure (HTE) Models 
for Key Pathways

Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Slide from Kristin Isaacs
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population

Slide from Kristin Isaacs
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population

• Models of different levels of complexity have 
overlapping data needs

• They also share some universal challenges

SHEDS-HT, Isaacs et al., 2014

Li et al., 2018

FINE, Shin et al., 2015

Eichler and Little, 2020

EPA, 2019

Slide from Kristin Isaacs
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How to Make Good Forecasts
Adapted from Nate Silver

Orrin Pilkey & 
Olinda Pilkey-Jarvis (2007)
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How to Make Good Forecasts
Adapted from Nate Silver

1) Think probabilistically (especially, Bayesian): We use an 
approach that evaluates model performance systematically 
across as many chemicals (and chemistries) as possible

2) Forecasts change: Today’s forecast reflects the best 
available data today but we must accept that new data and 
new models will cause predictions to be revised

3) Look for consensus: We evaluate as many models and 
predictors/ predictions as possibleOrrin Pilkey & 

Olinda Pilkey-Jarvis (2007) Nate Silver (2012)

In Nate Silver’s terminology:
a prediction is a specific statement
a forecast is a probabilistic statement
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)

Space of 
Chemicals

Chemicals 
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Monitoring 
Data
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Model 1
Model 2… Evaluate Model Performance

and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

Wambaugh et al., 2018
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)

Estimate 
Uncertainty

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
fe

rr
ed

 In
ta
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 R
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e

Model 1
Model 2…

Calibrate 
models

Apply calibration and estimated uncertainty
to other chemicals

Evaluate Model Performance
and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

Wambaugh et al., 2018
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Ensemble Predictions
 We can use ensemble methods to make more stable models and characterize uncertainty

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

 “Ensemble methods are learning 
algorithms that construct a set of 
classifiers and then classify new data 
points by taking a (weighted) vote of their 
predictions.” Dietterich (2000)

 Ensemble systems have proven 
themselves to be very effective and 
extremely versatile in a broad spectrum of 
problem domains and real-world 
applications (Polikar, 2012)

 Ensemble learning techniques in the 
machine learning paradigm can be used 
to integrate predictions from multiple 
tools. (Pradeep, 2016)
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 But we don’t always know how chemicals are 
used:

“In particular, the assumption that 100% of 
[quantity emitted, applied, or ingested] is being 
applied to each individual use scenario is a very 
conservative assumption for many compound / 
use scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models

 Wambaugh et al. (2014) found that “pesticide inerts” had higher than average levels in biomonitoring 
data, while “pesticide actives” had lower than average

 Pesticide inerts have many other uses, but there are more stringent reporting requirements for pesticides
 Exposure is occuring by other pathways
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Chemical Use Identifies Relevant Pathways

>2000 chemicals with Material Safety Data Sheets 
(MSDS) in CPCPdb (Goldsmith et al., 2014)

10
6 
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N
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Some pathways have 
much higher average 

exposures!

Near Field Dietary Far Field EcologicalOccupational

EPA’s CPdat Database provides chemical-product information:
https://comptox.epa.gov/dashboard/

https://comptox.epa.gov/dashboard/
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Machine Learning to Predicting Exposure Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat (Food, 

Food Additive, Food Contact), 
NHANES Curation

Pharmapendium, CPDat (non-food), 
NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), FDA 
CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, Stockholm 
Convention, CPDat (Pesticide), 
NHANES Curation

Pharmapendium, Industrial Positives, 
NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water Occurrence, 
NORMAN PFAS, Stockholm 
Convention, CPDat (Industrial, 
Industrial_Fluid), NHANES Curation

Pharmapendium, Pesticide Positives, 
NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al. (2018)
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SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 far field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 far field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 far field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
far field (2.02)

Arnot et al. (2008) 8167 far field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) near field Direct (2017)

Isaacs (2017) 7511 far field Industrial and 
Pesticide

SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 DietaryRing et al. (2018)
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SEEM3: Pathway-Based Consensus Modeling

Ring et al., 2018

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
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 SEEM3 consensus model provides estimates of 
human median intake rate (mg/kg/day) for nearly 
500,000 chemicals via the CompTox Chemicals 
Dashboard (http://comptox.epa.gov/dashboard)

 SEEM3 first predicts relevant exposure pathways 
from chemical structure – model predictions are 
then weighted according to the models’ abilities to 
explain NHANES data

 We rely on pathway determinations from CPDat

 We rely on NHANES biomonitoring data
 2014 FIFRA Scientific Advisory Panel identified 

need for broader sets of evaluation data

http://comptox.epa.gov/dashboard
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EcoSEEM Metamodel for Surface 
Water Chemical Concentrations

Sayre et al, 
in preparation

Slide from Risa Sayre

(m)                                          (y)                        

EcoSEEM
metamodel

USGS/EPA water 
monitoring data

Chemical-
specific

information

Release (loading) and
fate predictors

(l)                                                      (p)                         
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NAM Makes Use of
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Ring et al. (2017)

Exposure Estimates Allow Chemical 
Prioritization
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Summary

 We need to know chemical hazard, exposure, and 
toxicokinetics to assess risk posed to the public health

 There are tens of thousands of chemicals in 
commerce in the environment that lack some of these 
data

 New approach methodologies (NAMs) are being 
developed to prioritize these existing and new 
chemicals for testing

 All data are being made public:

The views expressed in this presentation are those of the authors 
and do not necessarily reflect the views or policies of the U.S. EPA

High 
Throughput 

Exposure Rate 
Predictions

mg/kg BW/day

High 
Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

 The CompTox Chemicals Dashboard (a search engine for chemicals):
http://comptox.epa.gov/dashboard

 R package “httk”: https://CRAN.R-project.org/package=httk
 R package “SEEM3”: https://github.com/HumanExposure/SEEM3RPackage
 R package “SHEDS-HT”: https://github.com/HumanExposure/SHEDSHTRPackage

http://comptox.epa.gov/dashboard
https://cran.r-project.org/package=httk
https://github.com/HumanExposure/SEEM3RPackage
https://github.com/HumanExposure/SHEDSHTRPackage
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US EPA’s ExpoCast Project: 
New Approach Methodologies for Exposure Forecasting

Lovell and Hegstad (2009): “Obama's FY10 Budget Includes Increased Toxicology”:

“Investment in 21st century exposure science is now required to 
fully realize the potential of the NRC vision for toxicity testing.” 

Cohen Hubal (2009)

Wambaugh et al., (2019)

Since 2010:
• 45 peer-reviewed publications
• 5 STAR grants awarded
• 3 Federal research contracts 

(SWRI and Battelle)
 Funding allows for 

complementary exposure 
predictions from ExpoCast, 
launched in FY10

 Predict the impact of chemicals 
on the human body using data 
from ToxCast

Thomas et al. (2019)

High 
Throughput 

Exposure Rate 
Predictions

mg/kg BW/day

High 
Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Models MeasurementsMachine 
Learning

ExpoCast is
Applied

StatisticsDatabases

Consumer Ambient Occupational Ecological
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