November 29, 2021

<EPA

United States
Environmental Protection
Agency

Use of computational exposure science & toxicology
in chemical risk

John Wambaugh
Center for Computational Toxicology and Exposure
Office of Research and Development
U.S. Environmental Protection Agency
wambaugh.john@epa.gov

The views expressed in this presentation are those of the author
and do not necessarily reflect the views or policies of the U.S. EPA

https://orcid.org/0000-0002-4024-534X



mailto:wambaugh.john@epa.gov
https://orcid.org/0000-0002-4024-534X

vEPA US EPA Office of Research and Development

United States
Environmental Protection
Agency

" The Office of Research and Development (ORD) is the scientific research arm of
EPA
" 555 peer-reviewed journal articles in 2020

®  Research is conducted by ORD’s four national centers, and
three offices organized to address:
"  Public health and env. assessment; comp. tox. and exposure;
env. measurement and modeling; and env. solutions and
emergency response.

® 13 facilities across the United States

® Research conducted by a combination of Federal
scientists (including uniformed members of the
Public Health Service); contract researchers; and
postdoctoral, graduate student, and post-
baccalaureate trainees

Credit: the Research Triangle Foundaig

ORD Facility in
Research Triangle Park, NC

JEXITEN Office of Research and Development



<EPA Chemical Regulation in the United States
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" Park etal. (2012): At least 3221 chemical signatures

in pooled human blood samples, many appear to be NEWSCientiSt

GIVE A DOG A PHOME
Technology for our furry friends

exogenous
We've made
" CDC National Health and Nutrition Examination 150,000 new chemicals
Survey (NHANES) monitors biomarkers of hundred
for chemicals in the general U.S. population ' i
We touch them,
" A tapestry of laws covers the chemicals people are we wear them, we eat them
exposed to in the United States (Breyer, 2009) But which ones should
we worry about?
" Chemical safety testing is primarily for food SPECIAL REPORT, page 34

additives, pharmaceuticals, and pesticide active peccoran  guwmors | TANE ||\|HH|||
ingredients (NRC, 2007)

is adso virtuous of marty mba:-n-es bel" stmgll.alan rral
JERITEN Office of Research and Development November 29, 2014




<EPA Chemical Regulation in the United States
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nt Accountability Office

United States Government
GAO Report to Congressional Requesters

" Chemical safety testing is primarily for food additives,

pharmaceuticals, and pesticide active ingredients

(NRC, 2007) EPA Has Increased
Efforts to Assess and
Control Chemicals but
. . . . Could Strengthen Its
" Most other chemicals, ranging from industrial waste to dyes Approach

to packing materials, are covered by the Toxic Substances
Control Act (TSCA) administered by the EPA

TOXIC SUBSTANCES

March, 2013
" Thousands of chemicals on the market were “grandfathered”

without assessment
Judson et al. (2009), Egeghy et al. (2012), Wetmore et al. (2015)

“Tens of thousands of chemicals are listed with the Environmental Protection Agency (EPA) for
commercial use in the United States, with an average of 600 new chemicals listed each year.”

U.S. Government Accountability Office
JEXITEN Office of Research and Development



\"'IEPA Toxic Substances
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TSCA 2.0

Agency Control Act (TSCA) A New Era in
Chemical Risk Management
" TSCA was updated in June 2016 to allow more rapid overhauled with proviaions that E’JEJ?;‘!°bﬁt“t"efté’r”;iit.‘?ﬁn".‘{%l’.;';};;_ie”n'ii?uy

harmful chemicals. © Dmytro Grar \lexander Aldatov/Alamy

evaluation of chemicals (Frank R. Lautenberg
Chemical Safety for the 21st Century Act)

" New approach methodologies (NAMs) are being
considered to inform prioritization of chemicals for
testing and evaluation (Kavlock et al., 2018)

" EPA has released a “A Working Approach for
Identifying Potential Candidate Chemicals for
Prioritization” (September, 2018)

Schmidt, C. W. (2016). TSCA 2.0: A new era in
chemical risk management”, Environmental

Health Perspectives, A182-A186.
JEEITEN Office of Research and Development



e’UEI?SA New Approach Methodologies (NAMs)
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" There are roughly 10,000 TSCA-relevant Chemical
chemicals in commerce Researchin
" Traditional methods are too resource- Toxicology e mm—— e

intensive to address all of thesie ] Accelerating the Pace of Chemical Risk Assessment
- EPA) Other US regUIatorS; and Internatlonal Robert J. Kavlock,T Tina Bﬂh:{dori,Jr Tara S. Barton—MacIaren,i Maureen R. Gwilm,Jr Mike Rﬂ.SEllel‘g,§

[ i and Russell S. Thomas* /!
governments are all considering NAMs Russell S. T

ABSTRACT: Changes in chemical regulations worldwide have  Accelerating the Pace of Chemical Risk Assessment
increased the demand for new data on chemical safety. New

approach methodologies (NAMs) are defined broadly here as
including in silico approaches and in chemico and in vitro assays,
[ | 1 . as well as the inclusion of information from the exposure of
N A M sin CI u d e: chemicals in the context of hazard [European Chemicals
ency, “New Approach Methodologies in Regulatory Science”,

u High th roughput Screening (Toxcast) §§16]. NAMs for toxicity testing, iﬁcluding alternatives to

animal testing approaches, have shown promise to provide a

[ | H igh th rough put eXpOSu re esti mates large amount of data to ﬁll_ information 8aps in |_'.'00t|'1 hazard

and exposure. In order to increase experience with the new

data and to advance the applications of NAM data to evaluate
( EXpoca St) the safety of data-poor chemicals, demonstration case studies

" High throughput toxicokinetics (HTTK)

" TSCA Proof of concept (June 2021): Examine ~200 chemicals with ToxCast, ExpoCast, and HTTK
" HTTK was rate limiter on number of chemicals
" ‘A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for

Chemical Prioritization under TSCA” https://cfpub.epa.gov/si/si public record report.cfm?dirEntrylD=349776&Lab=CCTE
JEETEN Office of Research and Development
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\"'IEPA When to Use NAMSs?
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"= ..”New approach methods (NAMs), include any technologies, methodologies, approaches or
combinations thereof that can be used to provide information on chemical hazard and potential human
exposure that can avoid or significantly reduce the use of testing on animals”

" NAMs for filling information gaps for decision-making
" integrating data steams into chemical risk assessment
" making the information publicly available

® (Can ask (at least) two different questions:
" For chemicals where we have resources to study:
When are NAMs equivalent to or better than existing methodologies?
" Animal testing
" Clinical studies (for therapeutics)
" Biomonitoring / epidemiology

" For chemicals where there are limited resources:
When are NAMs sufficient to act upon in the absence of other information?
" Raising/lowering chemical priority?
Office of Research and Development
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The National Academy of
Sciences, Engineering and
Haza rd Medicine (1983) outlined three
components for determining
chemical risk.

Risk

Assessment

in the Federal
Government:
Managing

the Progress

NNAS
N AT
®OM

Chemical

-t Risk

Response
(Toxicokinetics ExpOSU re

NRC (1983) /Toxicodynamics)

Office of Research and Development



EPA Calculating Chemical Risk

Environmental Protection
Agency “ . . . .
Recent advances in high throughput toxicity

assessment, notably the ToxCast and Tox21
programs... and in high throughput computational

exposure assessment [ExpoCast] have enabled
Haza rd first-tie.r risk-basgd rankings of ct]emicals on
the basis of margins of exposure

21ST CENTURY

SCIENCE
TO IMPROVE National Academies of
RISK-RELATED Sciences, Engineering, and

High Throughput
Risk
Prioritization

EVALUATIONS Médicine (NASEM)

ToxCast = Toxicity Forecaster
ExpoCast = Exposure Forecaster

Toxicokinetics Exposure

(easier to deal with than toxicodynamics)

THE NATIONAL ACADEMIES PRESS
Wasftington, DC

www.nap.edu

January 5, 2017

New approach methodologies (NAMs) enable risk assessors to more

Woores [ URU T rapidly address public health challenges and chemical regulation



EPA Risk Assessment in the 215t Century

United States
Environmental Protection “...The committee sees the potential for the application of computational exposure

Agency
science to be highly valuable and credible for comparison and priority-setting
among chemicals in a risk-based context.”
ok S oo
— e o e
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FIGURE 2-7 Data from nontargeted and targeted analy5|s of dust samples were used with
ETETEN Office of Research and Development ~ tOXicity data to rank chemicals for further analysis and testing. Source: Rager et al. 2016




vEPA Chemical Risk = Hazard x Exposure
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« The U.S. National Research Council (1983) identified
chemical risk as a function of both inherent hazard me/kg BW/day
and exposure

High Throughput

Screening +

» Therefore, high throughput risk prioritization needs: Toxicokinetics

1. High throughput hazard characterization
(Dix et al., 2007, Collins et al., 2008)

2. High throughput exposure forecasts HigEh Throug:p:t
(Wambaugh et al., 2013, 2014) xposure Rate

Predictions
3. High throughput toxicokinetics (that is, dose-
response relationship) linking hazard and
exXposure Lower Medium Risk  Higher
(Wetmore et al., 2012, 2015) Risk Risk

Office of Research and Development



EPA The Margin Between Exposure and Hazard
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Range of bioactive concentrations
1000 1000 across ToxCast assays
4 L = Estimated or measured
\ 4

100 L] 100 % ¢ average concentrations
. = associated with the LOAEL
% 10 10 E in animal studies

m
:: ' E <> NOAEL in animal studies
= A
E 1 ® * 1 E Humans with chronic
@
E % & E exposure reference values
it . .
T o1 % Lo1 S (solid circles)
= A » E X Volunteers using products
St A 0.01 ;?.. containing the chemical
. = . =
A
A = + Bio-monitored occupational
0.001 0.001 populations
Triclosan MEBP MEHP PFOA 2,4-D
(90/615) (8/615) (35/615) (24/615) (10/615) A General populations

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data... what do we do about the other 1000’s?

Office of Research and Development Aylward and Hays (2011)



<sEPA Chemical Prioritization NAMs
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Office of Research and Development
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High throughput in vitro
screening can estimate doses
' needed to cause bioactivity

‘%I E| ﬁ (for example, Wetmore et al., 2015)
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<EPA There are Limited Av.allab.le
Emironmental Protection Data for Exposure Estimation

A
o Most chemicals lack public exposure-related data beyond production volume
(Egeghy et al., 2012)

:

:

=k
=
i

Number of Chemicals with Data
2

1

Progductan  Use Food Chemical Waler Soal Foad Air Hicmaarkzr

Violwma Categary Use Raeleasa Cong, Cong Conz, Gong Gong
Type of Data

Can we develop new tools to
EXETEN Office of Research and Development generate the exposure information we need?



EPA NAMs for Exposure Science
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" There are at least 10,000 chemicals produced, used in commerce, and potentially present
in the environment

" Traditional methods are too resource-intensive to address all of these
" New Approach Methodologies (NAMs) have the potential to address these gaps

" The tools to characterize both toxicity and exposure have evolved significantly in the past

d €ca d € Exposure Pathways
. o Consumer — f“ ; facturing and Pr ing
" NAMs for exposure science are being developed ounsoots | N | enmen
to enable risk assessors to more rapidly address / wiirite N PSOC K e
public health challenges and chemical e i 1L e ondor
regu |ati0n EXPOSURE rric ”;Zf;ﬂd ™ .ena\'etafv Far-rield Ecologica
Consumer Y e \QC CypRsOnal \

Target Populations
Office of Research and Development
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Consumer
Products and
Durable Goods g

USE and RELEASE

MEDIA

Indoor Air, Dust, Surfaces

TARGET

Office of Research and Development

Exposure is a Complex System

Other Industry

Environmental
Release
Waste \
Drinking Outdoor Air, Soil, Surface
Food
Water and Ground Water

Ecological
Flora and Fauna

Figure from Kristin Isaacs



EPA The Exposure Event is Often Unobservable

United States
Environmental Protection

Agency
Chemical Manufacturing and Processing
Consumer Other Industry R
Products and
USE and RELEASE Durable Goods Environmental
Release
Direct Us .
(for example, surface cleaner) (for example ,flooring) o Waste \
MEDIA o Drinking Outdoor Air, Soil, Surface
Water and Ground Water

near field
Indirect

EXPOSURE near field

(MEDIA + TARGET)

Ecological

TARGET

Ecological
Flora and Fauna

" Can try to predict exposure by characterizing pathway
" Some pathways have much higher average exposures: In home “Near field” sources significant (wallace, et al., 1987)

Office of Research and Development Figure from Kristin Isaacs



EPA What Do We Know About Exposure?

United States
Environmental Protection

Agency Biomonitoring Data

" Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey
(NHANES) provides an important tool for monitoring public health

" Large, ongoing CDC survey of US population: demographic, body measures, medical exam,
biomonitoring (health and exposure), ...

" Designed to be representative of US population according to census data

" Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

® |ncludes measurements of: \’

"  Body weight
" Height
"  Chemical analysis of blood and urine

iNanes

Mational Health and Nutrition Examination Surve
Office of Research and Development Y
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* We used data-mining
methods (frequent
itemset mining or FIM,
Borgelt, 2012) to identify
combinations of items
(chemicals) that co-occur
together within samples
from same individual

e J|dentified a few dozen

mixtures present in >30%
of U.S. population

Office of Research and Development

Prevalent Mixtures

DO<NoUuaWNE

PAHs and
Phenols Pesticides Phthalates metabolites
MTONEtoD om0t rttta T Ty oo =rtC 4o o O o
S EEER5S SR E RN Y YT OIS0 8o rooeree
D D D DT D DT D DR D TR D e DT e DT DR DT DR D DR DT DR DT DG D DG DG TG D DG D DS D DT DR DT e
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| - -
H B
[ [
]
I [

Kapraun et al. (2017)

0.4282
0.377
0.3761
0.2694
0.3654
0.3616
0.3584
0.2539
0.3507
0.3492
0.3461
0.2434
0.3432
0.2432
0.343
0.2409
0.3409
0.3386
0.2379
0.337
0.2361
0.2361
0.3342
0.2337
0.2333
0.3327
0.3322
0.2309
0.33
0.0005

Identifying Prevalent Mixtures in the NHANES Data

Pa.in220 aInxIw yaiym uruoireindod paipnis ayy jo Uoljdelq



EPA What Do We Know About Exposure?

United States
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Agency Exposu re MOdeIS

" Any model, including those for exposure, capture knowledge and a hypothesis of how the world works

" EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within government,
industry, academia, and the general public with assessing exposure
" Includes many, many models (https://www.epa.gov/expobox)

" These models can be coarsely grouped (Arnot et al., 2006) into:
" Models that describe “near field” sources that are close to the exposed individual (consumer or
occupational exposures)
" Models that describe “far field” scenarios wherein individuals are exposed to chemicals that were
released or used far away (ambient exposure)

Office of Research and Development
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Everyone Uses Models
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" Toxicology has long relied upon model animal species

" People rely on mental models every day
" For example, repetitive activities like driving home from work

" Mathematical models offer some significant advantages:
" Reproducible
" (Can (and should) be transparent

" ...with some disadvantages:
" Sometimes reality is complex
" Sometimes the model doesn’t always work well
" How do we know we can extrapolate?

" ..that can be turned into advantages:
" |If we have evaluated confidence/uncertainty and know the “domain
of applicability” we can make better use of mathematical models

Office of Research and Development

EVERYONE
USES MODELS

By Taro Gomi




\eIUEI?SA Fit for Purpose Models
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" A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably

useful approximations... The only question of interest is ‘Is the model illuminating and useful?’”
George Box

" Afit for purpose model is defined as much by what is omitted as what is included in the model.

"  We must accept that there will always be areas in need of better data and models — our knowledge will

always be incomplete, and thus we wish to extrapolate.

" How do I drive to a place I've never been before?

Office of Research and Development
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NAMs for Exposure Science ITEEE,
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Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models P . =L > EAEITing : e o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from _ .
, , . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . ® o o o - o
. , on a per chemical basis
a prediction for a new chemical
\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -
. e . Integration of exposure and other NAMs to .. ,
Prioritization . ) . Expert decision making ® © o o o o
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning




wEPA :
NAMs for Exposure Science ITEEE,

Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models : . P :
thousands of chemicals scenario-specific information

Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from . o
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . e o o o - o
- . on a per chemical basis
a prediction for a new chemical

\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -
. e . Integration of exposure and other NAMs to .. :
Prioritization . ) . Expert decision making ® © o o o o
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning
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" Toxicokinetics describes the absorption,
distribution, metabolism, and excretion of a

Internal chemical by the body:

" Chemical-specific

" Links exposure with internal concentrations

concentration

Exposure T
Toxicokinetic model: )

in vivo Absorption
TK data ﬁ Distribution
Metabolism

\_ Excretion )

Breen et al. (submitted)

Office of Research and Development



“EPA HTTK: A NAM for Exposure

Environmental Protection
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" To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al.,
2012, 2015)

" HTTK methods have been used by the pharmaceutical industry to determine range of

efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei,
et al., 2009; Wang, 2010)

" The primary goal of HTTK is to provide a human dose context for bioactive in vitro
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example,
Wetmore et al., 2015)

" A secondary goal is to provide open-source data and models for evaluation and use by
the broader scientific community (Pearce et al, 2017a)

Office of Research and Development
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In Vitro-In Vivo Extrapolation (IVIVE)

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals

Exposure

in vivo ’
TK data

Office of Research and Development

\

Internal Toxicodynamic
IVIVE

concentration

in vitro bioactive
concentration

N

Response

In vitro Bioactivity
Assay

!

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion )

Breen et al. (submitted)

Concentration

A4



EPA Fit for Purpose IVIVE
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Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology ——

" We choose to make the complexity of the

journal homepage: www.elsevier.com/locate/yrtph 1

model and the number of physiological -
processes appropriate to decision context PRIK modelling platforms and parameter estimation tools to enable () oo
Recommendations from a joint EPAA - EURL ECVAM ADME workshop
Jos G. Bessems ™, George Loizou”, Kannan Krishnan ©, Harvey J. Clewell 111 ¢, Camilla Bernasconi ,
" Bessems et al. (2014): We need “a first, e ek ot i S st Al e
relatively quick (‘Tier 1’), estimate” of Skin: Pagr | [ Lung (non-volatiles): Pay | _—

concentration vs. time in blood, plasma,

‘ Lung (volatiles): Ky,
or cell Absorption |

—— | Jejunum: Py,

" They suggested that we neglect active
metabolism — thanks to in vitro
measurements we can now do better

Distribution

Bessems et al. (2014)

" We do neglect transport and other Tissues: Ko
protein-specific phenomena

Office of Research and Development




EPA In Vitro-In Vivo Extrapolation (IVIVE)

Environmental Protection
Agency

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals

Internal Toxicodynamic
IVIVE

concentration

In vitro Bioactivity
Assay

Y
-~

in vitro bioactive
concentration

Response

Exposure W

Toxicokinetic model:

Concentration

L Absorption o
In vivo ’ Distribution In vitro
TK data : TK data
Metabolism . ] ]
\_ Excretion ) Toxicokinetic
Office of Research and Development IVI VE

Breen et al. (submitted)

A4
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Open-Source Tools and Data for HTTK
https://CRAN.R-project.org/package=httk

R CRAN - Package httk

< &

5 Apps (&

x

=+

8 cran.r-project.org/web/packages/httk/index.html

Confluence (8! CompTox Dashboard @ Article Request @ Absence Request % Travel Forms W Bitbucket -4 EHP ;-;

httk: High-Throughput Toxicokinetics

Change Password

O X

Q % 0o» @
@ Famas

»

Generic models and chemical-specific data for simulation and statistical analysis of chemical toxicokinetics
Pearce et al. (2017) <doi:10.18637/j35.v079.i04=. Chemical-specific in vitro data have been obtained from r|
experiments. Both physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" m
parameterized with the data provided for thousands of chemicals, multiple exposure routes, and various spe¢
of systems of ordinary differential equations which are solved using compiled (C-based) code for speed. A N
included. which allows for simulating human biological variability (Ring et al., 2017 <dei:10.1016/j.envint.
propagating parameter uncertainty. Calibrated methods are included for predicting tissue:plasma partition cq
distribution (Pearce et al.. 2017 <doi:10.1007/s10928-017-9548-7==). These functions and data provide a set

vivo extrapolation ("IVIVE") of high throughput screening data (for example, Tox21, ToxCast) to real-world
MR

“Aai- 1N 1N0T tavon ILHR1TT 10

dosimetry (also known as "RTK"! (Watmara at al

R package “httk”

Open source, transparent, and peer-
reviewed tools and data for high
throughput toxicokinetics (httk)

*  Available publicly for free statistical
software R

*  Allows in vitro-in vivo extrapolation
(IVIVE) and physiologically-based
toxicokinetics (PBTK)

*  Human-specific data for 987 chemicals

Described in Pearce et al. (2017)

Version: 2.03 d I d 1 0 7 1/ t h

Depends: R(=2.10) Own Oa S mon

Imports: deSolve, msm, data.table, sSUrvVey, MVINOIM, IMUNCAOrM, STAts, grapnics, Utlls, Magritr,

Suggests: ggplot2. knitr, rmarkdown, R.rsp, GGally, gplots, scales, EnvStats, MASS, RColorBrew
classInt, ks, stringr, reshape, reshape?2. gdata, viridis, CensRegMod, gmodels, colorspad
dplyr, forcats, smatr, gtools, gridExtra

Published: 2020-09-25

Author: John Wambaugh [aut, cre], Robert Pearce [aut]. Caroline Ring [aut]. Greg
Sfeir [aut], Matt Linakis [aut], Jimena Davis [ctb], James Sluka [ctb], Nisha Si
Wetmore [cthb], Woodrow Setzer [ctb]

Maintainer: John Wambaugh <wambaugh.john at epa.gov=

RucoRennrte- httne-//aithih cam/TTSFPA/CamnTav FynnlCact_httlk
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Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models > ) Sl _ q __g, ! e o - o
thousands of chemicals scenario-specific information

Chemical Informatic approaches for organizing chemical Tools targeted at single chemical
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from _ .
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . e o o o - o
_ : on a per chemical basis

a prediction for a new chemical

\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to .. :
Prioritization . ) . Expert decision making ® © o o o o

identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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wEPA :
NAMs for Exposure Science ITEEE,

Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g : &P > FEAHRTE : ®© o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from _ .
, , . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in ® o o o - o

- . on a per chemical basis
a prediction for a new chemical

Machine Learningl Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to .. ,
Prioritization . ) . Expert decision making ® © o o o o
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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\%UEE’SA Machine Learning: A Subset of
Artificial Intelligence

REVIEW 452 | NATURE | VOL 521 | 28 MAY 2015

o m a C h i n e doi:10.1038/nature14541
LN N}

learning canbe | pypabilistic machine learning
thoughtof as | and artificial intelligence

inferring plausible

I I l 0 d e I S to eX p I a I n How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines

Environmental Protection
Agency

) that learn from data acquired through experience. The probabilistic framework, which describes how to represent and
O b S e rve d d a t a manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning,
° robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization,

data compression and automatic model discovery.

At the EPA we are applying publicly available machine learning algorithms to
bridge data gaps and draw inferences from complex data sets.

Office of Research and Development



\e,EPA Machine Learning in Environmental Decision-Making

United States
Environmental Protection
Agency

Proceedings of a Workshop

IN BRIEF

August 2019

Leveraging Artificial Intelligence and Machine Learning to Advance
Environmental Health Research and Decisions

* National Academies Workshop, June 2019

* “Machine learning algorithms can analyze large volumes of complex data to find

patterns and make predictions, often exceeding the accuracy and efficiency of people
who are attempting the same task.”

* Highlighted areas of environmental health for which Al and machine learning could
help, including:

* Predicting the toxicology of chemicals

* Characterizing the exposome
Office of Research and Development
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United States
Environmental Protection
Agency

Chemical Structure
and Property Descriptors
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Machine Learning NAMS

Chemical Functional Use Database (FUSE)

Positive Examples

Negative Examples
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I | ][
hair condi- . heat lubricatin maskin
. hair dye . humectant & & monomer
tioner stabilizer agent agent
) oral_care organic_pigment oxidizer perfumer ph_stabilizer photoinitiator plastic
B 11 [ 1
organic === H hoto- i
oral care . & oxidizer perfumer p_ . .p. ) plasticizer
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— uv . .y wetting .
surfactant ubiquitous vinyl controlling whitener
absorber L ent agent

Random Forest
Classification Models
(Breiman, 2001)
with five-fold cross
validation

Successful
Model

Failed
Model

» Probabilistic

Predictions of
Potential Chemical
Uses

Phillips et al. (2017)
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Functional Use
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wEPA :
NAMs for Exposure Science ITEEE,

Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses ‘HEeolRoRle® °
present in a sample

High throughput methods using in vitro data

Measurement
Toxicokinetics
Descriptors
Machine Learning

Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models P . = IRy ! e o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from . o
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in e o o o - o

_ : on a per chemical basis
a prediction for a new chemical
\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

Integration of exposure and other NAMs to
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Prioritization

Expert decision making ® o o o o o




o EPA Published and Ongoing Non-Targeted Analysis
DI (NTA) Studies in the ExpoCast Project

Environmental Protection
Agency

Source and Release

Fate and Transport

Exposure

Pilot: 20 Consumer Product Categories

/100% COTTON
- MACHINE WASH
14 COLD WATER

| MADE M U.5.A.

Phillips et al., Env. Sci. Tech. 2018

Recycled Co'nsumer Consumer Product Emissions
Materials from Different Substrates

Lowe et al., Submitted

Residential Air

Residential Dust

Rager et al., Env. Int., 2016

Pooled Human Blood

Human Placenta

Fetal Space

ro. Tox., 2020

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Office of Research and Development
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\“"IEPA EPA’s Non-Targeted Analysis | g Duke EX

IIIIIIIIII

environmental protection G Ollaborative Trial (ENTACT) FJEMORY eawag ABSCIEX

Agency UNIVERSITY #qu
" Suspect screening / Non-targeted analyses (SSA/NTA) present | AR ™"
opportunities for new exposure data Oregmsmﬂsu e
""""""" NIST Thermo
" What NTA methods are available? What is the coverage of chemical NC STATE N
universe and matrices? How do methods differ in their coverage? wilh Silb @H‘R‘ SRS H

UNIVERSITY of
The Chemical Universe Method 1 UF|FLORIDA

P UNIVERSITY™
Sinai Sl

" Phase 1:
" Collaborators provided 10 mixtures of 100-
400 ToxCast chemicals each
" Mass spectrometry equipment vendors
provided with individual chemical standards

R

Led by Jon Sobus, " Phase 2: Fortified reference house dust, human

Method 2
i i serum, and silicone wristbands
Office of Research and Development Seth Newton and Elin Ulrich ’ Ulrich et al. (2019)



wEPA :
NAMs for Exposure Science ITEEE,

Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models : . P :
thousands of chemicals scenario-specific information

Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from . o
. . . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . e o o o - o
- . on a per chemical basis
a prediction for a new chemical

\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -
. e . Integration of exposure and other NAMs to .. :
Prioritization . ) . Expert decision making ® © o o o o
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning




‘e’UEESA What is “High Throughput’?

Environmental Protection
Agency

* Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been
developed so far that can run that fast

* ToxCast: ~¥1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring
concentration for toxicokinetics or exposure requires chemical-specific methods... Kaewkhaw et al. (2016)

Positive
Control

Titration of

Potential Hits 2
Office of Research and Development



\e’UEI?SA What is ““‘High Throughput’?

Environmental Protection
Agency

* Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been
developed so far that can run that fast

* ToxCast: ~¥1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring
concentration for toxicokinetics or exposure requires chemical-specific methods...

* ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on
NHANES monitoring for ~120 chemicals

* (Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to
reduce uncertainty

 HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
* Work continues to develop in silico tools, for example Sipes et al. (2016)

Office of Research and Development Our Work iS not dOne...



\e’EPA How Do We Know if a Model is a
United Stetes poccion + HIgh Throughput Exposure (HTE) Model’’?

Agency

To be considered an HTE model, a model must:

1. Be applicable to and capable of handling many chemicals with minimal descriptive information

2. Cover one or more relevant exposure routes (for example, inhalation, food ingestion, mouthing,
and dermal contact) and sources (for example, industrial and residential use), accounting for the
influential parameters relevant for the considered pathways

3. Allow for integration with models for other pathways

4. Be scientifically plausible, respecting mass-balance principles and accounting for competing
processes (for example, volatilization versus dermal uptake)

5. Allow for the assessment of interindividual and intraindividual variation in exposure and impact
of such variation on acute and chronic doses as the required input data become available

6. Be amenable to integration within statistical frameworks that quantify uncertainty for
propagation into risk evaluations

7. Remain parsimonious, that is, no more complicated than necessary to reflect the data

IEZZ] Office of Research and Development Adapted by Wambaugh et al. (2019) from Huang and Jolliet (2016)



o High Throughput Exposure (HTE) Models
N7 uEtl?b for Key Pathways

Environmental Protection

Agency Consumer (Near-Field) Pathways Ambient (Far-Field) Pathways Dietary Pathways

SHEDS-HT (Isaacs et al., 2014
( ) UseTox (Rosenbaum et al,, 2008) UseTox (Rosenbaum et al. (2008)

Population
Characterization

Chemical Data
Chemi i
on

Fate
factor —

i Intake FF

— fraction iF
iF=XF+FF

| L Human
i FE ot | exposure
rated concent®

Ecotox
Effect _|
factor
EF,

Ecotox
Effect _|
factor
EF,

ecotox
‘ecotox

RAIDAR-ICE (Li et al., 2018)

RAIDAR-ICEAG
X

Risk Assessment,

Deaiiicaion And Ranking RAIDAR (Arnot et al., 2006, SHEDS-HT (Biryol et al., 2017)

Indoor & Consumer Exposure 2 00 8) s,
g
g RY-061
. g p=0.00018 @
FINE (Shin et al., 2015) : A
3 e
s . A0
) -
g —ch/ 4 %
« €« Rt f
1> Indoor Air (M,) 4> 4  — [
] £ —=
=3 K Pathway
3 seon
2 | inhalation — ponsilitary ig eFC
ingestion 3
14 dermal I* -10 -8 6 -4
Vi Tl Log inferred median exposures {mg/kg-BWi/day)
€= carpet(M] | Vinyl Floors (M,) =}

Office of Research and Development Slide from Kristin Isaacs



EPA Fit-for-Purpose Exposure Modeling Frameworks

United States
Environmental Protection

Agency Increasing Complexity
=
Mechgn{st/c s T Full exposure
description of the
. . : . assessment
built environment + First-tier
and exposure assessment/
processes, including L eemng
temporal variability Prrormza *
Level of aggregation across Description of
sources, routes, scenarios, human behavior
chemicals i or population

Office of Research and Development Slide from Kristin Isaacs



United States

Environmental Protection ] .
Agency Increasing Complexity

—

EPA Fit-for-Purpose Exposure Modelin

Mechgn {st/c . Full exposure
description of the . . astnent
built environment -+ First-tier

and exposure assessment/

processes, including

nnnnnnnnn
PPPPPP

nnnnnn
||||||||

xxxxx

Down the Drain

||||||||||||

1 ening L ==
temporal variability PrioritizM

Level of aggregation across Description of
sources, routes, scenarios, human behavior
chemicals E or population

* Models of different levels of complexity have
overlapping data needs
* They also share some universal challenges

Office of Research and Development Slide from Kristin Isaacs

RAIDAR-ICEAG

Risk Assessment,

IDentification And Ranking

Indoor & Consumer Exposure

dddddd

€= carpet(M,)

Eichler and Little, 2020

SHEDS-HT, Isaacs et al., 2014

Lietal., 2018

FINE, Shin et al., 2015

Consumer
Exposure

II Model

EPA, 2019




wEPA How to Make Good Forecasts

United States

Agangy o Protecton Adapted from Nate Silver

useless arithmetic

Why Erviroemesial Soenbals

Can"t Predien i Fusliire

Orrin Pilkey &
Olinda Pilkey-Jarvis (2007)

Office of Research and Development



wEPA How to Make Good Forecasts

United States

Agency Adapted from Nate Silver
1) Think probabilistically (especially, Bayesian): We use an the signal :
approach that evaluates model performance systematically and the noise
across as many chemicals (and chemistries) as possible
useless arithmetic why so many
i T Ty 2) Forecasts change: Today’s forecast reflects the best predictions fail -

available data today but we must accept that new data and but some don’t
new models will cause predictions to be revised

nate silver

3) Look for consensus: We evaluate as many models and

Orrin Pilkey & predictors/ predictions as possible _
Olinda Pilkey-Jarvis (2007) Nate Silver (2012)

In Nate Silver’s terminology:
a prediction is a specific statement
a forecast is a probabilistic statement

Office of Research and Development



P : :
\.,EPA Evaluating Exposure Models with
E:\I/ti?c?n?rﬁ?etr?tsal Protection th e S E E M F ram ewo I"k

Agency

" We use Bayesian
methods to
incorporate multiple
models into
consensus predictions
for 1000s of chemicals

Chemicals
with f

Xposure

N\

Inferred Intake Rate

e : Monitoring Inference T Different
within the Systematic Data Chemicals
Empirical Evaluation Dataset 1
of Models (SEEM) ' VEEEM = Available Exposure Predictors
(Wambaugh Dataset 2 ——

gh et al., 2013, Model 2
2014; Ring et al., 2018) Evaluate Model Performance

and Refine Models

Office of Research and Development Wambaugh et al., 2018



P : :
\.,EPA Evaluating Exposure Models with
E:\I/ti?c?n?rﬁ?etr?tsal Protection th e S E E M F ram ewo I"k

Agency

" We use Bayesian

methods to %
incorporate multiple f: Calibrate
models into = . models
consensus predictions Chemicals A < '\\
for 1000s of chemicals i Exposure L O\
e ) Monitoring Inference et Different
within the Systematic T .
. . Data L Chemicals
Empirical Evaluation Datacet 1 [=
of Models (SEEM) “Dataset 2 Ve[S == Available Exposure Predictors
(Wambaugh et al., 2013, “Model 2 g
2014; Ring et al., 2018) ode
Evaluate Model Performance

and Refine Models

Office of Research and Development Wambaugh et al., 2018



EPA

United States
Environmental Protection
Agency

" We use Bayesian

methods to

incorporate multiple

models into

consensus predictions Chemicals T
for 1000s of chemicals Mo‘r""i'tt:ring Exposure
within the Systematic Data Inference

Empirical Evaluation

of Models (SEEM)

(Wambaugh et al., 2013,
2014; Ring et al., 2018)

_’ Dataset 1
Dataset 2

Model 1
Model 2

Office of Research and Development

Evaluating Exposure Models with
the SEEM Framework

ol Estimate

& | Uncertainty Calibrate
Q

= ‘ ~ models

= \

= N\

o - Different
..:'___’ f Chemicals

m Available Exposure Predictors:

Evaluate Model Performance
and Refine Models

Wambaugh et al., 2018



v EPA Evaluating Exposure Models with
Er?\i/ti?gnsr’rﬁ?etr?tsal Protection the SEEM Framework

Agency

Apply calibration and estimated uncertainty

‘_\\ Esti to other chemicals
stimate

" We use Bayesian

methods to = _
incorporate multiple e Uncertai\ty Calibrate
models into < ) ~ models
consensus predictions Chemicals A0 < \
for 1000s of chemicals ST Exposure o .\\ .
within the Systematic T .
. . Data L f Chemicals

Empirical Evaluation e [=

f Models (SEEM) Dataset 1 . .
ot lviogels | Ve[S == Available Exposure Predictors
(Wambaugh et al., 2013 Datdseie “Madal 9 g

H ” ’ o000 IVIOdEI 2

2014; R ., 201

014; Ring et al., 2018) Evaluate Model Performance

and Refine Models

Office of Research and Development Wambaugh et al., 2018



wEPA Ensemble Predictions

United States
Environmental Protection
Agency

" We can use ensemble methods to make more stable models and characterize uncertainty

" “Ensemble methods are learning b Q
algorithms that construct a set of <
classifiers and then classify new data ' T
points by taking a (weighted) vote of their

predictions.” Dietterich (2000) GFSO] INVGMJ AN S
' CEMN
" Ensemble systems have proven e 5.<§‘/9"
themselves to be very effective and B 7&/‘

extremely versatile in a broad spectrum of
problem domains and real-world
applications (Polikar, 2012)

OFCL

" Ensemble learning techniques in the
machine learning paradigm can be used
to integrate predictions from multiple
tools. (Pradeep, 2016)

Hurricane Path Prediction is an
IEZXSEN Office of Research and Development Example of Integrating Multiple Models



EPA

_ Knowledge of Exposure Pathways Limits
ey et High Throughput Exposure Models

" Wambaugh et al. (2014) found that “pesticide inerts” had higher than average levels in biomonitoring
data, while “pesticide actives” had lower than average

" Pesticide inerts have many other uses, but there are more stringent reporting requirements for pesticides
" Exposure is occuring by other pathways

" But we don’t always know how chemicals are

u S e d : This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non<ommercial purposes.
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“In particular, the assumption that 100% of

[quantity emitted, applied, or ingested] is being
applied to each individual use scenario is a very
conservative assumption for many compound /
use scenario pairs.”

Office of Research and Development

Risk-Based High-Throughput Chemical Screening and Prioritization
using Exposure Models and in Vitro Bioactivity Assays

Hycong-Moo‘Shin,*‘f Alexi Ernstoﬂf’§ Jon A Amot,lu'“ Barbara A. \‘Vctmon:,V Susan A. Csiszar,
Peter Fantke,” Xianming Zh.mg.o Thomas E. McKone, ®¥ Olivier Jolliet,® and Deborah H. Bennett'
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>2000 chemicals with Material Safety Data Sheets
(MSDS) in CPCPdb (Goldsmith et al., 2014) Some pathways have
73 much higher average
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EPA’s CPdat Database provides chemical-product information:
Office of Research and Development httpS://COmptOX.epa.gOV/daShboard/
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Machine Learning to Predicting Exposure Pathways

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

(7]
Q
2
o
(1]
oo
Q
2
Dietary 24 2523 8865
Near-Field 49 1622 567
Far-Field 94 1480 6522
Pesticide
Far Field 42 5089 2913

Industrial

Office of Research and Development

&l 0OOB Error Rate

21

19

Positives Error

32

24

36

16

Balanced
Accuracy

73

74

80

81

Sources of Positives

FDA CEDI, ExpoCast, CPDat (Food,
Food Additive, Food Contact),
NHANES Curation

CPDat (consumer _use,
building_material), ExpoCast,
NHANES Curation

REDs, Swiss Pesticides, Stockholm
Convention, CPDat (Pesticide),
NHANES Curation

CDR HPV, USGS Water Occurrence,
NORMAN PFAS, Stockholm
Convention, CPDat (Industrial,
Industrial_Fluid), NHANES Curation

Sources of Negatives

Pharmapendium, CPDat (non-food),
NHANES Curation

CPDat (Agricultural, Industrial), FDA
CEDI, NHANES Curation

Pharmapendium, Industrial Positives,
NHANES Curation

Pharmapendium, Pesticide Positives,
NHANES Curation

Ring et al. (2018)
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Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All

Reporting (CDR) (2015)

Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 far field Industrial and
Pollutants (2017) Pesticide

EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 far field Pesticide
(REDs) Exposure Assessments (Through 2015)

United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 far field Industrial

Environmental Toxicology and Chemistry toxicity model
(USEtox) Industrial Scenario (2.0)

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide
Risk Assessment IDentification And Ranking (RAIDAR) Arnot et al. (2008) 8167 far field Pesticide
far field (2.02)
EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 far field Industrial and
Throughput (SHEDS-HT) near field Direct (2017) Pesticide
SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential
Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shinetal. (2012) 45 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 615 Residential
(2016,2017)
USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)

Office of Research and Development



wEPA SEEM3: Pathway-Based Consensus Modeling
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10!  R®=0.816

"  SEEM3 consensus model provides estimates of
human median intake rate (mg/kg/day) for nearly

Path . . .
) i, st 500,000 chemicals via the CompTox Chemicals
Doty Readontil,Industra ) Dashboard (http://comptox.epa.gov/dashboard)
/% Dietary, Residential, Pesticide L
10—3 E W Dietag; Residential, Pesticide, Industrial o ’

B |ndustrial

" SEEMS3 first predicts relevant exposure pathways
from chemical structure — model predictions are

" then weighted according to the models’ abilities to

explain NHANES data

# Pesticide
A Pespmdej; Industrial I
Residential
Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial

" We rely on pathway determinations from CPDat

Consensus Model Predictions

10772 " We rely on NHANES biomonitoring data
' ® 2014 FIFRA Scientific Advisory Panel identified
need for broader sets of evaluation data

107" 107° 107°

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
Office of Research and Development Ring et al., 2018
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vEPA EcoSEEM Metamodel for Surface

United States

sy e WWater Chemical Concentrations

G
1

Predicted national concentrations
1
£l
Surface water concentrations

Structural
features

Chemical-

specific =

information
() (p) (m) §%

. »
= "{'..F.,_ .":('_.
& _
1 P
R '
X *
= oG
o~ N
F 4 -
y !
o= 2 — B -
u | | >
% i
| I N
. W ? 4
. N o
e

Release (loading) and EcoSEEM USGS/EPA water
fate predictors metamodel monitoring data

Fate and transport models
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volume data
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wEPA :
NAMs for Exposure Science ITEEE,

Environmental Protection
Agency

Exposure NAM

Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. .. High throughput methods using in vitro data .. , _
Toxicokinetics . . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models i . = IRy ! e o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from _ .
, , . .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , . ® o o o - o
. , on a per chemical basis
a prediction for a new chemical
\EW I EREETG T -8 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. eie L. Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Measurement
Toxicokinetics
Descriptors
Machine Learning

Expert decision making ® o o o o o



wEPA Exposure Estimates Allow Chemical

United States
Environmental Protection

“gency Prioritization o
High throughput in vitro
screening can estimate doses

' needed to cause bioactivity

c : v 1 (for example, Wetmore et al., 2015)
y B B, 4T
it il

: Exposure intake rates can be
inferred from biomarkers

/ (for example, Ring et al., 2018)
i mg/kg BW/day

Potential
Hazard from
in vitro with

Reverse
Toxicokinetic

10

—1}

—D
FD]_-ID—_‘
U
i
i

s
=

10—3 ]

(mg/kg BW/day)
_I
i

10—7 d

- - ' - - - - ' - ) Potentiagi
Chemicals Monitored by CDC NHANES Exposure
Rate

Estimated Equivalent Dose or Predicted Exposure

Lower Medium Higher

Office of Research and Development Ring et al. (2017) Risk Risk Risk
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EPA Summary

" We need to know chemical hazard, exposure, and

toxicokinetics to assess risk posed to the public health mg/kg BW/day
" There are tens of thousands of chemicals in High

commerce in the environment that lack some of these  Throughput

data Screening +

Toxicokinetics
" New approach methodologies (NAMs) are being

developed to prioritize these existing and new Througﬁﬂ
chemicals for testing Exposure Rate
= All data are being made public: Predictions
" The CompTox Chemicals Dashboard (a search engine for chemicals): lower Medium Higher
http://comptox.epa.gov/dashboard Risk Risk Risk

" R package “httk”: https://CRAN.R-project.org/package=httk
" R package “SEEM3”: https://github.com/HumanExposure/SEEM3RPackage
" R package “SHEDS-HT”: https://github.com/HumanExposure/SHEDSHTRPackage

The views expressed in this presentation are those of the authors
=Ll EH Office of Research and Development and do not necessarily reflect the views or policies of the U.S. EPA
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“Investment in 21st century exposure science is now required to

fully realize the potential of the NRC vision for toxicity testing.”
Cohen Hubal (2009)

Lovell and Hegstad (2009): “Obama's FY10 Budget Includes Increased Toxicology”:

" Funding allows for
complementary exposure
predictions from ExpoCast,
launched in FY10

Establishing
Confidence

Modeling

Outreach &
Training

Uncertainty

"  Predict the impact of chemicals & varsorlty

on the human body using data
from ToxCast

Computational

Software &
IT Tools

ExpoCast is Thomas et al. (2019)

Machine
Learning

Consumer Ambient
Office of Research and Development

Models Databases

PPIIE
Statistics

Occupational | Ecological

US EPA’s ExpoCast Project:

Expo cast

Since 2010:
* 45 peer-reviewed publications
5 STAR grants awarded

3 Federal research contracts
(SWRI and Battelle)

mg/kg BW/day
N\

High
Throughput
Screening +

Toxicokinetics

High
Throughput
Exposure Rate
Predictions

Lower Medium  Higher

Wambaugh et al., (2019) Risk Risk Risk
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